Newer
Older
Federico Montesino Pouzols
committed
#include "MantidAPI/MatrixWorkspace.h"
Federico Montesino Pouzols
committed
#include "MantidAPI/WorkspaceFactory.h"
#include "MantidAlgorithms/MaxentEntropy.h"
#include "MantidAlgorithms/MaxentEntropyNegativeValues.h"
#include "MantidKernel/BoundedValidator.h"
#include <boost/make_shared.hpp>
namespace Mantid {
namespace Algorithms {
using Mantid::Kernel::Direction;
using Mantid::API::WorkspaceProperty;
using namespace API;
using namespace Kernel;
// Register the algorithm into the AlgorithmFactory
DECLARE_ALGORITHM(MaxEnt)
//----------------------------------------------------------------------------------------------
/** Constructor
*/
MaxEnt::MaxEnt() {}
//----------------------------------------------------------------------------------------------
/** Destructor
*/
MaxEnt::~MaxEnt() {}
//----------------------------------------------------------------------------------------------
/// Algorithm's name for identification. @see Algorithm::name
const std::string MaxEnt::name() const { return "MaxEnt"; }
/// Algorithm's version for identification. @see Algorithm::version
int MaxEnt::version() const { return 1; }
/// Algorithm's category for identification. @see Algorithm::category
const std::string MaxEnt::category() const { return "Arithmetic\\FFT"; }
/// Algorithm's summary for use in the GUI and help. @see Algorithm::summary
const std::string MaxEnt::summary() const {
return "Runs Maximum Entropy method on every spectrum of an input workspace. "
"Note this algorithm is still in development, and its interface is "
"likely to change. It currently works for the case where the "
"number of data points equals the number of reconstructed (image) "
"points and data and image are related by Fourier transform.";
}
//----------------------------------------------------------------------------------------------
/** Initialize the algorithm's properties.
*/
void MaxEnt::init() {
declareProperty(
new WorkspaceProperty<>("InputWorkspace", "", Direction::Input),
"An input workspace.");
declareProperty("ComplexData", false,
"Whether or not the input data are complex. If true, the "
"input workspace is expected to have an even number of "
"histograms, with real and imaginary parts arranged in "
"consecutive workspaces");
declareProperty("PositiveImage", false, "If true, the reconstructed image "
"must be positive. It can take "
"negative values otherwise");
auto mustBeNonNegative = boost::make_shared<BoundedValidator<double>>();
mustBeNonNegative->setLower(1E-12);
declareProperty(new PropertyWithValue<double>("A", 0.4, mustBeNonNegative,
Direction::Input),
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
declareProperty(new PropertyWithValue<double>(
"ChiTarget", 100.0, mustBeNonNegative, Direction::Input),
"Target value of Chi-square");
declareProperty(new PropertyWithValue<double>(
"ChiEps", 0.001, mustBeNonNegative, Direction::Input),
"Required precision for Chi-square");
declareProperty(new PropertyWithValue<double>("DistancePenalty", 0.1,
mustBeNonNegative,
Direction::Input),
"Distance penalty applied to the current image");
declareProperty(new PropertyWithValue<double>(
"MaxAngle", 0.05, mustBeNonNegative, Direction::Input),
"Maximum degree of non-parallelism between S and C");
auto mustBePositive = boost::make_shared<BoundedValidator<size_t>>();
mustBePositive->setLower(0);
declareProperty(new PropertyWithValue<size_t>(
"MaxIterations", 20000, mustBePositive, Direction::Input),
"Maximum number of iterations");
declareProperty(new PropertyWithValue<size_t>("AlphaChopIterations", 500,
mustBePositive,
Direction::Input),
"Maximum number of iterations in alpha chop");
declareProperty(new WorkspaceProperty<>("EvolChi", "", Direction::Output),
"Output workspace containing the evolution of Chi-sq");
declareProperty(new WorkspaceProperty<>("EvolAngle", "", Direction::Output),
"Output workspace containing the evolution of "
"non-paralellism between S and C");
declareProperty(
new WorkspaceProperty<>("ReconstructedImage", "", Direction::Output),
"The output workspace containing the reconstructed image.");
new WorkspaceProperty<>("ReconstructedData", "", Direction::Output),
"The output workspace containing the reconstructed data.");
}
//----------------------------------------------------------------------------------------------
/** Validate the input properties.
*/
std::map<std::string, std::string> MaxEnt::validateInputs() {
std::map<std::string, std::string> result;
// X values in input workspace must be equally spaced
MatrixWorkspace_sptr inWS = getProperty("InputWorkspace");
const MantidVec &X = inWS->readX(0);
const double dx = X[1] - X[0];
for (size_t i = 1; i < X.size() - 2; i++) {
if (std::abs(dx - X[i + 1] + X[i]) / dx > 1e-7) {
result["InputWorkspace"] =
"X axis must be linear (all bins must have the same width)";
}
}
size_t nhistograms = inWS->getNumberHistograms();
bool complex = getProperty("ComplexData");
if (complex && (nhistograms % 2))
result["InputWorkspace"] = "The number of histograms in the input "
"workspace must be even for complex data";
}
//----------------------------------------------------------------------------------------------
/** Execute the algorithm.
