Newer
Older
#include "MantidKernel/BoundedValidator.h"
#include <boost/shared_array.hpp>
#include <gsl/gsl_fft_complex.h>
namespace Mantid {
namespace Algorithms {
using Mantid::Kernel::Direction;
using Mantid::API::WorkspaceProperty;
using namespace API;
using namespace Kernel;
// Register the algorithm into the AlgorithmFactory
DECLARE_ALGORITHM(MaxEnt)
//----------------------------------------------------------------------------------------------
/** Constructor
*/
MaxEnt::MaxEnt() {}
//----------------------------------------------------------------------------------------------
/** Destructor
*/
MaxEnt::~MaxEnt() {}
//----------------------------------------------------------------------------------------------
/// Algorithm's name for identification. @see Algorithm::name
const std::string MaxEnt::name() const { return "MaxEnt"; }
/// Algorithm's version for identification. @see Algorithm::version
int MaxEnt::version() const { return 1; }
/// Algorithm's category for identification. @see Algorithm::category
const std::string MaxEnt::category() const { return "FFT"; }
/// Algorithm's summary for use in the GUI and help. @see Algorithm::summary
const std::string MaxEnt::summary() const {
return "Runs Maximum Entropy method on an input workspace";
}
//----------------------------------------------------------------------------------------------
/** Initialize the algorithm's properties.
*/
void MaxEnt::init() {
declareProperty(
new WorkspaceProperty<>("InputWorkspace", "", Direction::Input),
"An input workspace.");
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
auto mustBeNonNegative = boost::make_shared<BoundedValidator<double>>();
mustBeNonNegative->setLower(1E-12);
declareProperty(new PropertyWithValue<double>(
"Background", 0.4, mustBeNonNegative, Direction::Input),
"Default level above which the image is significant");
declareProperty(new PropertyWithValue<double>(
"ChiTarget", 100.0, mustBeNonNegative, Direction::Input),
"Target value of Chi-square");
declareProperty(new PropertyWithValue<double>(
"ChiEps", 0.001, mustBeNonNegative, Direction::Input),
"Required precision for Chi-square");
declareProperty(new PropertyWithValue<double>("DistancePenalty", 0.1,
mustBeNonNegative,
Direction::Input),
"Distance penalty applied to the current image");
declareProperty(new PropertyWithValue<double>(
"MaxAngle", 0.05, mustBeNonNegative, Direction::Input),
"Maximum degree of non-parallelism between S and C");
auto mustBePositive = boost::make_shared<BoundedValidator<size_t>>();
mustBePositive->setLower(0);
declareProperty(new PropertyWithValue<size_t>(
"MaxIterations", 20000, mustBePositive, Direction::Input),
"Maximum number of iterations");
declareProperty(new PropertyWithValue<size_t>("AlphaChopIterations", 500,
mustBePositive,
Direction::Input),
"Maximum number of iterations in alpha chop");
declareProperty(new WorkspaceProperty<>("EvolChi", "", Direction::Output),
"Output workspace containing the evolution of Chi-sq");
declareProperty(new WorkspaceProperty<>("EvolAngle", "", Direction::Output),
"Output workspace containing the evolution of "
"non-paralellism between S and C");
declareProperty(
new WorkspaceProperty<>("ReconstructedImage", "", Direction::Output),
"The output workspace containing the reconstructed image.");
new WorkspaceProperty<>("ReconstructedData", "", Direction::Output),
"The output workspace containing the reconstructed data.");
}
//----------------------------------------------------------------------------------------------
/** Validate the input properties.
*/
std::map<std::string, std::string> MaxEnt::validateInputs() {
std::map<std::string, std::string> result;
// X values in input workspace must be equally spaced
MatrixWorkspace_sptr inWS = getProperty("InputWorkspace");
const MantidVec &X = inWS->readX(0);
const double dx = X[1] - X[0];
for (size_t i = 1; i < X.size() - 2; i++) {
if (std::abs(dx - X[i + 1] + X[i]) / dx > 1e-7) {
result["InputWorkspace"] =
"X axis must be linear (all bins must have the same width)";
}
}
return result;
}
//----------------------------------------------------------------------------------------------
/** Execute the algorithm.
