Newer
Older
#include "MantidAPI/CommonBinsValidator.h"
#include "MantidAPI/InstrumentValidator.h"
#include "MantidAPI/WorkspaceUnitValidator.h"
#include "MantidDataObjects/EventWorkspace.h"
#include "MantidDataObjects/MDEventWorkspace.h"
#include "MantidDataObjects/MDHistoWorkspace.h"
Federico Montesino Pouzols
committed
#include "MantidGeometry/Instrument.h"
#include "MantidKernel/CompositeValidator.h"
#include "MantidKernel/TimeSeriesProperty.h"
Gigg, Martyn Anthony
committed
#include "MantidKernel/VectorHelper.h"
namespace Mantid {
namespace MDAlgorithms {
using Mantid::Kernel::Direction;
using Mantid::API::WorkspaceProperty;
using namespace Mantid::DataObjects;
using namespace Mantid::API;
using namespace Mantid::Kernel;
namespace {
// function to compare two intersections (h,k,l,Momentum) by Momentum
bool compareMomentum(const Mantid::Kernel::VMD &v1,
const Mantid::Kernel::VMD &v2) {
return (v1[3] < v2[3]);
}
}
// Register the algorithm into the AlgorithmFactory
DECLARE_ALGORITHM(MDNormSCD)
//----------------------------------------------------------------------------------------------
/**
* Constructor
*/
MDNormSCD::MDNormSCD()
: m_normWS(), m_inputWS(), m_hmin(0.0f), m_hmax(0.0f), m_kmin(0.0f),
m_kmax(0.0f), m_lmin(0.0f), m_lmax(0.0f), m_hIntegrated(true),
m_kIntegrated(true), m_lIntegrated(true), m_rubw(3, 3), m_kiMin(0.0),
m_kiMax(EMPTY_DBL()), m_hIdx(-1), m_kIdx(-1), m_lIdx(-1), m_hX(), m_kX(),
m_lX(), m_samplePos(), m_beamDir() {}
/// Algorithm's version for identification. @see Algorithm::version
int MDNormSCD::version() const { return 1; }
/// Algorithm's category for identification. @see Algorithm::category
const std::string MDNormSCD::category() const {
return "MDAlgorithms\\Normalisation";
}
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
/// Algorithm's summary for use in the GUI and help. @see Algorithm::summary
const std::string MDNormSCD::summary() const {
return "Calculate normalization for an MDEvent workspace for single crystal "
"diffraction.";
}
/// Algorithm's name for use in the GUI and help. @see Algorithm::name
const std::string MDNormSCD::name() const { return "MDNormSCD"; }
//----------------------------------------------------------------------------------------------
/**
* Initialize the algorithm's properties.
*/
void MDNormSCD::init() {
declareProperty(new WorkspaceProperty<IMDEventWorkspace>("InputWorkspace", "",
Direction::Input),
"An input MDWorkspace.");
std::string dimChars = getDimensionChars();
// --------------- Axis-aligned properties
// ---------------------------------------
for (size_t i = 0; i < dimChars.size(); i++) {
std::string dim(" ");
dim[0] = dimChars[i];
std::string propName = "AlignedDim" + dim;
declareProperty(
new PropertyWithValue<std::string>(propName, "", Direction::Input),
"Binning parameters for the " + Strings::toString(i) +
"th dimension.\n"
"Enter it as a comma-separated list of values with the format: "
"'name,minimum,maximum,number_of_bins'. Leave blank for NONE.");
}
auto fluxValidator = boost::make_shared<CompositeValidator>();
fluxValidator->add<WorkspaceUnitValidator>("Momentum");
fluxValidator->add<InstrumentValidator>();
fluxValidator->add<CommonBinsValidator>();
auto solidAngleValidator = fluxValidator->clone();
declareProperty(new WorkspaceProperty<>("FluxWorkspace", "", Direction::Input,
fluxValidator),
"An input workspace containing momentum dependent flux.");
declareProperty(new WorkspaceProperty<>("SolidAngleWorkspace", "",
Direction::Input,
solidAngleValidator),
"An input workspace containing momentum integrated vanadium "
"(a measure of the solid angle).");
declareProperty(new WorkspaceProperty<Workspace>("OutputWorkspace", "",
Direction::Output),
"A name for the output data MDHistoWorkspace.");
declareProperty(new WorkspaceProperty<Workspace>(
"OutputNormalizationWorkspace", "", Direction::Output),
"A name for the output normalization MDHistoWorkspace.");
}
//----------------------------------------------------------------------------------------------
/**
* Execute the algorithm.
