Newer
Older
#include "MantidAPI/CommonBinsValidator.h"
#include "MantidAPI/InstrumentValidator.h"
#include "MantidAPI/Run.h"
#include "MantidAPI/SpectrumInfo.h"
#include "MantidAPI/WorkspaceHistory.h"
#include "MantidAPI/WorkspaceUnitValidator.h"
#include "MantidDataObjects/EventWorkspace.h"
#include "MantidDataObjects/MDEventWorkspace.h"
#include "MantidDataObjects/MDHistoWorkspace.h"
Federico Montesino Pouzols
committed
#include "MantidGeometry/Instrument.h"
#include "MantidKernel/CompositeValidator.h"
#include "MantidKernel/ConfigService.h"
#include "MantidKernel/Strings.h"
#include "MantidKernel/TimeSeriesProperty.h"
Gigg, Martyn Anthony
committed
#include "MantidKernel/VectorHelper.h"
namespace Mantid {
namespace MDAlgorithms {
using Mantid::Kernel::Direction;
using Mantid::API::WorkspaceProperty;
using namespace Mantid::DataObjects;
using namespace Mantid::API;
using namespace Mantid::Kernel;
namespace {
// function to compare two intersections (h,k,l,Momentum) by Momentum
bool compareMomentum(const std::array<double, 4> &v1,
const std::array<double, 4> &v2) {
return (v1[3] < v2[3]);
}
}
// Register the algorithm into the AlgorithmFactory
DECLARE_ALGORITHM(MDNormSCD)
/**
* Constructor
*/
MDNormSCD::MDNormSCD()
: m_normWS(), m_inputWS(), m_hmin(0.0f), m_hmax(0.0f), m_kmin(0.0f),
m_kmax(0.0f), m_lmin(0.0f), m_lmax(0.0f), m_hIntegrated(true),
m_kIntegrated(true), m_lIntegrated(true), m_rubw(3, 3), m_kiMin(0.0),
m_kiMax(EMPTY_DBL()), m_hIdx(-1), m_kIdx(-1), m_lIdx(-1), m_hX(), m_kX(),
m_lX(), m_samplePos(), m_beamDir() {}
/// Algorithm's version for identification. @see Algorithm::version
int MDNormSCD::version() const { return 1; }
/// Algorithm's category for identification. @see Algorithm::category
const std::string MDNormSCD::category() const {
return "MDAlgorithms\\Normalisation";
}
/// Algorithm's summary for use in the GUI and help. @see Algorithm::summary
const std::string MDNormSCD::summary() const {
return "Calculate normalization for an MDEvent workspace for single crystal "
"diffraction.";
}
/// Algorithm's name for use in the GUI and help. @see Algorithm::name
const std::string MDNormSCD::name() const { return "MDNormSCD"; }
/**
* Initialize the algorithm's properties.
*/
void MDNormSCD::init() {
declareProperty(make_unique<WorkspaceProperty<IMDEventWorkspace>>(
"InputWorkspace", "", Direction::Input),
"An input MDWorkspace.");
std::string dimChars = getDimensionChars();
// --------------- Axis-aligned properties
// ---------------------------------------
for (size_t i = 0; i < dimChars.size(); i++) {
std::string dim(" ");
dim[0] = dimChars[i];
std::string propName = "AlignedDim" + dim;
declareProperty(
Kernel::make_unique<PropertyWithValue<std::string>>(propName, "",
Direction::Input),
"Binning parameters for the " + Strings::toString(i) +
"th dimension.\n"
"Enter it as a comma-separated list of values with the format: "
"'name,minimum,maximum,number_of_bins'. Leave blank for NONE.");
}
auto fluxValidator = boost::make_shared<CompositeValidator>();
fluxValidator->add<WorkspaceUnitValidator>("Momentum");
fluxValidator->add<InstrumentValidator>();
fluxValidator->add<CommonBinsValidator>();
auto solidAngleValidator = fluxValidator->clone();
declareProperty(make_unique<WorkspaceProperty<>>(
"FluxWorkspace", "", Direction::Input, fluxValidator),
"An input workspace containing momentum dependent flux.");
declareProperty(make_unique<WorkspaceProperty<>>("SolidAngleWorkspace", "",
Direction::Input,
solidAngleValidator),
"An input workspace containing momentum integrated vanadium "
"(a measure of the solid angle).");
declareProperty(make_unique<WorkspaceProperty<Workspace>>(
"OutputWorkspace", "", Direction::Output),
"A name for the output data MDHistoWorkspace.");
declareProperty(make_unique<WorkspaceProperty<Workspace>>(
"OutputNormalizationWorkspace", "", Direction::Output),
"A name for the output normalization MDHistoWorkspace.");
}
/**
* Execute the algorithm.