*/
void MaxEnt::exec() {
// Read input workspace
MatrixWorkspace_sptr inWS = getProperty("InputWorkspace");
// Background (default level, sky background, etc)
double background = getProperty("Background");
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
// Chi target
double chiTarget = getProperty("ChiTarget");
// Required precision for Chi arget
double chiEps = getProperty("ChiEps");
// Maximum degree of non-parallelism between S and C
double angle = getProperty("MaxAngle");
// Distance penalty for current image
double distEps = getProperty("DistancePenalty");
// Maximum number of iterations
size_t niter = getProperty("MaxIterations");
// Maximum number of iterations in alpha chop
size_t alphaIter = getProperty("AlphaChopIterations");
// Number of spectra
size_t nspec = inWS->getNumberHistograms();
// Number of data points
size_t npoints = inWS->blocksize();
// Create output workspaces
MatrixWorkspace_sptr outImageWS = WorkspaceFactory::Instance().create(inWS);
MatrixWorkspace_sptr outDataWS = WorkspaceFactory::Instance().create(inWS);
// Create evol workspaces
MatrixWorkspace_sptr outEvolChi =
WorkspaceFactory::Instance().create(inWS, nspec, niter, niter);
MatrixWorkspace_sptr outEvolTest =
WorkspaceFactory::Instance().create(inWS, nspec, niter, niter);
// Start distribution (flat background)
std::vector<double> image(npoints, background);
for (size_t s = 0; s < nspec; s++) {
auto data = inWS->readY(s);
auto error = inWS->readE(s);
// To record the algorithm's progress
std::vector<double> evolChi(niter, 0.);
std::vector<double> evolTest(niter, 0.);
// Store image in successive iterations
std::vector<double> newImage = image;
// Progress
Progress progress(this, 0, 1, niter);
// Run maxent algorithm
for (size_t it = 0; it < niter; it++) {
// Calculate search directions and quadratic model coefficients (SB eq. 21
// and 24)
SearchDirections dirs =
calculateSearchDirections(data, error, newImage, background);
// Calculate beta to contruct new image (SB eq. 25)
auto beta = move(dirs, chiTarget / dirs.chisq, chiEps, alphaIter);
// Apply distance penalty (SB eq. 33)
double sum = 0.;
for (size_t i = 0; i < image.size(); i++)
sum += fabs(image[i]);
double dist = distance(dirs.s2, beta);
if (dist > distEps * sum / background) {
for (size_t k = 0; k < beta.size(); k++) {
beta[k] *= sqrt(sum / dist / background);
}
}
// Calculate the new image
for (size_t i = 0; i < npoints; i++) {
for (size_t k = 0; k < beta.size(); k++) {
newImage[i] = newImage[i] + beta[k] * dirs.xi[k][i];
}
}
// Calculate the new Chi-square
auto dataC = opus(newImage);
double chiSq = getChiSq(data, error, dataC);
// Record the evolution of Chi-square and angle(S,C)
evolChi[it] = chiSq;
evolTest[it] = dirs.angle;
// Stop condition, solution found
if ((std::abs(chiSq / chiTarget - 1.) < chiEps) && (dirs.angle < angle)) {
break;
}
// Check for canceling the algorithm
if (!(it % 1000)) {
interruption_point();
}
progress.report();
} // iterations
// Get calculated data
std::vector<double> solutionData = opus(newImage);
// X values
outImageWS->dataX(s) = inWS->readX(s);
outDataWS->dataX(s) = inWS->readX(s);
// Y values
outDataWS->dataY(s).assign(solutionData.begin(), solutionData.end());
outImageWS->dataY(s).assign(newImage.begin(), newImage.end());
// No errors
// Populate workspaces recording the evolution of Chi and Test