*/
void MDNormSCD::exec() {
cacheInputs();
auto outputWS = binInputWS();
convention = Kernel::ConfigService::Instance().getString("Q.convention");
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
setProperty<Workspace_sptr>("OutputWorkspace", outputWS);
createNormalizationWS(*outputWS);
setProperty("OutputNormalizationWorkspace", m_normWS);
// Check for other dimensions if we could measure anything in the original
// data
bool skipNormalization = false;
const std::vector<coord_t> otherValues =
getValuesFromOtherDimensions(skipNormalization);
const auto affineTrans =
findIntergratedDimensions(otherValues, skipNormalization);
cacheDimensionXValues();
if (!skipNormalization) {
calculateNormalization(otherValues, affineTrans);
} else {
g_log.warning("Binning limits are outside the limits of the MDWorkspace. "
"Not applying normalization.");
}
}
/**
* Set up starting values for cached variables
*/
void MDNormSCD::cacheInputs() {
m_inputWS = getProperty("InputWorkspace");
if (inputEnergyMode() != "Elastic") {
throw std::invalid_argument("Invalid energy transfer mode. Algorithm "
"currently only supports elastic data.");
}
// Min/max dimension values
const auto hdim(m_inputWS->getDimension(0)), kdim(m_inputWS->getDimension(1)),
ldim(m_inputWS->getDimension(2));
m_hmin = hdim->getMinimum();
m_kmin = kdim->getMinimum();
m_lmin = ldim->getMinimum();
m_hmax = hdim->getMaximum();
m_kmax = kdim->getMaximum();
m_lmax = ldim->getMaximum();
const auto &exptInfoZero = *(m_inputWS->getExperimentInfo(0));
auto source = exptInfoZero.getInstrument()->getSource();
auto sample = exptInfoZero.getInstrument()->getSample();
if (source == nullptr || sample == nullptr) {
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
throw Kernel::Exception::InstrumentDefinitionError(
"Instrument not sufficiently defined: failed to get source and/or "
"sample");
}
m_samplePos = sample->getPos();
m_beamDir = m_samplePos - source->getPos();
m_beamDir.normalize();
}
/**
* Currently looks for the ConvertToMD algorithm in the history
* @return A string donating the energy transfer mode of the input workspace
*/
std::string MDNormSCD::inputEnergyMode() const {
const auto &hist = m_inputWS->getHistory();
const size_t nalgs = hist.size();
const auto &lastAlgorithm = hist.lastAlgorithm();
std::string emode("");
if (lastAlgorithm->name() == "ConvertToMD") {
emode = lastAlgorithm->getPropertyValue("dEAnalysisMode");
} else if ((lastAlgorithm->name() == "Load" ||
hist.lastAlgorithm()->name() == "LoadMD") &&
hist.getAlgorithmHistory(nalgs - 2)->name() == "ConvertToMD") {
// get dEAnalysisMode
PropertyHistories histvec =
hist.getAlgorithmHistory(nalgs - 2)->getProperties();
for (auto &hist : histvec) {
if (hist->name() == "dEAnalysisMode") {
emode = hist->value();
} else {
throw std::invalid_argument("The last algorithm in the history of the "
"input workspace is not ConvertToMD");
}
return emode;
}
/**
* Runs the BinMD algorithm on the input to provide the output workspace
* All slicing algorithm properties are passed along
* @return MDHistoWorkspace as a result of the binning
*/
MDHistoWorkspace_sptr MDNormSCD::binInputWS() {
const auto &props = getProperties();
IAlgorithm_sptr binMD = createChildAlgorithm("BinMD", 0.0, 0.3);
binMD->setPropertyValue("AxisAligned", "1");
Hahn, Steven
committed
for (auto prop : props) {
const auto &propName = prop->name();
if (propName != "FluxWorkspace" && propName != "SolidAngleWorkspace" &&
propName != "OutputNormalizationWorkspace") {
Hahn, Steven
committed
binMD->setPropertyValue(propName, prop->value());
}
binMD->executeAsChildAlg();
Workspace_sptr outputWS = binMD->getProperty("OutputWorkspace");
return boost::dynamic_pointer_cast<MDHistoWorkspace>(outputWS);
}
/**
* Create & cached the normalization workspace
* @param dataWS The binned workspace that will be used for the data
*/
void MDNormSCD::createNormalizationWS(const MDHistoWorkspace &dataWS) {
// Copy the MDHisto workspace, and change signals and errors to 0.