*/
void MDNormSCD::exec() {
cacheInputs();
auto outputWS = binInputWS();
convention = Kernel::ConfigService::Instance().getString("Q.convention");
outputWS->setDisplayNormalization(Mantid::API::NoNormalization);
setProperty<Workspace_sptr>("OutputWorkspace", outputWS);
createNormalizationWS(*outputWS);
m_normWS->setDisplayNormalization(Mantid::API::NoNormalization);
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
setProperty("OutputNormalizationWorkspace", m_normWS);
// Check for other dimensions if we could measure anything in the original
// data
bool skipNormalization = false;
const std::vector<coord_t> otherValues =
getValuesFromOtherDimensions(skipNormalization);
const auto affineTrans =
findIntergratedDimensions(otherValues, skipNormalization);
cacheDimensionXValues();
if (!skipNormalization) {
calculateNormalization(otherValues, affineTrans);
} else {
g_log.warning("Binning limits are outside the limits of the MDWorkspace. "
"Not applying normalization.");
}
}
/**
* Set up starting values for cached variables
*/
void MDNormSCD::cacheInputs() {
m_inputWS = getProperty("InputWorkspace");
if (inputEnergyMode() != "Elastic") {
throw std::invalid_argument("Invalid energy transfer mode. Algorithm "
"currently only supports elastic data.");
}
// Min/max dimension values
const auto hdim(m_inputWS->getDimension(0)), kdim(m_inputWS->getDimension(1)),
ldim(m_inputWS->getDimension(2));
m_hmin = hdim->getMinimum();
m_kmin = kdim->getMinimum();
m_lmin = ldim->getMinimum();
m_hmax = hdim->getMaximum();
m_kmax = kdim->getMaximum();
m_lmax = ldim->getMaximum();
const auto &exptInfoZero = *(m_inputWS->getExperimentInfo(0));
auto source = exptInfoZero.getInstrument()->getSource();
auto sample = exptInfoZero.getInstrument()->getSample();
if (source == nullptr || sample == nullptr) {
throw Kernel::Exception::InstrumentDefinitionError(
"Instrument not sufficiently defined: failed to get source and/or "
"sample");
}
m_samplePos = sample->getPos();
m_beamDir = m_samplePos - source->getPos();
m_beamDir.normalize();
}
/**
* Currently looks for the ConvertToMD algorithm in the history
* @return A string donating the energy transfer mode of the input workspace
*/
std::string MDNormSCD::inputEnergyMode() const {
const auto &hist = m_inputWS->getHistory();
const size_t nalgs = hist.size();
const auto &lastAlgorithm = hist.lastAlgorithm();
if (lastAlgorithm->name() == "ConvertToMD") {
emode = lastAlgorithm->getPropertyValue("dEAnalysisMode");
} else if ((lastAlgorithm->name() == "Load" ||
hist.lastAlgorithm()->name() == "LoadMD") &&
hist.getAlgorithmHistory(nalgs - 2)->name() == "ConvertToMD") {
// get dEAnalysisMode
PropertyHistories histvec =
hist.getAlgorithmHistory(nalgs - 2)->getProperties();
for (auto &hist : histvec) {
if (hist->name() == "dEAnalysisMode") {
emode = hist->value();
} else {
throw std::invalid_argument("The last algorithm in the history of the "
"input workspace is not ConvertToMD");
}
return emode;
}
/**
* Runs the BinMD algorithm on the input to provide the output workspace
* All slicing algorithm properties are passed along
* @return MDHistoWorkspace as a result of the binning
*/
MDHistoWorkspace_sptr MDNormSCD::binInputWS() {
const auto &props = getProperties();
IAlgorithm_sptr binMD = createChildAlgorithm("BinMD", 0.0, 0.3);
binMD->setPropertyValue("AxisAligned", "1");
Hahn, Steven
committed
for (auto prop : props) {
const auto &propName = prop->name();
if (propName != "FluxWorkspace" && propName != "SolidAngleWorkspace" &&
propName != "OutputNormalizationWorkspace") {
Hahn, Steven
committed
binMD->setPropertyValue(propName, prop->value());
}
binMD->executeAsChildAlg();
Workspace_sptr outputWS = binMD->getProperty("OutputWorkspace");
return boost::dynamic_pointer_cast<MDHistoWorkspace>(outputWS);
}
/**
* Create & cached the normalization workspace
* @param dataWS The binned workspace that will be used for the data
*/
void MDNormSCD::createNormalizationWS(const MDHistoWorkspace &dataWS) {
// Copy the MDHisto workspace, and change signals and errors to 0.