*/
void MaxEnt::exec() {
// Read input workspace
MatrixWorkspace_sptr inWS = getProperty("InputWorkspace");
// Complex data?
bool complex = getProperty("ComplexData");
// Image must be positive?
bool positiveImage = getProperty("PositiveImage");
// Background (default level, sky background, etc)
double background = getProperty("A");
// Chi target
double chiTarget = getProperty("ChiTarget");
// Required precision for Chi arget
double chiEps = getProperty("ChiEps");
// Maximum degree of non-parallelism between S and C
double angle = getProperty("MaxAngle");
// Distance penalty for current image
double distEps = getProperty("DistancePenalty");
// Maximum number of iterations
size_t niter = getProperty("MaxIterations");
// Maximum number of iterations in alpha chop
size_t alphaIter = getProperty("AlphaChopIterations");
// Number of spectra
size_t nspec = inWS->getNumberHistograms();
// Number of data points
size_t npoints = inWS->blocksize();
// Number of X bins
size_t npointsX = inWS->isHistogramData() ? npoints + 1 : npoints;
MaxentEntropy_sptr entropy;
if (positiveImage) {
throw std::invalid_argument("Negative image: not implemented");
} else {
entropy = boost::make_shared<MaxentEntropyNegativeValues>();
}
// Output workspaces
MatrixWorkspace_sptr outImageWS;
MatrixWorkspace_sptr outDataWS;
MatrixWorkspace_sptr outEvolChi;
MatrixWorkspace_sptr outEvolTest;
nspec = complex ? nspec / 2 : nspec;
outImageWS =
WorkspaceFactory::Instance().create(inWS, 2 * nspec, npointsX, npoints);
outDataWS =
WorkspaceFactory::Instance().create(inWS, 2 * nspec, npointsX, npoints);
outEvolChi = WorkspaceFactory::Instance().create(inWS, nspec, niter, niter);
outEvolTest = WorkspaceFactory::Instance().create(inWS, nspec, niter, niter);
MaxentData_sptr maxentData;
for (size_t s = 0; s < nspec; s++) {
std::vector<double> image(2 * npoints, background);
auto dataRe = inWS->readY(2 * s);
auto dataIm = inWS->readY(2 * s + 1);
auto errorsRe = inWS->readE(2 * s);
auto errorsIm = inWS->readE(2 * s + 1);
maxentData->loadComplex(dataRe, dataIm, errorsRe, errorsIm, image,
background);
} else {
auto data = inWS->readY(s);
auto error = inWS->readE(s);
maxentData->loadReal(data, error, image, background);
// To record the algorithm's progress
std::vector<double> evolChi(niter, 0.);
std::vector<double> evolTest(niter, 0.);
// Store image in successive iterations
std::vector<double> newImage = image;
// Progress
Progress progress(this, 0, 1, niter);
// Run maxent algorithm
for (size_t it = 0; it < niter; it++) {
// Calculate search directions and quadratic model coefficients (SB eq. 21
// and 24)
maxentData->calculateSearchDirections();
double currAngle = maxentData->getAngle();
double currChisq = maxentData->getChisq();
auto dirs = maxentData->getSearchDirections();
auto coeffs = maxentData->getQuadraticCoefficients();
// Calculate beta to contruct new image (SB eq. 25)
auto beta = move(coeffs, chiTarget / currChisq, chiEps, alphaIter);
// Apply distance penalty (SB eq. 33)
for (double point : image)
sum += fabs(point);
double dist = distance(coeffs.s2, beta);
if (dist > distEps * sum / background) {
for (double &k : beta) {
k *= sqrt(sum / dist / background);
// Calculate the new image
for (size_t i = 0; i < npoints; i++) {
for (size_t k = 0; k < beta.size(); k++) {
newImage[i] = newImage[i] + beta[k] * dirs[k][i];
// Calculate the new Chi-square
maxentData->setImage(newImage);
currChisq = maxentData->getChisq();
// Record the evolution of Chi-square and angle(S,C)
evolChi[it] = currChisq;
evolTest[it] = currAngle;
// Stop condition, solution found
if ((std::abs(currChisq / chiTarget - 1.) < chiEps) &&
(currAngle < angle)) {
// Check for canceling the algorithm
if (!(it % 1000)) {
interruption_point();
}
progress.report();
} // iterations
auto solData = maxentData->getReconstructedData();
populateOutputWS(inWS, s, nspec, solData, outDataWS, false);
populateOutputWS(inWS, s, nspec, newImage, outImageWS, true);