m_normWS.reset(dataWS.clone().release());
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
m_normWS->setTo(0., 0., 0.);
}
/**
* Retrieve logged values from non-HKL dimensions
* @param skipNormalization [InOut] Updated to false if any values are outside
* range measured by input workspace
* @return A vector of values from other dimensions to be include in normalized
* MD position calculation
*/
std::vector<coord_t>
MDNormSCD::getValuesFromOtherDimensions(bool &skipNormalization) const {
const auto &runZero = m_inputWS->getExperimentInfo(0)->run();
std::vector<coord_t> otherDimValues;
for (size_t i = 3; i < m_inputWS->getNumDims(); i++) {
const auto dimension = m_inputWS->getDimension(i);
float dimMin = static_cast<float>(dimension->getMinimum());
float dimMax = static_cast<float>(dimension->getMaximum());
auto *dimProp = dynamic_cast<Kernel::TimeSeriesProperty<double> *>(
runZero.getProperty(dimension->getName()));
if (dimProp) {
coord_t value = static_cast<coord_t>(dimProp->firstValue());
otherDimValues.push_back(value);
// in the original MD data no time was spent measuring between dimMin and
// dimMax
if (value < dimMin || value > dimMax) {
skipNormalization = true;
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
}
return otherDimValues;
}
/**
* Checks the normalization workspace against the indices of the original
* dimensions.
* If not found, the corresponding dimension is integrated
* @param otherDimValues Values from non-HKL dimensions
* @param skipNormalization [InOut] Sets the flag true if normalization values
* are outside of original inputs
* @return Affine trasform matrix
*/
Kernel::Matrix<coord_t>
MDNormSCD::findIntergratedDimensions(const std::vector<coord_t> &otherDimValues,
bool &skipNormalization) {
// Get indices of the original dimensions in the output workspace,
// and if not found, the corresponding dimension is integrated
Kernel::Matrix<coord_t> affineMat =
m_normWS->getTransformFromOriginal(0)->makeAffineMatrix();
const size_t nrm1 = affineMat.numRows() - 1;
const size_t ncm1 = affineMat.numCols() - 1;
for (size_t row = 0; row < nrm1; row++) // affine matrix, ignore last row
{
const auto dimen = m_normWS->getDimension(row);
const auto dimMin(dimen->getMinimum()), dimMax(dimen->getMaximum());
if (affineMat[row][0] == 1.) {
m_hIntegrated = false;
m_hIdx = row;
if (m_hmin < dimMin)
m_hmin = dimMin;
if (m_hmax > dimMax)
m_hmax = dimMax;
if (m_hmin > dimMax || m_hmax < dimMin) {
skipNormalization = true;
if (affineMat[row][1] == 1.) {
m_kIntegrated = false;
m_kIdx = row;
if (m_kmin < dimMin)
m_kmin = dimMin;
if (m_kmax > dimMax)
m_kmax = dimMax;
if (m_kmin > dimMax || m_kmax < dimMin) {
skipNormalization = true;
if (affineMat[row][2] == 1.) {
m_lIntegrated = false;
m_lIdx = row;
if (m_lmin < dimMin)
m_lmin = dimMin;
if (m_lmax > dimMax)
m_lmax = dimMax;
if (m_lmin > dimMax || m_lmax < dimMin) {
skipNormalization = true;
for (size_t col = 3; col < ncm1; col++) // affine matrix, ignore last column