// X values
for (size_t it = 0; it < niter; it++) {
outEvolChi->dataX(s)[it] = static_cast<double>(it);
outEvolTest->dataX(s)[it] = static_cast<double>(it);
}
// Y values
outEvolChi->dataY(s).assign(evolChi.begin(), evolChi.end());
outEvolTest->dataY(s).assign(evolTest.begin(), evolTest.end());
// No errors
} // Next spectrum
setProperty("EvolChi", outEvolChi);
setProperty("EvolAngle", outEvolTest);
setProperty("ReconstructedImage", outImageWS);
setProperty("ReconstructedData", outDataWS);
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
//----------------------------------------------------------------------------------------------
/**
* Transforms from solution-space to data-space
* @param input :: [input] An input vector in image space
* @return :: The input vector transformed to data space
*/
std::vector<double> MaxEnt::opus(const std::vector<double> &input) {
/* Performs backward Fourier transform */
size_t n = input.size();
/* Prepare the data */
boost::shared_array<double> result(new double[2 * n]);
for (size_t i = 0; i < n; i++) {
result[2 * i] = input[i]; // Real part
result[2 * i + 1] = 0.; // Imaginary part
}
/* Backward FT */
gsl_fft_complex_wavetable *wavetable = gsl_fft_complex_wavetable_alloc(n);
gsl_fft_complex_workspace *workspace = gsl_fft_complex_workspace_alloc(n);
gsl_fft_complex_inverse(result.get(), 1, n, wavetable, workspace);
gsl_fft_complex_wavetable_free(wavetable);
gsl_fft_complex_workspace_free(workspace);
std::vector<double> output(n);
for (size_t i = 0; i < n; i++) {
output[i] = result[2 * i];
}
return output;
}
/**
* Transforms from data-space to solution-space
* @param input :: [input] An input vector in data space
* @return :: The input vector converted to image space
*/
std::vector<double> MaxEnt::tropus(const std::vector<double> &input) {
/* Performs forward Fourier transform */
size_t n = input.size();
/* Prepare the data */
boost::shared_array<double> result(new double[n * 2]);
for (size_t i = 0; i < n; i++) {
result[2 * i] = input[i]; // even indexes filled with the real part
result[2 * i + 1] = 0.; // odd indexes filled with the imaginary part
}
/* Fourier transofrm */
gsl_fft_complex_wavetable *wavetable = gsl_fft_complex_wavetable_alloc(n);
gsl_fft_complex_workspace *workspace = gsl_fft_complex_workspace_alloc(n);
gsl_fft_complex_forward(result.get(), 1, n, wavetable, workspace);
gsl_fft_complex_wavetable_free(wavetable);
gsl_fft_complex_workspace_free(workspace);
/* Get the data */
std::vector<double> output(n);
for (size_t i = 0; i < n; i++) {
output[i] = result[2 * i];
}
return output;
}
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
/** Calculate the search directions and quadratic coefficients as described in
* section 3.6 in SB
* @param data :: [input] The experimental input data
* @param error :: [input] The experimental input errors
* @param image :: [input] The current image
* @param background :: [input] The default or 'sky' background
* @return :: Search directions as a SearchDirections object
*/
SearchDirections MaxEnt::calculateSearchDirections(
const std::vector<double> &data, const std::vector<double> &error,
const std::vector<double> &image, double background) {
// Two search directions
const size_t dim = 2;
// Some checks
if ((data.size() != error.size()) || (data.size() != image.size())) {