// Populate workspaces recording the evolution of Chi and Test
// X values
for (size_t it = 0; it < niter; it++) {
outEvolChi->dataX(s)[it] = static_cast<double>(it);
outEvolTest->dataX(s)[it] = static_cast<double>(it);
}
// Y values
outEvolChi->dataY(s).assign(evolChi.begin(), evolChi.end());
outEvolTest->dataY(s).assign(evolTest.begin(), evolTest.end());
// No errors
} // Next spectrum
setProperty("EvolChi", outEvolChi);
setProperty("EvolAngle", outEvolTest);
setProperty("ReconstructedImage", outImageWS);
setProperty("ReconstructedData", outDataWS);
//----------------------------------------------------------------------------------------------
/** Bisection method to move beta one step closer towards the solution
* @param dirs :: [input] The current quadratic coefficients
* @param chiTarget :: [input] The requested Chi target
* @param chiEps :: [input] Precision required for Chi target
* @param alphaIter :: [input] Maximum number of iterations in the bisection
* method (alpha chop)
*/
std::vector<double> MaxEnt::move(const QuadraticCoefficients &coeffs,
double chiTarget, double chiEps,
size_t alphaIter) {
double aMin = 0.; // Minimum alpha
double aMax = 1.; // Maximum alpha
// Dimension, number of search directions
size_t dim = coeffs.c2.size().first;
std::vector<double> betaMin(dim, 0); // Beta at alpha min
std::vector<double> betaMax(dim, 0); // Beta at alpha max
double chiMin = calculateChi(coeffs, aMin, betaMin); // Chi at alpha min
double chiMax = calculateChi(coeffs, aMax, betaMax); // Chi at alpha max
double dchiMin = chiMin - chiTarget; // Delta = max - target
double dchiMax = chiMax - chiTarget; // Delta = min - target
if (dchiMin * dchiMax > 0) {
// ChiTarget could be outside the range [chiMin, chiMax]
if (fabs(dchiMin) < fabs(dchiMax)) {
}
// throw std::runtime_error("Error in alpha chop\n");
}
// Initial values of eps and iter to start while loop
double eps = 2. * chiEps;
size_t iter = 0;
// Bisection method
std::vector<double> beta(dim, 0); // Beta at current alpha
while ((fabs(eps) > chiEps) && (iter < alphaIter)) {
double aMid = 0.5 * (aMin + aMax);
double chiMid = calculateChi(coeffs, aMid, beta);
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
eps = chiMid - chiTarget;
if (dchiMin * eps > 0) {
aMin = aMid;
dchiMin = eps;
}
if (dchiMax * eps > 0) {
aMax = aMid;
dchiMax = eps;
}
iter++;
}
// Check if move was successful
if ((fabs(eps) > chiEps) || (iter > alphaIter)) {
throw std::runtime_error("Error encountered when calculating solution "
"image. No convergence in alpha chop.\n");
}
return beta;
}
/** Calculates Chi given the quadratic coefficients and an alpha value by
* solving the matrix equation A*b = B
* @param dirs :: [input] The quadratic coefficients
* @param a :: [input] The alpha value
* @param b :: [output] The solution
* @return :: The calculated chi-square
*/
double MaxEnt::calculateChi(const QuadraticCoefficients &coeffs, double a,
std::vector<double> &b) {
size_t dim = coeffs.c2.size().first;
double ax = a;
double bx = 1 - ax;
Kernel::DblMatrix A(dim, dim);
Kernel::DblMatrix B(dim, 1);
// Construct the matrix A and vector B such that Ax=B
for (size_t k = 0; k < dim; k++) {
for (size_t l = 0; l < dim; l++) {
A[k][l] = bx * coeffs.c2[k][l] - ax * coeffs.s2[k][l];
B[k][0] = -bx * coeffs.c1[k][0] + ax * coeffs.s1[k][0];
}
// Alternatives I have tried:
// Gauss-Jordan
// LU
// SVD seems to work better
// Solve using SVD
b = solveSVD(A, B);
// Now compute Chi
double ww = 0.;
for (size_t k = 0; k < dim; k++) {
double z = 0.;
for (size_t l = 0; l < dim; l++) {
z += coeffs.c2[k][l] * b[l];
ww += b[k] * (coeffs.c1[k][0] + 0.5 * z);
}
// Return chi
return ww + 1.;
}
/** Solves A*x = B using SVD
* @param A :: [input] The matrix A
* @param B :: [input] The vector B
* @return :: The solution x
std::vector<double> MaxEnt::solveSVD(const DblMatrix &A, const DblMatrix &B) {
size_t dim = A.size().first;