if (affineMat[row][col] == 1.) {
double val = otherDimValues.at(col - 3);
if (val > dimMax || val < dimMin) {
skipNormalization = true;
}
return affineMat;
}
/**
* Stores the X values from each H,K,L dimension as member variables
*/
void MDNormSCD::cacheDimensionXValues() {
if (!m_hIntegrated) {
auto &hDim = *m_normWS->getDimension(m_hIdx);
m_hX.resize(hDim.getNBins());
for (size_t i = 0; i < m_hX.size(); ++i) {
m_hX[i] = hDim.getX(i);
}
if (!m_kIntegrated) {
auto &kDim = *m_normWS->getDimension(m_kIdx);
m_kX.resize(kDim.getNBins());
for (size_t i = 0; i < m_kX.size(); ++i) {
m_kX[i] = kDim.getX(i);
}
if (!m_lIntegrated) {
auto &lDim = *m_normWS->getDimension(m_lIdx);
m_lX.resize(lDim.getNBins());
for (size_t i = 0; i < m_lX.size(); ++i) {
m_lX[i] = lDim.getX(i);
/**
* Computed the normalization for the input workspace. Results are stored in
* m_normWS
* @param otherValues
* @param affineTrans
*/
void MDNormSCD::calculateNormalization(
const std::vector<coord_t> &otherValues,
const Kernel::Matrix<coord_t> &affineTrans) {
API::MatrixWorkspace_const_sptr integrFlux = getProperty("FluxWorkspace");
integrFlux->getXMinMax(m_kiMin, m_kiMax);
API::MatrixWorkspace_const_sptr solidAngleWS =
getProperty("SolidAngleWorkspace");
const auto &exptInfoZero = *(m_inputWS->getExperimentInfo(0));
typedef Kernel::PropertyWithValue<std::vector<double>> VectorDoubleProperty;
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
auto *rubwLog =
dynamic_cast<VectorDoubleProperty *>(exptInfoZero.getLog("RUBW_MATRIX"));
if (!rubwLog) {
throw std::runtime_error(
"Wokspace does not contain a log entry for the RUBW matrix."
"Cannot continue.");
} else {
Kernel::DblMatrix rubwValue(
(*rubwLog)()); // includes the 2*pi factor but not goniometer for now :)
m_rubw = exptInfoZero.run().getGoniometerMatrix() * rubwValue;
m_rubw.Invert();
}
const double protonCharge = exptInfoZero.run().getProtonCharge();
auto instrument = exptInfoZero.getInstrument();
std::vector<detid_t> detIDs = instrument->getDetectorIDs(true);
// Prune out those that are part of a group and simply leave the head of the
// group
detIDs = removeGroupedIDs(exptInfoZero, detIDs);
// Mappings
const int64_t ndets = static_cast<int64_t>(detIDs.size());
const detid2index_map fluxDetToIdx =
integrFlux->getDetectorIDToWorkspaceIndexMap();
const detid2index_map solidAngDetToIdx =
solidAngleWS->getDetectorIDToWorkspaceIndexMap();
std::unique_ptr<API::Progress> prog(new API::Progress(this, 0.3, 1.0, ndets));
PARALLEL_FOR1(integrFlux)
for (int64_t i = 0; i < ndets; i++) {
PARALLEL_START_INTERUPT_REGION
const auto detID = detIDs[i];
double theta(0.0), phi(0.0);
bool skip(false);
try {
auto spectrum = getThetaPhi(detID, exptInfoZero, theta, phi);
if (spectrum->isMonitor() || spectrum->isMasked())
continue;
} catch (
std::exception &) // detector might not exist or has no been included
// in grouping
skip = true; // Intel compiler has a problem with continue inside a catch
// inside openmp...