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
m_normWS->setTo(0., 0., 0.);
}
/**
* Retrieve logged values from non-HKL dimensions
* @param skipNormalization [InOut] Updated to false if any values are outside
* range measured by input workspace
* @return A vector of values from other dimensions to be include in normalized
* MD position calculation
*/
std::vector<coord_t>
MDNormSCD::getValuesFromOtherDimensions(bool &skipNormalization) const {
const auto &runZero = m_inputWS->getExperimentInfo(0)->run();
std::vector<coord_t> otherDimValues;
for (size_t i = 3; i < m_inputWS->getNumDims(); i++) {
const auto dimension = m_inputWS->getDimension(i);
float dimMin = static_cast<float>(dimension->getMinimum());
float dimMax = static_cast<float>(dimension->getMaximum());
auto *dimProp = dynamic_cast<Kernel::TimeSeriesProperty<double> *>(
runZero.getProperty(dimension->getName()));
if (dimProp) {
coord_t value = static_cast<coord_t>(dimProp->firstValue());
otherDimValues.push_back(value);
// in the original MD data no time was spent measuring between dimMin and
// dimMax
if (value < dimMin || value > dimMax) {
skipNormalization = true;
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
}
return otherDimValues;
}
/**
* Checks the normalization workspace against the indices of the original
* dimensions.
* If not found, the corresponding dimension is integrated
* @param otherDimValues Values from non-HKL dimensions
* @param skipNormalization [InOut] Sets the flag true if normalization values
* are outside of original inputs
* @return Affine trasform matrix
*/
Kernel::Matrix<coord_t>
MDNormSCD::findIntergratedDimensions(const std::vector<coord_t> &otherDimValues,
bool &skipNormalization) {
// Get indices of the original dimensions in the output workspace,
// and if not found, the corresponding dimension is integrated
Kernel::Matrix<coord_t> affineMat =
m_normWS->getTransformFromOriginal(0)->makeAffineMatrix();
const size_t nrm1 = affineMat.numRows() - 1;
const size_t ncm1 = affineMat.numCols() - 1;
for (size_t row = 0; row < nrm1; row++) // affine matrix, ignore last row
{
const auto dimen = m_normWS->getDimension(row);
const auto dimMin(dimen->getMinimum()), dimMax(dimen->getMaximum());
if (affineMat[row][0] == 1.) {
m_hIntegrated = false;
m_hIdx = row;
if (m_hmin < dimMin)
m_hmin = dimMin;
if (m_hmax > dimMax)
m_hmax = dimMax;
if (m_hmin > dimMax || m_hmax < dimMin) {
skipNormalization = true;
if (affineMat[row][1] == 1.) {
m_kIntegrated = false;
m_kIdx = row;
if (m_kmin < dimMin)
m_kmin = dimMin;
if (m_kmax > dimMax)
m_kmax = dimMax;
if (m_kmin > dimMax || m_kmax < dimMin) {
skipNormalization = true;
if (affineMat[row][2] == 1.) {
m_lIntegrated = false;
m_lIdx = row;
if (m_lmin < dimMin)
m_lmin = dimMin;
if (m_lmax > dimMax)
m_lmax = dimMax;
if (m_lmin > dimMax || m_lmax < dimMin) {
skipNormalization = true;
for (size_t col = 3; col < ncm1; col++) // affine matrix, ignore last column
if (affineMat[row][col] == 1.) {
double val = otherDimValues.at(col - 3);
if (val > dimMax || val < dimMin) {
skipNormalization = true;
}
return affineMat;
}
/**
* Stores the X values from each H,K,L dimension as member variables
*/
void MDNormSCD::cacheDimensionXValues() {