throw std::invalid_argument("Can't compute quadratic coefficients");
}
size_t npoints = data.size();
// Calculate data from start image
std::vector<double> dataC = opus(image);
// Calculate Chi-square
double chiSq = getChiSq(data, error, dataC);
// Gradient of C (Chi)
std::vector<double> cgrad = getCGrad(data, error, dataC);
cgrad = tropus(cgrad);
// Gradient of S (Entropy)
std::vector<double> sgrad = getSGrad(image, background);
SearchDirections dirs(dim, npoints);
dirs.chisq = chiSq;
double cnorm = 0.;
double snorm = 0.;
double csnorm = 0.;
// Here we calculate:
// SB. eq 22 -> |grad S|, |grad C|
// SB. eq 37 -> test
for (size_t i = 0; i < npoints; i++) {
cnorm += cgrad[i] * cgrad[i] * image[i] * image[i];
snorm += sgrad[i] * sgrad[i] * image[i] * image[i];
csnorm += cgrad[i] * sgrad[i] * image[i] * image[i];
}
cnorm = sqrt(cnorm);
snorm = sqrt(snorm);
dirs.angle = sqrt(0.5 * (1. - csnorm / snorm / cnorm));
// csnorm could be greater than snorm * cnorm due to rounding issues
// so check for nan
if (dirs.angle != dirs.angle)
dirs.angle = 0.;
// Calculate the search directions
// Temporary vectors (image space)
std::vector<double> xi0(npoints, 0.);
std::vector<double> xi1(npoints, 0.);
for (size_t i = 0; i < npoints; i++) {
xi0[i] = fabs(image[i]) * cgrad[i] / cnorm;
xi1[i] = fabs(image[i]) * sgrad[i] / snorm;
// xi1[i] = image[i] * (sgrad[i] / snorm - cgrad[i] / cnorm);
}
// Temporary vectors (data space)
std::vector<double> eta0 = opus(xi0);
std::vector<double> eta1 = opus(xi1);
// Store the search directions
dirs.xi.setRow(0, xi0);
dirs.xi.setRow(1, xi1);
dirs.eta.setRow(0, eta0);
dirs.eta.setRow(1, eta1);
// Now compute the quadratic coefficients SB. eq 24
// First compute s1, c1
for (size_t k = 0; k < dim; k++) {
dirs.c1[k][0] = dirs.s1[k][0] = 0.;
for (size_t i = 0; i < npoints; i++) {
dirs.s1[k][0] += dirs.xi[k][i] * sgrad[i];
dirs.c1[k][0] += dirs.xi[k][i] * cgrad[i];
}
// Note: the factor chiSQ has to go either here or in ChiNow
dirs.c1[k][0] /= chiSq;
}
// Then s2, c2
for (size_t k = 0; k < dim; k++) {
for (size_t l = 0; l < k + 1; l++) {
dirs.s2[k][l] = 0.;
dirs.c2[k][l] = 0.;
for (size_t i = 0; i < npoints; i++) {
dirs.c2[k][l] += dirs.eta[k][i] * dirs.eta[l][i] / error[i] / error[i];
dirs.s2[k][l] -= dirs.xi[k][i] * dirs.xi[l][i] / fabs(image[i]);
}
// Note: the factor chiSQ has to go either here or in ChiNow
dirs.c2[k][l] *= 2.0 / chiSq;
dirs.s2[k][l] *= 1.0 / background;
}
}
// Symmetrise s2, c2: reflect accross the diagonal
for (size_t k = 0; k < dim; k++) {
for (size_t l = k + 1; l < dim; l++) {
dirs.s2[k][l] = dirs.s2[l][k];
dirs.c2[k][l] = dirs.c2[l][k];
}
}
return dirs;
}
/** Calculates Chi-square
* @param data :: [input] Data measured during the experiment
* @param errors :: [input] Associated errors
* @param dataCalc :: [input] Data calculated from image
* @return :: The calculated Chi-square
*/
double MaxEnt::getChiSq(const std::vector<double> &data,
const std::vector<double> &errors,
const std::vector<double> &dataCalc) {
if ((data.size() != errors.size()) || (data.size() != dataCalc.size())) {
throw std::invalid_argument("Cannot compute Chi square");
}
size_t npoints = data.size();
// Calculate
// ChiSq = sum_i [ data_i - dataCalc_i ]^2 / [ error_i ]^2
double chiSq = 0;
for (size_t i = 0; i < npoints; i++) {
if (errors[i]) {