if (skip)
continue;
// Intersections
auto intersections = calculateIntersections(theta, phi);
if (intersections.empty())
continue;
// get the flux spetrum number
size_t wsIdx = fluxDetToIdx.find(detID)->second;
// Get solid angle for this contribution
double solid =
solidAngleWS->readY(solidAngDetToIdx.find(detID)->second)[0] *
protonCharge;
// -- calculate integrals for the intersection --
// momentum values at intersections
auto intersectionsBegin = intersections.begin();
std::vector<double> xValues(intersections.size()),
yValues(intersections.size());
// copy momenta to xValues
auto x = xValues.begin();
for (auto it = intersectionsBegin; it != intersections.end(); ++it, ++x) {
*x = (*it)[3];
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
}
// calculate integrals at momenta from xValues by interpolating between
// points in spectrum sp
// of workspace integrFlux. The result is stored in yValues
calcIntegralsForIntersections(xValues, *integrFlux, wsIdx, yValues);
// Compute final position in HKL
const size_t vmdDims = intersections.front().size();
// pre-allocate for efficiency and copy non-hkl dim values into place
std::vector<coord_t> pos(vmdDims + otherValues.size());
std::copy(otherValues.begin(), otherValues.end(),
pos.begin() + vmdDims - 1);
pos.push_back(1.);
for (auto it = intersectionsBegin + 1; it != intersections.end(); ++it) {
const auto &curIntSec = *it;
const auto &prevIntSec = *(it - 1);
// the full vector isn't used so compute only what is necessary
double delta = curIntSec[3] - prevIntSec[3];
if (delta < 1e-07)
continue; // Assume zero contribution if difference is small
// Average between two intersections for final position
std::transform(curIntSec.getBareArray(),
curIntSec.getBareArray() + vmdDims - 1,
prevIntSec.getBareArray(), pos.begin(),
VectorHelper::SimpleAverage<coord_t>());
std::vector<coord_t> posNew = affineTrans * pos;
size_t linIndex = m_normWS->getLinearIndexAtCoord(posNew.data());
if (linIndex == size_t(-1))
continue;
// index of the current intersection
size_t k = static_cast<size_t>(std::distance(intersectionsBegin, it));
// signal = integral between two consecutive intersections
double signal = (yValues[k] - yValues[k - 1]) * solid;
PARALLEL_CRITICAL(updateMD) {
signal += m_normWS->getSignalAt(linIndex);
m_normWS->setSignalAt(linIndex, signal);
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
}
prog->report();
PARALLEL_END_INTERUPT_REGION
}
PARALLEL_CHECK_INTERUPT_REGION
}
/**
* Linearly interpolate between the points in integrFlux at xValues and save the
* results in yValues.
* @param xValues :: X-values at which to interpolate
* @param integrFlux :: A workspace with the spectra to interpolate
* @param sp :: A workspace index for a spectrum in integrFlux to interpolate.
* @param yValues :: A vector to save the results.
