Skip to content
Snippets Groups Projects
Matrix.cpp 42.5 KiB
Newer Older
#include "MantidKernel/Matrix.h"
#include "MantidKernel/V3D.h"
#include "MantidKernel/Exception.h"
#include "MantidKernel/TimeSeriesProperty.h"
#include "MantidKernel/MersenneTwister.h"
using Mantid::Kernel::TimeSeriesProperty;
Stuart Ansell's avatar
Stuart Ansell committed

namespace Mantid {
Stuart Ansell's avatar
Stuart Ansell committed

namespace Kernel {
//
#define fabs(x) std::fabs((x)*1.0)
namespace {
//-------------------------------------------------------------------------
// Utility methods and function objects in anonymous namespace
//-------------------------------------------------------------------------
/**
\class PIndex
\author S. Ansell
\date Aug 2005
\version 1.0
\brief Class  to fill an index with a progressive count
*/
template <typename T> struct PIndex {
private:
  int count; ///< counter
public:
  /// Constructor
  PIndex() : count(0) {}
  /// functional
  std::pair<T, int> operator()(const T &A) {
    return std::pair<T, int>(A, count++);
/**
\class PSep
\author S. Ansell
\date Aug 2005
\version 1.0
\brief Class to access the second object in index pair.
*/
template <typename T> struct PSep {
  /// Functional to the second object
  int operator()(const std::pair<T, int> &A) { return A.second; }
};
Stuart Ansell's avatar
Stuart Ansell committed

/**
* Function to take a vector and sort the vector
* so as to produce an index. Leaves the vector unchanged.
* @param pVec :: Input vector
* @param Index :: Output vector
*/
template <typename T>
void indexSort(const std::vector<T> &pVec, std::vector<int> &Index) {
  Index.resize(pVec.size());
  std::vector<typename std::pair<T, int>> PartList;
  PartList.resize(pVec.size());

  transform(pVec.begin(), pVec.end(), PartList.begin(), PIndex<T>());
  sort(PartList.begin(), PartList.end());
  transform(PartList.begin(), PartList.end(), Index.begin(), PSep<T>());
  return;
}
template void indexSort(const std::vector<double> &, std::vector<int> &);
template void indexSort(const std::vector<float> &, std::vector<int> &);
template void indexSort(const std::vector<int> &, std::vector<int> &);
}
template <typename T> std::vector<T> Matrix<T>::getVector() const {
  std::vector<T> rez(nx * ny);
  for (size_t i = 0; i < nx; i++) {
    for (size_t j = 0; j < ny; j++) {
      rez[ic] = V[i][j];
template <typename T>
Matrix<T>::Matrix(const size_t nrow, const size_t ncol, const bool makeIdentity)
    : nx(0), ny(0), V(0)
/**
  Constructor with pre-set sizes. Matrix is zeroed
  @param nrow :: number of rows
  @param ncol :: number of columns
  @param makeIdentity :: flag for the constructor to return an identity matrix
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  // Note:: nx,ny zeroed so setMem always works
  setMem(nrow, ncol);
Stuart Ansell's avatar
Stuart Ansell committed
  zeroMatrix();
  if (makeIdentity == true)
    identityMatrix();
}

template <typename T>
Matrix<T>::Matrix(const std::vector<T> &A, const std::vector<T> &B)
    : nx(0), ny(0), V(0)
/**
  Constructor to take two vectors and multiply them to
  construct a matrix. (assuming that we have columns x row
  vector.
  @param A :: Column vector to multiply
  @param B :: Row vector to multiply
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  // Note:: nx,ny zeroed so setMem always works
  setMem(A.size(), B.size());
  for (size_t i = 0; i < nx; i++) {
    for (size_t j = 0; j < ny; j++) {
      V[i][j] = A[i] * B[j];
Stuart Ansell's avatar
Stuart Ansell committed
}
template <typename T>
Matrix<T>::Matrix(const std::vector<T> &data)
    : nx(0), ny(0), V(0) {
  size_t numel = data.size();
  size_t nxt = (size_t)sqrt(double(numel));
  size_t test = nxt * nxt;
  if (test != numel) {
    throw(std::invalid_argument(
        "number of elements in input vector have to be square of some value"));
  }