double term = (data[i] - dataCalc[i]) / errors[i];
chiSq += term * term;
}
}
return chiSq;
}
/** Calculates the gradient of C (Chi term)
* @param data :: [input] Data measured during the experiment
* @param errors :: [input] Associated errors
* @param dataCalc :: [input] Data calculated from image
* @return :: The calculated gradient of C
*/
std::vector<double> MaxEnt::getCGrad(const std::vector<double> &data,
const std::vector<double> &errors,
const std::vector<double> &dataCalc) {
if ((data.size() != errors.size()) || (data.size() != dataCalc.size())) {
throw std::invalid_argument("Cannot compute gradient of Chi");
}
size_t npoints = data.size();
// Calculate gradient of Chi
// CGrad_i = -2 * [ data_i - dataCalc_i ] / [ error_i ]^2
std::vector<double> cgrad(npoints, 0.);
for (size_t i = 0; i < npoints; i++) {
if (errors[i])
cgrad[i] = -2. * (data[i] - dataCalc[i]) / errors[i] / errors[i];
}
return cgrad;
}
/** Calculates the gradient of S (Entropy)
* @param image :: [input] The current image
* @param background :: [input] The background
* @return :: The calculated gradient of S
*/
std::vector<double> MaxEnt::getSGrad(const std::vector<double> &image,
double background) {
#define S(x) (-log(x + std::sqrt(x * x + 1)))
//#define S(x) (-log(x))
size_t npoints = image.size();
// Calculate gradient of S
std::vector<double> sgrad(npoints, 0.);
for (size_t i = 0; i < npoints; i++) {
sgrad[i] = S(image[i] / background);
}
return sgrad;
#undef S
}
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
/** Bisection method to move beta one step closer towards the solution
* @param dirs :: [input] The current quadratic coefficients
* @param chiTarget :: [input] The requested Chi target
* @param chiEps :: [input] Precision required for Chi target
* @param alphaIter :: [input] Maximum number of iterations in the bisection
* method (alpha chop)
*/
std::vector<double> MaxEnt::move(const SearchDirections &dirs, double chiTarget,
double chiEps, size_t alphaIter) {
double aMin = 0.; // Minimum alpha
double aMax = 1.; // Maximum alpha
// Dimension, number of search directions
size_t dim = dirs.c2.size().first;
std::vector<double> beta(dim, 0); // Solution
double chiMin = chiNow(dirs, aMin, beta); // Chi at alpha min
double chiMax = chiNow(dirs, aMax, beta); // Chi at alpha max
double dchiMin = chiMin - chiTarget; // Delta = max - target
double dchiMax = chiMax - chiTarget; // Delta = min - target
if (dchiMin * dchiMax > 0) {
// ChiTarget could be outside the range [chiMin, chiMax]
if (fabs(dchiMin) < fabs(dchiMax)) {
chiMin = chiNow(dirs, aMin, beta);
} else {
chiMax = chiNow(dirs, aMax, beta);
}
return beta;
// throw std::runtime_error("Error in alpha chop\n");
}
// Initial values of eps and iter to start while loop
double eps = 2. * chiEps;
size_t iter = 0;
// Bisection method
while ((fabs(eps) > chiEps) && (iter < alphaIter)) {
double aMid = 0.5 * (aMin + aMax);
double chiMid = chiNow(dirs, aMid, beta);
eps = chiMid - chiTarget;
if (dchiMin * eps > 0) {
aMin = aMid;
dchiMin = eps;
}
if (dchiMax * eps > 0) {
aMax = aMid;
dchiMax = eps;
}
iter++;
}
// Check if move was successful
if ((fabs(eps) > chiEps) || (iter > alphaIter)) {
throw std::runtime_error("Error encountered when calculating solution "
"image. No convergence in alpha chop.\n");
}
return beta;
}