*/
void MDNormSCD::calcIntegralsForIntersections(
const std::vector<double> &xValues, const API::MatrixWorkspace &integrFlux,
size_t sp, std::vector<double> &yValues) const {
assert(xValues.size() == yValues.size());
// the x-data from the workspace
const auto &xData = integrFlux.readX(sp);
const double xStart = xData.front();
const double xEnd = xData.back();
// the values in integrFlux are expected to be integrals of a non-negative
// function
// ie they must make a non-decreasing function
const auto &yData = integrFlux.readY(sp);
size_t spSize = yData.size();
const double yMin = 0.0;
const double yMax = yData.back();
size_t nData = xValues.size();
// all integrals below xStart must be 0
if (xValues[nData - 1] < xStart) {
std::fill(yValues.begin(), yValues.end(), yMin);
return;
}
// all integrals above xEnd must be equal tp yMax
if (xValues[0] > xEnd) {
std::fill(yValues.begin(), yValues.end(), yMax);
return;
}
size_t i = 0;
// integrals below xStart must be 0
while (i < nData - 1 && xValues[i] < xStart) {
yValues[i] = yMin;
i++;
}
size_t j = 0;
for (; i < nData; i++) {
// integrals above xEnd must be equal tp yMax
if (j >= spSize - 1) {
yValues[i] = yMax;
} else {
double xi = xValues[i];
while (j < spSize - 1 && xi > xData[j])
j++;
// if x falls onto an interpolation point return the corresponding y
if (xi == xData[j]) {
yValues[i] = yData[j];
} else if (j == spSize - 1) {
// if we get above xEnd it's yMax
yValues[i] = yMax;
} else if (j > 0) {
// interpolate between the consecutive points
double x0 = xData[j - 1];
double x1 = xData[j];
double y0 = yData[j - 1];
double y1 = yData[j];
yValues[i] = y0 + (y1 - y0) * (xi - x0) / (x1 - x0);
} else // j == 0
yValues[i] = yMin;
}
}
}
}
/**
* Checks for IDs that are actually part of the same group and just keeps one
* from the group.
* For a 1:1 map, none will be removed.
* @param exptInfo An ExperimentInfo object that defines the grouping
* @param detIDs A list of existing IDs
* @return A new list of IDs
*/
std::vector<detid_t>
MDNormSCD::removeGroupedIDs(const ExperimentInfo &exptInfo,
const std::vector<detid_t> &detIDs) {
const size_t ntotal = detIDs.size();
std::vector<detid_t> singleIDs;
singleIDs.reserve(ntotal / 2); // reserve half. In the case of 1:1 it will
// double to the correct size once
std::set<detid_t> groupedIDs;
if (groupedIDs.count(curID) == 1)
continue; // Already been processed
try {
const auto &members = exptInfo.getGroupMembers(curID);
singleIDs.push_back(members.front());
std::copy(members.begin() + 1, members.end(),
std::inserter(groupedIDs, groupedIDs.begin()));
} catch (std::runtime_error &) {
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
singleIDs.push_back(curID);
}
}
g_log.debug() << "Found " << singleIDs.size() << " spectra from "
<< detIDs.size() << " IDs\n";
return singleIDs;
}
/**
* Get the theta and phi angles for the given ID. If the detector was part of a
* group,
* as defined in the ExperimentInfo object, then the theta/phi are for the whole
* set.
* @param detID A reference to a single ID
* @param exptInfo A reference to the ExperimentInfo that defines that
* spectrum->detector mapping
* @param theta [Output] Set to the theta angle for the detector (set)
* @param phi [Output] Set to the phi angle for the detector (set)
* @return A poiner to the Detector object for this spectrum as a whole