  setMem(nxt, nxt);
  size_t ic(0);
  for (size_t i = 0; i < nx; i++) {
    for (size_t j = 0; j < ny; j++) {
      V[i][j] = data[ic];
      ic++;
    }
  }
}

template <typename T>
Matrix<T>::Matrix(const Matrix<T> &A, const size_t nrow, const size_t ncol)
    : nx(A.nx - 1), ny(A.ny - 1), V(0)
/**
  Constructor with for a missing row/column.
  @param A :: The input matrix
  @param nrow :: number of row to miss
  @param ncol :: number of column to miss
*/
  if (nrow > nx)
    throw Kernel::Exception::IndexError(nrow, A.nx,
                                        "Matrix::Constructor without col");
  if (ncol > ny)
    throw Kernel::Exception::IndexError(ncol, A.ny,
                                        "Matrix::Constructor without col");
  setMem(nx, ny);
    size_t iR(0);
    for (size_t i = 0; i <= nx; i++) {
      if (i != nrow) {
        size_t jR(0);
        for (size_t j = 0; j <= ny; j++) {
          if (j != ncol) {

Nick Draper's avatar
Nick Draper committed
            V[iR][jR] = A.V[i][j];
            jR++;
template <typename T>
Matrix<T>::Matrix(const Matrix<T> &A)
    : nx(0), ny(0), V(0)
/**
  Simple copy constructor
  @param A :: Object to copy
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  // Note:: nx,ny zeroed so setMem always works
  setMem(A.nx, A.ny);
  if (nx * ny) {
    for (size_t i = 0; i < nx; i++) {
      for (size_t j = 0; j < ny; j++) {
        V[i][j] = A.V[i][j];
Stuart Ansell's avatar
Stuart Ansell committed
    }
Stuart Ansell's avatar
Stuart Ansell committed
}

template <typename T>
Matrix<T> &Matrix<T>::operator=(const Matrix<T> &A)
/**
  Simple assignment operator
  @param A :: Object to copy
  @return the copied object
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  if (&A != this) {
    setMem(A.nx, A.ny);
    if (nx * ny) {
      for (size_t i = 0; i < nx; i++) {
        for (size_t j = 0; j < ny; j++) {
          V[i][j] = A.V[i][j];
Stuart Ansell's avatar
Stuart Ansell committed
    }
Stuart Ansell's avatar
Stuart Ansell committed
  return *this;
}

template <typename T>
Stuart Ansell's avatar
Stuart Ansell committed
Matrix<T>::~Matrix()
/**
  Delete operator :: removes memory for
  matrix
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  deleteMem();
}

template <typename T>
Matrix<T> &Matrix<T>::operator+=(const Matrix<T> &A)
/**
  Matrix addition THIS + A
  If the size is different then 0 is added where appropiate
  Matrix A is not expanded.
  @param A :: Matrix to add
  @return Matrix(this + A)
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  const size_t Xpt((nx > A.nx) ? A.nx : nx);
  const size_t Ypt((ny > A.ny) ? A.ny : ny);
  for (size_t i = 0; i < Xpt; i++) {
    for (size_t j = 0; j < Ypt; j++) {
      V[i][j] += A.V[i][j];
Stuart Ansell's avatar
Stuart Ansell committed

  return *this;
}

template <typename T>
Matrix<T> &Matrix<T>::operator-=(const Matrix<T> &A)
/**
  Matrix subtractoin THIS - A
  If the size is different then 0 is added where appropiate
  Matrix A is not expanded.
  @param A :: Matrix to add
  @return Ma
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  const size_t Xpt((nx > A.nx) ? A.nx : nx);
  const size_t Ypt((ny > A.ny) ? A.ny : ny);
  for (size_t i = 0; i < Xpt; i++) {
    for (size_t j = 0; j < Ypt; j++) {
      V[i][j] -= A.V[i][j];
Stuart Ansell's avatar
Stuart Ansell committed