gsl_matrix *a = gsl_matrix_alloc(dim, dim);
gsl_matrix *v = gsl_matrix_alloc(dim, dim);
gsl_vector *s = gsl_vector_alloc(dim);
gsl_vector *w = gsl_vector_alloc(dim);
gsl_vector *x = gsl_vector_alloc(dim);
gsl_vector *b = gsl_vector_alloc(dim);
// Need to copy from DblMatrix to gsl matrix
for (size_t k = 0; k < dim; k++)
for (size_t l = 0; l < dim; l++)
gsl_matrix_set(a, k, l, A[k][l]);
for (size_t k = 0; k < dim; k++)
gsl_vector_set(b, k, B[k][0]);
// Singular value decomposition
gsl_linalg_SV_decomp(a, v, s, w);
// A could be singular or ill-conditioned. We can use SVD to obtain a least
// squares
// solution by setting the small (compared to the maximum) singular values to
// zero
// Find largest sing value
double max = gsl_vector_get(s, 0);
for (size_t i = 0; i < dim; i++) {
if (max < gsl_vector_get(s, i))
max = gsl_vector_get(s, i);
}
// Apply a threshold to small singular values
const double THRESHOLD = 1E-6;
double threshold = THRESHOLD * max;
for (size_t i = 0; i < dim; i++)
if (gsl_vector_get(s, i) > threshold)
gsl_vector_set(s, i, gsl_vector_get(s, i));
gsl_vector_set(s, i, 0);
// Solve A*x = B
gsl_linalg_SV_solve(a, v, s, b, x);
// From gsl_vector to vector
std::vector<double> beta(dim);
for (size_t k = 0; k < dim; k++)
beta[k] = gsl_vector_get(x, k);
gsl_matrix_free(a);
gsl_matrix_free(v);
gsl_vector_free(s);
gsl_vector_free(w);
gsl_vector_free(x);
gsl_vector_free(b);
return beta;
}
/** Calculates the distance of the current solution
* @param s2 :: [input] The current quadratic coefficient for the entropy S
* @param beta :: [input] The current beta vector
* @return :: The distance
*/
double MaxEnt::distance(const DblMatrix &s2, const std::vector<double> &beta) {
size_t dim = s2.size().first;
double dist = 0.;
for (size_t k = 0; k < dim; k++) {
double sum = 0.0;
for (size_t l = 0; l < dim; l++)
sum -= s2[k][l] * beta[l];
dist += beta[k] * sum;
}
return dist;
}
/** Populates the output workspaces
* @param inWS :: [input] The input workspace
* @param complex :: [input] Whether or not the input is complex
* @param spec :: [input] The current spectrum being analyzed
* @param nspec :: [input] The total number of histograms in the input workspace
* @param data :: [input] The reconstructed data
* @param image :: [input] The reconstructed image
* @param outData :: [output] The output workspace containing the reconstructed
* data
* @param outImage :: [output] The output workspace containing the reconstructed
* image
*/
void MaxEnt::populateOutputWS(const MatrixWorkspace_sptr &inWS,
size_t spec, size_t nspec,
const std::vector<double> &result,
MatrixWorkspace_sptr &outWS, bool isImage) {
if (result.size() % 2)
throw std::invalid_argument("Cannot write results to output workspaces");
int npoints = static_cast<int>(result.size() / 2);
int npointsX = inWS->isHistogramData() ? npoints + 1 : npoints;
MantidVec X(npointsX);
MantidVec YR(npoints);
MantidVec YI(npoints);
MantidVec E(npoints, 0.);
if (isImage) {
double dx = inWS->readX(spec)[1] - inWS->readX(spec)[0];
double delta = 1. / dx / npoints;
int isOdd = (inWS->blocksize() % 2) ? 1 : 0;
for (int i = 0; i < npoints; i++) {
int j = (npoints / 2 + i + isOdd) % npoints;
X[i] = delta * (-npoints / 2 + i);
YR[i] = result[2 * j] * dx;
YI[i] = result[2 * j + 1] * dx;
}
if (npointsX == npoints + 1)
X[npoints] = X[npoints - 1] + delta;
}
else {
for (int i = 0; i < npoints; i++) {
X[i] = inWS->readX(spec)[i];
YR[i] = result[2 * i];
YI[i] = result[2 * i + 1];
}
if (npointsX == npoints + 1)
X[npoints] = inWS->readX(spec)[npoints];
}
// Reconstructed image
outWS->dataX(spec).assign(X.begin(), X.end());
outWS->dataY(spec).assign(YR.begin(), YR.end());
outWS->dataE(spec).assign(E.begin(), E.end());
outWS->dataX(nspec + spec).assign(X.begin(), X.end());
outWS->dataY(nspec + spec).assign(YI.begin(), YI.end());
outWS->dataE(nspec + spec).assign(E.begin(), E.end());
} // namespace Algorithms
} // namespace Mantid