* (may be a single pixel or group)
*/
Geometry::IDetector_const_sptr
MDNormSCD::getThetaPhi(const detid_t detID, const ExperimentInfo &exptInfo,
double &theta, double &phi) {
const auto spectrum = exptInfo.getDetectorByID(detID);
theta = spectrum->getTwoTheta(m_samplePos, m_beamDir);
phi = spectrum->getPhi();
return spectrum;
}
/**
* Calculate the points of intersection for the given detector with cuboid
* surrounding the
* detector position in HKL
* @param theta Polar angle withd detector
* @param phi Azimuthal angle with detector
* @return A list of intersections in HKL space
*/
std::vector<Kernel::VMD> MDNormSCD::calculateIntersections(const double theta,
const double phi) {
V3D q(-sin(theta) * cos(phi), -sin(theta) * sin(phi), 1. - cos(theta));
q = m_rubw * q;
if (convention == "Crystallography") {
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
double hStart = q.X() * m_kiMin, hEnd = q.X() * m_kiMax;
double kStart = q.Y() * m_kiMin, kEnd = q.Y() * m_kiMax;
double lStart = q.Z() * m_kiMin, lEnd = q.Z() * m_kiMax;
double eps = 1e-7;
auto hNBins = m_hX.size();
auto kNBins = m_kX.size();
auto lNBins = m_lX.size();
std::vector<Kernel::VMD> intersections;
intersections.reserve(hNBins + kNBins + lNBins + 8);
// calculate intersections with planes perpendicular to h
if (fabs(hStart - hEnd) > eps) {
double fmom = (m_kiMax - m_kiMin) / (hEnd - hStart);
double fk = (kEnd - kStart) / (hEnd - hStart);
double fl = (lEnd - lStart) / (hEnd - hStart);
if (!m_hIntegrated) {
for (size_t i = 0; i < hNBins; i++) {
double hi = m_hX[i];
if ((hi >= m_hmin) && (hi <= m_hmax) &&
((hStart - hi) * (hEnd - hi) < 0)) {
// if hi is between hStart and hEnd, then ki and li will be between
// kStart, kEnd and lStart, lEnd and momi will be between m_kiMin and
// KnincidemtmMax
double ki = fk * (hi - hStart) + kStart;
double li = fl * (hi - hStart) + lStart;
if ((ki >= m_kmin) && (ki <= m_kmax) && (li >= m_lmin) &&
(li <= m_lmax)) {
double momi = fmom * (hi - hStart) + m_kiMin;
Mantid::Kernel::VMD v(hi, ki, li, momi);
intersections.push_back(v);
}
}
}
double momhMin = fmom * (m_hmin - hStart) + m_kiMin;
if ((momhMin > m_kiMin) && (momhMin < m_kiMax)) {
// khmin and lhmin
double khmin = fk * (m_hmin - hStart) + kStart;
double lhmin = fl * (m_hmin - hStart) + lStart;
if ((khmin >= m_kmin) && (khmin <= m_kmax) && (lhmin >= m_lmin) &&
(lhmin <= m_lmax)) {
Mantid::Kernel::VMD v(m_hmin, khmin, lhmin, momhMin);
intersections.push_back(v);
double momhMax = fmom * (m_hmax - hStart) + m_kiMin;
if ((momhMax > m_kiMin) && (momhMax < m_kiMax)) {
// khmax and lhmax
double khmax = fk * (m_hmax - hStart) + kStart;
double lhmax = fl * (m_hmax - hStart) + lStart;
if ((khmax >= m_kmin) && (khmax <= m_kmax) && (lhmax >= m_lmin) &&
(lhmax <= m_lmax)) {
Mantid::Kernel::VMD v(m_hmax, khmax, lhmax, momhMax);
intersections.push_back(v);
}
}
// calculate intersections with planes perpendicular to k
if (fabs(kStart - kEnd) > eps) {
double fmom = (m_kiMax - m_kiMin) / (kEnd - kStart);
double fh = (hEnd - hStart) / (kEnd - kStart);
double fl = (lEnd - lStart) / (kEnd - kStart);
if (!m_kIntegrated) {
for (size_t i = 0; i < kNBins; i++) {
double ki = m_kX[i];
if ((ki >= m_kmin) && (ki <= m_kmax) &&
((kStart - ki) * (kEnd - ki) < 0)) {
// if ki is between kStart and kEnd, then hi and li will be between
// hStart, hEnd and lStart, lEnd