  return *this;
}

template <typename T>
Matrix<T> Matrix<T>::operator+(const Matrix<T> &A) const
/**
  Matrix addition THIS + A
  If the size is different then 0 is added where appropiate
  Matrix A is not expanded.
  @param A :: Matrix to add
  @return Matrix(this + A)
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  Matrix<T> X(*this);
  return X += A;
}

template <typename T>
Matrix<T> Matrix<T>::operator-(const Matrix<T> &A) const
/**
  Matrix subtraction THIS - A
  If the size is different then 0 is subtracted where
  appropiate. This matrix determines the size
  @param A :: Matrix to add
  @return Matrix(this + A)
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  Matrix<T> X(*this);
  return X -= A;
}

template <typename T>
Matrix<T> Matrix<T>::operator*(const Matrix<T> &A) const
/**
  Matrix multiplication THIS * A
  @param A :: Matrix to multiply by  (this->row must == A->columns)
  @throw MisMatch<size_t> if there is a size mismatch.
  @return Matrix(This * A)
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  if (ny != A.nx)
    throw Kernel::Exception::MisMatch<size_t>(ny, A.nx,
                                              "Matrix::operator*(Matrix)");
  Matrix<T> X(nx, A.ny);
  for (size_t i = 0; i < nx; i++) {
    for (size_t j = 0; j < A.ny; j++) {
      for (size_t kk = 0; kk < ny; kk++) {
        X.V[i][j] += V[i][kk] * A.V[kk][j];
Stuart Ansell's avatar
Stuart Ansell committed
  return X;
}

template <typename T>
std::vector<T> Matrix<T>::operator*(const std::vector<T> &Vec) const
/**
  Matrix multiplication THIS * Vec to produce a vec
  @param Vec :: size of vector > this->nrows
  @throw MisMatch<size_t> if there is a size mismatch.
  @return Matrix(This * Vec)
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  std::vector<T> Out;
  if (ny > Vec.size())
    throw Kernel::Exception::MisMatch<size_t>(ny, Vec.size(),
                                              "Matrix::operator*(Vec)");
Stuart Ansell's avatar
Stuart Ansell committed

  Out.resize(nx);
  for (size_t i = 0; i < nx; i++) {
    Out[i] = 0;
    for (size_t j = 0; j < ny; j++) {
      Out[i] += V[i][j] * Vec[j];
Stuart Ansell's avatar
Stuart Ansell committed
    }
Stuart Ansell's avatar
Stuart Ansell committed
  return Out;
}

template <typename T>
V3D Matrix<T>::operator*(const V3D &Vx) const
/**
  Matrix multiplication THIS * V
  @param Vx :: Colunm vector to multiply by
  @throw MisMatch<size_t> if there is a size mismatch.
  @return Matrix(This * A)
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
    throw Kernel::Exception::MisMatch<size_t>(ny, 3, "Matrix::operator*(V3D)");
  for (size_t i = 0; i < nx; ++i) {
    v[i] = V[i][0] * Vx.X() + V[i][1] * Vx.Y() + V[i][2] * Vx.Z();
Stuart Ansell's avatar
Stuart Ansell committed
}

template <typename T>
Matrix<T> Matrix<T>::operator*(const T &Value) const
/**
  Matrix multiplication THIS * Value
  @param Value :: Scalar to multiply by
  @return V * (this)
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  Matrix<T> X(*this);
  for (size_t i = 0; i < nx; i++) {
    for (size_t j = 0; j < ny; j++) {
      X.V[i][j] *= Value;
Stuart Ansell's avatar
Stuart Ansell committed
  return X;
}