/** Calculates Chi given the quadratic coefficients and an alpha value by
* solving the matrix equation A*b = B
* @param dirs :: [input] The quadratic coefficients
* @param a :: [input] The alpha value
* @param b :: [output] The solution
* @return :: The calculated chi-square
*/
double MaxEnt::chiNow(const SearchDirections &dirs, double a,
std::vector<double> &b) {
size_t dim = dirs.c2.size().first;
double ax = a;
double bx = 1 - ax;
Kernel::DblMatrix A(dim, dim);
Kernel::DblMatrix B(dim, 1);
// Construct the matrix A and vector B such that Ax=B
for (size_t k = 0; k < dim; k++) {
for (size_t l = 0; l < dim; l++) {
A[k][l] = bx * dirs.c2[k][l] - ax * dirs.s2[k][l];
}
B[k][0] = -bx * dirs.c1[k][0] + ax * dirs.s1[k][0];
}
// Alternatives I have tried:
// Gauss-Jordan
// LU
// SVD seems to work better
// Solve using SVD
DblMatrix u(dim, dim);
DblMatrix v(dim, dim);
DblMatrix w(dim, dim);
singularValueDecomposition(A, u, w, v);
// Now result
auto sol = v * w * u.Transpose() * B;
std::vector<double> beta(dim, 0.);
for (size_t i = 0; i < dim; i++)
b[i] = sol[i][0];
// Now compute Chi
double ww = 0.;
for (size_t k = 0; k < dim; k++) {
double z = 0.;
for (size_t l = 0; l < dim; l++) {
z += dirs.c2[k][l] * b[l];
}
ww += b[k] * (dirs.c1[k][0] + 0.5 * z);
}
// Return chi
return ww + 1.;
}
/** Factorizes a matrix A into the product A = U S V^T
* @param A :: [input] The input matrix to factorize
* @param uu :: [output] The matrix U
* @param zz :: [output] The inverse of S
* @param vv :: [output] The matrix V
*/
void MaxEnt::singularValueDecomposition(const DblMatrix &A, DblMatrix &uu,
DblMatrix &zz, DblMatrix &vv) {
size_t dim = A.size().first;
gsl_matrix *a = gsl_matrix_alloc(dim, dim);
gsl_matrix *v = gsl_matrix_alloc(dim, dim);
gsl_vector *s = gsl_vector_alloc(dim);
gsl_vector *w = gsl_vector_alloc(dim);
// Need to copy from DblMatrix to gsl matrix
for (size_t k = 0; k < dim; k++)
for (size_t l = 0; l < dim; l++)
gsl_matrix_set(a, k, l, A[k][l]);
gsl_linalg_SV_decomp(a, v, s, w);
#define THRESHOLD 1E-6
// Now we have a, v, w
// If A is singular or ill-conditioned we use SVD to obtain a least squares
// solution as follows:
// 1. Find largest sing value
double max = gsl_vector_get(s, 0);
for (size_t i = 0; i < dim; i++) {
if (max < gsl_vector_get(s, i))
max = gsl_vector_get(s, i);
}
double threshold = THRESHOLD * max;
// 2. Apply a threshold to small singular values
for (size_t i = 0; i < dim; i++)
if (gsl_vector_get(s, i) > threshold)
zz[i][i] = 1 / gsl_vector_get(s, i);
else
zz[i][i] = 0;
// Now copy back from gsl to DblMatrix
for (size_t k = 0; k < dim; k++)
for (size_t l = 0; l < dim; l++) {
uu[k][l] = gsl_matrix_get(a, k, l);
vv[k][l] = gsl_matrix_get(v, k, l);
}
#undef THRESHOLD
gsl_matrix_free(a);
gsl_matrix_free(v);
gsl_vector_free(s);
gsl_vector_free(w);
}
/** Calculates the distance of the current solution
* @param s2 :: [input] The current quadratic coefficient for the entropy S
* @param beta :: [input] The current beta vector
* @return :: The distance
*/
double MaxEnt::distance(const DblMatrix &s2, const std::vector<double> &beta) {
size_t dim = s2.size().first;
double dist = 0.;
for (size_t k = 0; k < dim; k++) {
double sum = 0.0;
for (size_t l = 0; l < dim; l++)
sum -= s2[k][l] * beta[l];
dist += beta[k] * sum;
}
return dist;
}
} // namespace Algorithms
} // namespace Mantid