if (!m_hIntegrated) {
auto &hDim = *m_normWS->getDimension(m_hIdx);
m_hX.resize(hDim.getNBins());
for (size_t i = 0; i < m_hX.size(); ++i) {
m_hX[i] = hDim.getX(i);
}
if (!m_kIntegrated) {
auto &kDim = *m_normWS->getDimension(m_kIdx);
m_kX.resize(kDim.getNBins());
for (size_t i = 0; i < m_kX.size(); ++i) {
m_kX[i] = kDim.getX(i);
}
if (!m_lIntegrated) {
auto &lDim = *m_normWS->getDimension(m_lIdx);
m_lX.resize(lDim.getNBins());
for (size_t i = 0; i < m_lX.size(); ++i) {
m_lX[i] = lDim.getX(i);
namespace {
template <typename T, typename BinaryOp>
void AtomicOp(std::atomic<T> &f, T d, BinaryOp _Op) {
T old = f.load();
T desired = _Op(old, d);
while (!f.compare_exchange_weak(old, desired))
desired = _Op(old, d);
}
} // namespace
/**
* Computed the normalization for the input workspace. Results are stored in
* m_normWS
* @param otherValues
* @param affineTrans
*/
void MDNormSCD::calculateNormalization(
const std::vector<coord_t> &otherValues,
const Kernel::Matrix<coord_t> &affineTrans) {
API::MatrixWorkspace_const_sptr integrFlux = getProperty("FluxWorkspace");
integrFlux->getXMinMax(m_kiMin, m_kiMax);
API::MatrixWorkspace_const_sptr solidAngleWS =
getProperty("SolidAngleWorkspace");
const auto &exptInfoZero = *(m_inputWS->getExperimentInfo(0));
typedef Kernel::PropertyWithValue<std::vector<double>> VectorDoubleProperty;
auto *rubwLog =
dynamic_cast<VectorDoubleProperty *>(exptInfoZero.getLog("RUBW_MATRIX"));
if (!rubwLog) {
throw std::runtime_error(
"Wokspace does not contain a log entry for the RUBW matrix."
"Cannot continue.");
} else {
Kernel::DblMatrix rubwValue(
(*rubwLog)()); // includes the 2*pi factor but not goniometer for now :)
m_rubw = exptInfoZero.run().getGoniometerMatrix() * rubwValue;
m_rubw.Invert();
}
const double protonCharge = exptInfoZero.run().getProtonCharge();
const auto &spectrumInfo = exptInfoZero.spectrumInfo();
const int64_t ndets = static_cast<int64_t>(spectrumInfo.size());
const detid2index_map fluxDetToIdx =
integrFlux->getDetectorIDToWorkspaceIndexMap();
const detid2index_map solidAngDetToIdx =
solidAngleWS->getDetectorIDToWorkspaceIndexMap();
std::vector<std::atomic<signal_t>> signalArray(m_normWS->getNPoints());
auto prog = make_unique<API::Progress>(this, 0.3, 1.0, ndets);
PRAGMA_OMP(parallel for private(intersections, xValues, yValues, pos, posNew) if (Kernel::threadSafe(*integrFlux)))
for (int64_t i = 0; i < ndets; i++) {
PARALLEL_START_INTERUPT_REGION
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
if (!spectrumInfo.hasDetectors(i) || spectrumInfo.isMonitor(i) ||
spectrumInfo.isMasked(i)) {
continue;
}
const auto &detector = spectrumInfo.detector(i);
double theta = detector.getTwoTheta(m_samplePos, m_beamDir);
double phi = detector.getPhi();
// If the dtefctor is a group, this should be the ID of the first detector
const auto detID = detector.getID();
// Intersections
this->calculateIntersections(intersections, theta, phi);
if (intersections.empty())
continue;
// get the flux spetrum number
size_t wsIdx = fluxDetToIdx.find(detID)->second;
// Get solid angle for this contribution
double solid =
solidAngleWS->y(solidAngDetToIdx.find(detID)->second)[0] * protonCharge;
// -- calculate integrals for the intersection --