/**
  Matrix multiplication THIS *= A
  Note that we call operator* to avoid the problem
  of changing matrix size.
 @param A :: Matrix to multiply by  (this->row must == A->columns)
 @return This *= A
*/
template <typename T> Matrix<T> &Matrix<T>::operator*=(const Matrix<T> &A) {
  if (ny != A.nx)
    throw Kernel::Exception::MisMatch<size_t>(ny, A.nx, "Matrix*=(Matrix<T>)");
Stuart Ansell's avatar
Stuart Ansell committed
  // This construct to avoid the problem of changing size
  *this = this->operator*(A);
  return *this;
}

template <typename T>
Matrix<T> &Matrix<T>::operator*=(const T &Value)
/**
  Matrix multiplication THIS * Value
  @param Value :: Scalar to multiply matrix by
  @return *this
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  for (size_t i = 0; i < nx; i++) {
    for (size_t j = 0; j < ny; j++) {
      V[i][j] *= Value;
Stuart Ansell's avatar
Stuart Ansell committed
  return *this;
}

template <typename T>
Matrix<T> &Matrix<T>::operator/=(const T &Value)
/**
  Matrix divishio THIS / Value
  @param Value :: Scalar to multiply matrix by
  @return *this
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  for (size_t i = 0; i < nx; i++) {
    for (size_t j = 0; j < ny; j++) {
      V[i][j] /= Value;
Stuart Ansell's avatar
Stuart Ansell committed
  return *this;
}

template <typename T>
bool Matrix<T>::operator!=(const Matrix<T> &A) const
Nick Draper's avatar
Nick Draper committed
Element by Element comparison
@param A :: Matrix to check
@return true :: on succees
@return false :: failure
Nick Draper's avatar
Nick Draper committed
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  return !(this->operator==(A));
Stuart Ansell's avatar
Stuart Ansell committed
}

template <typename T>
bool Matrix<T>::operator==(const Matrix<T> &A) const
/**
Nick Draper's avatar
Nick Draper committed
Element by element comparison within tolerance.
Tolerance means that the value must be > tolerance
and less than (diff/max)>tolerance
Stuart Ansell's avatar
Stuart Ansell committed

Nick Draper's avatar
Nick Draper committed
Always returns 0 if the Matrix have different sizes
@return true on success
Nick Draper's avatar
Nick Draper committed
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
//---------------------------------------------------------------------------------------
template <typename T>
bool Matrix<T>::equals(const Matrix<T> &A, const double Tolerance) const
/**
Element by element comparison within tolerance.
Tolerance means that the value must be > tolerance
and less than (diff/max)>tolerance

Always returns 0 if the Matrix have different sizes
@param A :: matrix to check.
@param Tolerance :: tolerance in comparing elements
@return true on success
*/
{
  if (&A != this) // this == A == always true
Nick Draper's avatar
Nick Draper committed
  {
    if (A.nx != nx || A.ny != ny)
Nick Draper's avatar
Nick Draper committed
      return false;
Stuart Ansell's avatar
Stuart Ansell committed

Nick Draper's avatar
Nick Draper committed
    double maxS(0.0);
    double maxDiff(0.0); // max di
    for (size_t i = 0; i < nx; i++)
      for (size_t j = 0; j < ny; j++) {
        const T diff = (V[i][j] - A.V[i][j]);
        if (fabs(diff) > maxDiff)
          maxDiff = fabs(diff);
        if (fabs(V[i][j]) > maxS)
          maxS = fabs(V[i][j]);
Nick Draper's avatar
Nick Draper committed
      }
    if (maxDiff < Tolerance)
      return true;
    if (maxS > 1.0 && (maxDiff / maxS) < Tolerance)
      return true;
    return false;
Nick Draper's avatar
Nick Draper committed
  }
  // this == this is true
Nick Draper's avatar
Nick Draper committed
  return true;
Stuart Ansell's avatar
Stuart Ansell committed
}

//---------------------------------------------------------------------------------------
/** Element by element comparison of <
Always returns false if the Matrix have different sizes
@param A :: matrix to check.
@return true if this < A
*/
template <typename T> bool Matrix<T>::operator<(const Matrix<T> &A) const {
  if (&A == this) // this < A == always false
  if (A.nx != nx || A.ny != ny)
  for (size_t i = 0; i < nx; i++)
    for (size_t j = 0; j < ny; j++) {
      if (V[i][j] >= A.V[i][j])
        return false;
    }
  return true;
}