double hi = fh * (ki - kStart) + hStart;
double li = fl * (ki - kStart) + lStart;
if ((hi >= m_hmin) && (hi <= m_hmax) && (li >= m_lmin) &&
(li <= m_lmax)) {
double momi = fmom * (ki - kStart) + m_kiMin;
Mantid::Kernel::VMD v(hi, ki, li, momi);
intersections.push_back(v);
}
}
}
}
double momkMin = fmom * (m_kmin - kStart) + m_kiMin;
if ((momkMin > m_kiMin) && (momkMin < m_kiMax)) {
// hkmin and lkmin
double hkmin = fh * (m_kmin - kStart) + hStart;
double lkmin = fl * (m_kmin - kStart) + lStart;
if ((hkmin >= m_hmin) && (hkmin <= m_hmax) && (lkmin >= m_lmin) &&
(lkmin <= m_lmax)) {
Mantid::Kernel::VMD v(hkmin, m_kmin, lkmin, momkMin);
intersections.push_back(v);
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
}
double momkMax = fmom * (m_kmax - kStart) + m_kiMin;
if ((momkMax > m_kiMin) && (momkMax < m_kiMax)) {
// hkmax and lkmax
double hkmax = fh * (m_kmax - kStart) + hStart;
double lkmax = fl * (m_kmax - kStart) + lStart;
if ((hkmax >= m_hmin) && (hkmax <= m_hmax) && (lkmax >= m_lmin) &&
(lkmax <= m_lmax)) {
Mantid::Kernel::VMD v(hkmax, m_kmax, lkmax, momkMax);
intersections.push_back(v);
}
}
}
// calculate intersections with planes perpendicular to l
if (fabs(lStart - lEnd) > eps) {
double fmom = (m_kiMax - m_kiMin) / (lEnd - lStart);
double fh = (hEnd - hStart) / (lEnd - lStart);
double fk = (kEnd - kStart) / (lEnd - lStart);
if (!m_lIntegrated) {
for (size_t i = 0; i < lNBins; i++) {
double li = m_lX[i];
if ((li >= m_lmin) && (li <= m_lmax) &&
((lStart - li) * (lEnd - li) < 0)) {
// if li is between lStart and lEnd, then hi and ki will be between
// hStart, hEnd and kStart, kEnd
double hi = fh * (li - lStart) + hStart;
double ki = fk * (li - lStart) + kStart;
if ((hi >= m_hmin) && (hi <= m_hmax) && (ki >= m_kmin) &&
(ki <= m_kmax)) {
double momi = fmom * (li - lStart) + m_kiMin;
Mantid::Kernel::VMD v(hi, ki, li, momi);
}
double momlMin = fmom * (m_lmin - lStart) + m_kiMin;
if ((momlMin > m_kiMin) && (momlMin < m_kiMax)) {
// hlmin and klmin
double hlmin = fh * (m_lmin - lStart) + hStart;
double klmin = fk * (m_lmin - lStart) + kStart;
if ((hlmin >= m_hmin) && (hlmin <= m_hmax) && (klmin >= m_kmin) &&
(klmin <= m_kmax)) {
Mantid::Kernel::VMD v(hlmin, klmin, m_lmin, momlMin);
}
double momlMax = fmom * (m_lmax - lStart) + m_kiMin;
if ((momlMax > m_kiMin) && (momlMax < m_kiMax)) {
// khmax and lhmax
double hlmax = fh * (m_lmax - lStart) + hStart;
double klmax = fk * (m_lmax - lStart) + kStart;
if ((hlmax >= m_hmin) && (hlmax <= m_hmax) && (klmax >= m_kmin) &&
(klmax <= m_kmax)) {
Mantid::Kernel::VMD v(hlmax, klmax, m_lmax, momlMax);
}
// add endpoints
if ((hStart >= m_hmin) && (hStart <= m_hmax) && (kStart >= m_kmin) &&
(kStart <= m_kmax) && (lStart >= m_lmin) && (lStart <= m_lmax)) {
Mantid::Kernel::VMD v(hStart, kStart, lStart, m_kiMin);
intersections.push_back(v);
}
if ((hEnd >= m_hmin) && (hEnd <= m_hmax) && (kEnd >= m_kmin) &&
(kEnd <= m_kmax) && (lEnd >= m_lmin) && (lEnd <= m_lmax)) {
Mantid::Kernel::VMD v(hEnd, kEnd, lEnd, m_kiMax);
intersections.push_back(v);
}
// sort intersections by momentum
typedef std::vector<Mantid::Kernel::VMD>::iterator IterType;
std::stable_sort<IterType, bool (*)(const Mantid::Kernel::VMD &,
const Mantid::Kernel::VMD &)>(
intersections.begin(), intersections.end(), compareMomentum);
return intersections;
}
} // namespace MDAlgorithms