// momentum values at intersections
auto intersectionsBegin = intersections.begin();
// copy momenta to xValues
xValues.resize(intersections.size());
yValues.resize(intersections.size());
auto x = xValues.begin();
for (auto it = intersectionsBegin; it != intersections.end(); ++it, ++x) {
*x = (*it)[3];
}
// calculate integrals at momenta from xValues by interpolating between
// points in spectrum sp
// of workspace integrFlux. The result is stored in yValues
calcIntegralsForIntersections(xValues, *integrFlux, wsIdx, yValues);
// Compute final position in HKL
// pre-allocate for efficiency and copy non-hkl dim values into place
pos.resize(vmdDims + otherValues.size());
std::copy(otherValues.begin(), otherValues.end(), pos.begin() + vmdDims - 1);
pos.push_back(1.);
for (auto it = intersectionsBegin + 1; it != intersections.end(); ++it) {
const auto &curIntSec = *it;
const auto &prevIntSec = *(it - 1);
// the full vector isn't used so compute only what is necessary
double delta = curIntSec[3] - prevIntSec[3];
if (delta < 1e-07)
continue; // Assume zero contribution if difference is small
// Average between two intersections for final position
std::transform(curIntSec.begin(), curIntSec.begin() + vmdDims - 1,
prevIntSec.begin(), pos.begin(),
VectorHelper::SimpleAverage<coord_t>());
affineTrans.multiplyPoint(pos, posNew);
size_t linIndex = m_normWS->getLinearIndexAtCoord(posNew.data());
if (linIndex == size_t(-1))
// index of the current intersection
size_t k = static_cast<size_t>(std::distance(intersectionsBegin, it));
// signal = integral between two consecutive intersections
signal_t signal = (yValues[k] - yValues[k - 1]) * solid;
AtomicOp(signalArray[linIndex], signal, std::plus<signal_t>());
prog->report();
PARALLEL_END_INTERUPT_REGION
}
PARALLEL_CHECK_INTERUPT_REGION
std::copy(signalArray.cbegin(), signalArray.cend(), m_normWS->getSignalArray());
}
/**
* Linearly interpolate between the points in integrFlux at xValues and save the
* results in yValues.
* @param xValues :: X-values at which to interpolate
* @param integrFlux :: A workspace with the spectra to interpolate
* @param sp :: A workspace index for a spectrum in integrFlux to interpolate.
* @param yValues :: A vector to save the results.
*/
void MDNormSCD::calcIntegralsForIntersections(
const std::vector<double> &xValues, const API::MatrixWorkspace &integrFlux,
size_t sp, std::vector<double> &yValues) const {
assert(xValues.size() == yValues.size());
// the x-data from the workspace
const auto &xData = integrFlux.x(sp);
const double xStart = xData.front();
const double xEnd = xData.back();
// the values in integrFlux are expected to be integrals of a non-negative
// function
// ie they must make a non-decreasing function
const auto &yData = integrFlux.y(sp);
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
size_t spSize = yData.size();
const double yMin = 0.0;
const double yMax = yData.back();
size_t nData = xValues.size();
// all integrals below xStart must be 0
if (xValues[nData - 1] < xStart) {
std::fill(yValues.begin(), yValues.end(), yMin);
return;
}
// all integrals above xEnd must be equal tp yMax
if (xValues[0] > xEnd) {
std::fill(yValues.begin(), yValues.end(), yMax);
return;
}