//---------------------------------------------------------------------------------------
/** Element by element comparison of >=
Always returns false if the Matrix have different sizes
@param A :: matrix to check.
@return true if this >= A
*/
template <typename T> bool Matrix<T>::operator>=(const Matrix<T> &A) const {
  if (A.nx != nx || A.ny != ny)
  for (size_t i = 0; i < nx; i++)
    for (size_t j = 0; j < ny; j++) {
      if (V[i][j] < A.V[i][j])
        return false;
    }
  return true;
}

//---------------------------------------------------------------------------------------
template <typename T>
void Matrix<T>::deleteMem()
/**
  Deletes the memory held in matrix
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  if (V) {
    delete[] * V;
    delete[] V;
    V = 0;
  }
  nx = 0;
  ny = 0;
Stuart Ansell's avatar
Stuart Ansell committed
  return;
}

/**
  Sets the memory held in matrix
  @param a :: number of rows
  @param b :: number of columns
*/
template <typename T> void Matrix<T>::setMem(const size_t a, const size_t b) {
  if (a == nx && b == ny)
Stuart Ansell's avatar
Stuart Ansell committed
    return;

  deleteMem();
  if (a <= 0 || b <= 0)
Stuart Ansell's avatar
Stuart Ansell committed
    return;

  nx = a;
  ny = b;
  if (nx * ny) {
    T *tmpX = new T[nx * ny];
    V = new T *[nx];
    for (size_t i = 0; i < nx; i++) {
      V[i] = tmpX + (i * ny);
Stuart Ansell's avatar
Stuart Ansell committed
    }
Stuart Ansell's avatar
Stuart Ansell committed
  return;

/**
  Swap rows I and J
  @param RowI :: row I to swap
  @param RowJ :: row J to swap
*/
template <typename T>
void Matrix<T>::swapRows(const size_t RowI, const size_t RowJ) {
  if (nx * ny && RowI < nx && RowJ < nx && RowI != RowJ) {
    for (size_t k = 0; k < ny; k++) {
      T tmp = V[RowI][k];
      V[RowI][k] = V[RowJ][k];
      V[RowJ][k] = tmp;
Stuart Ansell's avatar
Stuart Ansell committed
    }
Stuart Ansell's avatar
Stuart Ansell committed
  return;
}

/**
  Swap columns I and J
  @param colI :: col I to swap
  @param colJ :: col J to swap
*/
template <typename T>
void Matrix<T>::swapCols(const size_t colI, const size_t colJ) {
  if (nx * ny && colI < ny && colJ < ny && colI != colJ) {
    for (size_t k = 0; k < nx; k++) {
      T tmp = V[k][colI];
      V[k][colI] = V[k][colJ];
      V[k][colJ] = tmp;
Stuart Ansell's avatar
Stuart Ansell committed
    }
Stuart Ansell's avatar
Stuart Ansell committed
  return;
}

template <typename T>
void Matrix<T>::zeroMatrix()
/**
  Zeros all elements of the matrix
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  if (nx * ny) {
    for (size_t i = 0; i < nx; i++) {
      for (size_t j = 0; j < ny; j++) {
        V[i][j] = static_cast<T>(0);
Stuart Ansell's avatar
Stuart Ansell committed
  return;
}

template <typename T>
void Matrix<T>::identityMatrix()
/**
  Makes the matrix an idenity matrix.
  Zeros all the terms outside of the square
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  if (nx * ny) {
    for (size_t i = 0; i < nx; i++) {
      for (size_t j = 0; j < ny; j++) {
        V[i][j] = (T)((j == i) ? 1 : 0);
Stuart Ansell's avatar
Stuart Ansell committed
  return;
}
template <typename T>
void Matrix<T>::setColumn(const size_t nCol, const std::vector<T> &newCol) {
  if (nCol >= this->ny) {
    throw(std::invalid_argument("nCol requested> nCol availible"));
  }
  size_t nxM = newCol.size();
  if (nx < nxM)
    nxM = nx;
  for (size_t i = 0; i < nxM; i++) {
    V[i][nCol] = newCol[i];
  }
template <typename T>
void Matrix<T>::setRow(const size_t nRow, const std::vector<T> &newRow) {
  if (nRow >= this->nx) {
    throw(std::invalid_argument("nRow requested> nRow availible"));
  }
  size_t nyM = newRow.size();
  if (ny < nyM)
    nyM = ny;
  for (size_t j = 0; j < nyM; j++) {
    V[nRow][j] = newRow[j];
  }
Stuart Ansell's avatar
Stuart Ansell committed

template <typename T>
void Matrix<T>::rotate(const double tau, const double s, const int i,
                       const int j, const int k, const int m)
/**
  Applies a rotation to a particular point of tan(theta)=tau.
  Note that you need both sin(theta) and tan(theta) because of
  sign preservation.
  @param tau :: tan(theta)
  @param s :: sin(theta)
  @param i ::  first index (xpos)
  @param j ::  first index (ypos)
  @param k ::  second index (xpos)
  @param m ::  second index (ypos)
 */
Stuart Ansell's avatar
Stuart Ansell committed
{
  const T gg = V[i][j];
  const T hh = V[k][m];
  V[i][j] = static_cast<T>(gg - s * (hh + gg * tau));
  V[k][m] = static_cast<T>(hh + s * (gg - hh * tau));
Stuart Ansell's avatar
Stuart Ansell committed
  return;
}

template <typename T>
Matrix<T> Matrix<T>::fDiagonal(const std::vector<T> &Dvec) const
/**
  Calculate the forward diagonal product.
  Construct a matrix based on  Dvec * This,
  where Dvec is made into a diagonal matrix.
  @param Dvec :: diagonal matrix (just centre points)
  @return D*this
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  // Note:: nx,ny zeroed so setMem always works
  if (Dvec.size() != nx) {
    std::ostringstream cx;
    cx << "Matrix::fDiagonal Size: " << Dvec.size() << " " << nx << " " << ny;
    throw std::runtime_error(cx.str());
  }
  Matrix<T> X(Dvec.size(), ny);
  for (size_t i = 0; i < Dvec.size(); i++) {
    for (size_t j = 0; j < ny; j++) {
      X.V[i][j] = Dvec[i] * V[i][j];
Stuart Ansell's avatar
Stuart Ansell committed
  return X;
}

template <typename T>
Matrix<T> Matrix<T>::bDiagonal(const std::vector<T> &Dvec) const
/**
  Calculate the backward diagonal product.
  Construct a matrix based on
  This * Dvec, where Dvec is made into a diagonal
  matrix.
  @param Dvec :: diagonal matrix (just centre points)
  @return this*D
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  // Note:: nx,ny zeroed so setMem always works
  if (Dvec.size() != ny) {
    std::ostringstream cx;
    cx << "Error Matrix::bDiaognal size:: " << Dvec.size() << " " << nx << " "
       << ny;
    throw std::runtime_error(cx.str());
  }
Stuart Ansell's avatar
Stuart Ansell committed

  Matrix<T> X(nx, Dvec.size());
  for (size_t i = 0; i < nx; i++) {
    for (size_t j = 0; j < Dvec.size(); j++) {
      X.V[i][j] = Dvec[j] * V[i][j];
Stuart Ansell's avatar
Stuart Ansell committed
  return X;
}

template <typename T>
Matrix<T> Matrix<T>::Tprime() const
/**
  Transpose the matrix :
  Has transpose for a square matrix case.
  @return M^T
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  if (!nx * ny)
Stuart Ansell's avatar
Stuart Ansell committed
    return *this;

  if (nx == ny) // inplace transpose
  {
    Matrix<T> MT(*this);
    MT.Transpose();
    return MT;
  }
Stuart Ansell's avatar
Stuart Ansell committed