size_t i = 0;
// integrals below xStart must be 0
while (i < nData - 1 && xValues[i] < xStart) {
yValues[i] = yMin;
i++;
}
size_t j = 0;
for (; i < nData; i++) {
// integrals above xEnd must be equal tp yMax
if (j >= spSize - 1) {
yValues[i] = yMax;
} else {
double xi = xValues[i];
while (j < spSize - 1 && xi > xData[j])
j++;
// if x falls onto an interpolation point return the corresponding y
if (xi == xData[j]) {
yValues[i] = yData[j];
} else if (j == spSize - 1) {
// if we get above xEnd it's yMax
yValues[i] = yMax;
} else if (j > 0) {
// interpolate between the consecutive points
double x0 = xData[j - 1];
double x1 = xData[j];
double y0 = yData[j - 1];
double y1 = yData[j];
yValues[i] = y0 + (y1 - y0) * (xi - x0) / (x1 - x0);
} else // j == 0
yValues[i] = yMin;
}
}
}
}
/**
* Calculate the points of intersection for the given detector with cuboid
* surrounding the
* detector position in HKL
* @param theta Polar angle withd detector
* @param phi Azimuthal angle with detector
*/
void MDNormSCD::calculateIntersections(
std::vector<std::array<double, 4>> &intersections, const double theta,
V3D q(-sin(theta) * cos(phi), -sin(theta) * sin(phi), 1. - cos(theta));
q = m_rubw * q;
if (convention == "Crystallography") {
double hStart = q.X() * m_kiMin, hEnd = q.X() * m_kiMax;
double kStart = q.Y() * m_kiMin, kEnd = q.Y() * m_kiMax;
double lStart = q.Z() * m_kiMin, lEnd = q.Z() * m_kiMax;
double eps = 1e-7;
auto hNBins = m_hX.size();
auto kNBins = m_kX.size();
auto lNBins = m_lX.size();
intersections.reserve(hNBins + kNBins + lNBins + 8);
// calculate intersections with planes perpendicular to h
if (fabs(hStart - hEnd) > eps) {
double fmom = (m_kiMax - m_kiMin) / (hEnd - hStart);
double fk = (kEnd - kStart) / (hEnd - hStart);
double fl = (lEnd - lStart) / (hEnd - hStart);
if (!m_hIntegrated) {
for (size_t i = 0; i < hNBins; i++) {
double hi = m_hX[i];
if ((hi >= m_hmin) && (hi <= m_hmax) &&
((hStart - hi) * (hEnd - hi) < 0)) {
// if hi is between hStart and hEnd, then ki and li will be between
// kStart, kEnd and lStart, lEnd and momi will be between m_kiMin and
// KnincidemtmMax
double ki = fk * (hi - hStart) + kStart;
double li = fl * (hi - hStart) + lStart;
if ((ki >= m_kmin) && (ki <= m_kmax) && (li >= m_lmin) &&
(li <= m_lmax)) {
double momi = fmom * (hi - hStart) + m_kiMin;
}
}
}
double momhMin = fmom * (m_hmin - hStart) + m_kiMin;
if ((momhMin > m_kiMin) && (momhMin < m_kiMax)) {
// khmin and lhmin
double khmin = fk * (m_hmin - hStart) + kStart;
double lhmin = fl * (m_hmin - hStart) + lStart;
if ((khmin >= m_kmin) && (khmin <= m_kmax) && (lhmin >= m_lmin) &&
(lhmin <= m_lmax)) {
intersections.push_back({{m_hmin, khmin, lhmin, momhMin}});
double momhMax = fmom * (m_hmax - hStart) + m_kiMin;
if ((momhMax > m_kiMin) && (momhMax < m_kiMax)) {
// khmax and lhmax
double khmax = fk * (m_hmax - hStart) + kStart;
double lhmax = fl * (m_hmax - hStart) + lStart;
if ((khmax >= m_kmin) && (khmax <= m_kmax) && (lhmax >= m_lmin) &&
(lhmax <= m_lmax)) {
intersections.push_back({{m_hmax, khmax, lhmax, momhMax}});
}
// calculate intersections with planes perpendicular to k
if (fabs(kStart - kEnd) > eps) {
double fmom = (m_kiMax - m_kiMin) / (kEnd - kStart);