  // irregular matrix
  Matrix<T> MT(ny, nx);
  for (size_t i = 0; i < nx; i++)
    for (size_t j = 0; j < ny; j++)
      MT.V[j][i] = V[i][j];
Stuart Ansell's avatar
Stuart Ansell committed

  return MT;
}

template <typename T>
Matrix<T> &Matrix<T>::Transpose()
/**
  Transpose the matrix :
  Has a inplace transpose for a square matrix case.
  @return this^T
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  if (!nx * ny)
Stuart Ansell's avatar
Stuart Ansell committed
    return *this;
  if (nx == ny) // inplace transpose
    for (size_t i = 0; i < nx; i++) {
      for (size_t j = i + 1; j < ny; j++) {
        T tmp = V[i][j];
        V[i][j] = V[j][i];
        V[j][i] = tmp;
Stuart Ansell's avatar
Stuart Ansell committed
    }
Stuart Ansell's avatar
Stuart Ansell committed
  // irregular matrix
  // get some memory
  T *tmpX = new T[ny * nx];
  T **Vt = new T *[ny];
  for (size_t i = 0; i < ny; i++) {
    Vt[i] = tmpX + (i * nx);
  }
  for (size_t i = 0; i < nx; i++) {
    for (size_t j = 0; j < ny; j++) {
      Vt[j][i] = V[i][j];
Stuart Ansell's avatar
Stuart Ansell committed
  // remove old memory
  const size_t tx = nx;
  const size_t ty = ny;
  deleteMem(); // resets nx,ny
Stuart Ansell's avatar
Stuart Ansell committed
  // replace memory
  V = Vt;
  nx = ty;
  ny = tx;
Stuart Ansell's avatar
Stuart Ansell committed

  return *this;
}

template <>
int Matrix<int>::GaussJordan(Kernel::Matrix<int> &)
/**
  Not valid for Integer
  @return zero
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  return 0;
}

template <typename T>
int Matrix<T>::GaussJordan(Matrix<T> &B)
/**
  Invert this Matrix and solve the
  form such that if A.x=B then  solve to generate x.
  This requires that B is B[A.nx][Any]
  The result is placed back in B
  @return the calculation result
 */
Stuart Ansell's avatar
Stuart Ansell committed
{
  // check for input errors
  if (nx != ny || B.nx != nx)
Stuart Ansell's avatar
Stuart Ansell committed
    return -1;
Stuart Ansell's avatar
Stuart Ansell committed
  std::vector<int> pivoted(nx);
  fill(pivoted.begin(), pivoted.end(), 0);
Stuart Ansell's avatar
Stuart Ansell committed

  std::vector<int> indxcol(nx); // Column index
  std::vector<int> indxrow(nx); // row index
Stuart Ansell's avatar
Stuart Ansell committed

  size_t irow(0), icol(0);
  for (size_t i = 0; i < nx; i++) {
    double bigItem = 0.0; // get point to pivot over
    for (size_t j = 0; j < nx; j++) {
      if (pivoted[j] != 1) // check only non-pivots
        for (size_t k = 0; k < nx; k++) {
          if (!pivoted[k]) {
            if (fabs(V[j][k]) >= bigItem) {
              bigItem = fabs(V[j][k]);
              irow = j;
              icol = k;
            }
          }
        }
      } else if (pivoted[j] > 1) {
        throw std::runtime_error("Error doing G-J elem on a singular matrix");
    // Swap in row/col to make a diagonal item
    if (irow != icol) {
      swapRows(irow, icol);
      B.swapRows(irow, icol);
    indxrow[i] = static_cast<int>(irow);
    indxcol[i] = static_cast<int>(icol);

    if (V[icol][icol] == 0.0) {
      std::cerr << "Error doing G-J elem on a singular matrix" << std::endl;
      return 1;
    }
    const T pivDiv = T(1.0) / V[icol][icol];
    V[icol][icol] = 1;
    for (size_t l = 0; l < nx; l++) {
    for (size_t l = 0; l < B.ny; l++) {
      B.V[icol][l] *= pivDiv;
Stuart Ansell's avatar
Stuart Ansell committed
    }

    for (size_t ll = 0; ll < nx; ll++) {
      if (ll != icol) {
        const T div_num = V[ll][icol];
        V[ll][icol] = 0.0;
        for (size_t l = 0; l < nx; l++) {
          V[ll][l] -= V[icol][l] * div_num;
        for (size_t l = 0; l < B.ny; l++) {
          B.V[ll][l] -= B.V[icol][l] * div_num;
Stuart Ansell's avatar
Stuart Ansell committed
  // Un-roll interchanges
  if (nx > 0) {
    for (int l = static_cast<int>(nx) - 1; l >= 0; l--) {
      if (indxrow[l] != indxcol[l]) {
        swapCols(indxrow[l], indxcol[l]);
  return 0;
}

template <typename T>
std::vector<T> Matrix<T>::Faddeev(Matrix<T> &InvOut)
/**
  Return the polynominal for the matrix
  and the inverse.
  The polynomial is such that
  \f[
    det(sI-A)=s^n+a_{n-1}s^{n-1} \dots +a_0
  \f]
  @param InvOut ::: output
  @return Matrix self Polynomial (low->high coefficient order)
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  if (nx != ny)
    throw Kernel::Exception::MisMatch<size_t>(nx, ny, "Matrix::Faddev(Matrix)");
Stuart Ansell's avatar
Stuart Ansell committed

  Matrix<T> &A(*this);
Stuart Ansell's avatar
Stuart Ansell committed
  Matrix<T> B(A);
  Matrix<T> Ident(nx, ny);
Stuart Ansell's avatar
Stuart Ansell committed
  Ident.identityMatrix();
Stuart Ansell's avatar
Stuart Ansell committed

  T tVal = B.Trace(); // Trace of the matrix
Stuart Ansell's avatar
Stuart Ansell committed
  std::vector<T> Poly;
  Poly.push_back(1);
  Poly.push_back(tVal);

  for (size_t i = 0; i < nx - 2;
       i++) // skip first (just copy) and last (to keep B-1)
  {
    B = A * B - Ident * tVal;
    tVal = B.Trace();
    Poly.push_back(tVal / static_cast<T>(i + 1));
  }
Stuart Ansell's avatar
Stuart Ansell committed
  // Last on need to keep B;
  InvOut = B;
  B = A * B - Ident * tVal;
  tVal = B.Trace();
  Poly.push_back(tVal / static_cast<T>(nx));

  InvOut -= Ident * (-Poly[nx - 1]);
  InvOut /= Poly.back();
Stuart Ansell's avatar
Stuart Ansell committed
  return Poly;
}

template <typename T>
T Matrix<T>::Invert()
/**
  If the Matrix is square then invert the matrix
  using LU decomposition
  @return Determinant (0 if the matrix is singular)
*/
Stuart Ansell's avatar
Stuart Ansell committed
{
  if (nx != ny && nx < 1)
Stuart Ansell's avatar
Stuart Ansell committed
    return 0;

  if (nx == 1) {
    T det = V[0][0];
    if (V[0][0] != static_cast<T>(0.))
      V[0][0] = static_cast<T>(1.) / V[0][0];
    return det;
  int *indx = new int[nx]; // Set in lubcmp

  double *col = new double[nx];
Stuart Ansell's avatar
Stuart Ansell committed
  int d;
  Matrix<T> Lcomp(*this);
  Lcomp.lubcmp(indx, d);

  double det = static_cast<double>(d);
  for (size_t j = 0; j < nx; j++)
Stuart Ansell's avatar
Stuart Ansell committed
    det *= Lcomp.V[j][j];

  for (size_t j = 0; j < nx; j++) {
    for (size_t i = 0; i < nx; i++)
      col[i] = 0.0;
    col[j] = 1.0;
    Lcomp.lubksb(indx, col);
    for (size_t i = 0; i < nx; i++)
      V[i][j] = static_cast<T>(col[i]);
  }
  delete[] indx;
  delete[] col;
Stuart Ansell's avatar
Stuart Ansell committed
  return static_cast<T>(det);
}