double fh = (hEnd - hStart) / (kEnd - kStart);
double fl = (lEnd - lStart) / (kEnd - kStart);
if (!m_kIntegrated) {
for (size_t i = 0; i < kNBins; i++) {
double ki = m_kX[i];
if ((ki >= m_kmin) && (ki <= m_kmax) &&
((kStart - ki) * (kEnd - ki) < 0)) {
// if ki is between kStart and kEnd, then hi and li will be between
// hStart, hEnd and lStart, lEnd
double hi = fh * (ki - kStart) + hStart;
double li = fl * (ki - kStart) + lStart;
if ((hi >= m_hmin) && (hi <= m_hmax) && (li >= m_lmin) &&
(li <= m_lmax)) {
double momi = fmom * (ki - kStart) + m_kiMin;
}
double momkMin = fmom * (m_kmin - kStart) + m_kiMin;
if ((momkMin > m_kiMin) && (momkMin < m_kiMax)) {
// hkmin and lkmin
double hkmin = fh * (m_kmin - kStart) + hStart;
double lkmin = fl * (m_kmin - kStart) + lStart;
if ((hkmin >= m_hmin) && (hkmin <= m_hmax) && (lkmin >= m_lmin) &&
(lkmin <= m_lmax)) {
intersections.push_back({{hkmin, m_kmin, lkmin, momkMin}});
}
double momkMax = fmom * (m_kmax - kStart) + m_kiMin;
if ((momkMax > m_kiMin) && (momkMax < m_kiMax)) {
// hkmax and lkmax
double hkmax = fh * (m_kmax - kStart) + hStart;
double lkmax = fl * (m_kmax - kStart) + lStart;
if ((hkmax >= m_hmin) && (hkmax <= m_hmax) && (lkmax >= m_lmin) &&
(lkmax <= m_lmax)) {
intersections.push_back({{hkmax, m_kmax, lkmax, momkMax}});
}
}
}
// calculate intersections with planes perpendicular to l
if (fabs(lStart - lEnd) > eps) {
double fmom = (m_kiMax - m_kiMin) / (lEnd - lStart);
double fh = (hEnd - hStart) / (lEnd - lStart);
double fk = (kEnd - kStart) / (lEnd - lStart);
if (!m_lIntegrated) {
for (size_t i = 0; i < lNBins; i++) {
double li = m_lX[i];
if ((li >= m_lmin) && (li <= m_lmax) &&
((lStart - li) * (lEnd - li) < 0)) {
// if li is between lStart and lEnd, then hi and ki will be between
// hStart, hEnd and kStart, kEnd
double hi = fh * (li - lStart) + hStart;
double ki = fk * (li - lStart) + kStart;
if ((hi >= m_hmin) && (hi <= m_hmax) && (ki >= m_kmin) &&
(ki <= m_kmax)) {
double momi = fmom * (li - lStart) + m_kiMin;
}
double momlMin = fmom * (m_lmin - lStart) + m_kiMin;
if ((momlMin > m_kiMin) && (momlMin < m_kiMax)) {
// hlmin and klmin
double hlmin = fh * (m_lmin - lStart) + hStart;
double klmin = fk * (m_lmin - lStart) + kStart;
if ((hlmin >= m_hmin) && (hlmin <= m_hmax) && (klmin >= m_kmin) &&
(klmin <= m_kmax)) {
intersections.push_back({{hlmin, klmin, m_lmin, momlMin}});
}
double momlMax = fmom * (m_lmax - lStart) + m_kiMin;
if ((momlMax > m_kiMin) && (momlMax < m_kiMax)) {
// khmax and lhmax
double hlmax = fh * (m_lmax - lStart) + hStart;
double klmax = fk * (m_lmax - lStart) + kStart;
if ((hlmax >= m_hmin) && (hlmax <= m_hmax) && (klmax >= m_kmin) &&
(klmax <= m_kmax)) {
intersections.push_back({{hlmax, klmax, m_lmax, momlMax}});
}
// add endpoints
if ((hStart >= m_hmin) && (hStart <= m_hmax) && (kStart >= m_kmin) &&
(kStart <= m_kmax) && (lStart >= m_lmin) && (lStart <= m_lmax)) {
intersections.push_back({{hStart, kStart, lStart, m_kiMin}});
}
if ((hEnd >= m_hmin) && (hEnd <= m_hmax) && (kEnd >= m_kmin) &&
(kEnd <= m_kmax) && (lEnd >= m_lmin) && (lEnd <= m_lmax)) {
}
// sort intersections by momentum
std::stable_sort(intersections.begin(), intersections.end(), compareMomentum);
}
} // namespace MDAlgorithms