Newer
Older
//----------------------------------------------------------------------
// Includes
//----------------------------------------------------------------------
#include "MantidKernel/Exception.h"
Roman Tolchenov
committed
#include "MantidAPI/CompositeFunction.h"
#include "MantidAPI/ParameterTie.h"
#include "MantidAPI/IConstraint.h"
#include <boost/shared_array.hpp>
#include <sstream>
#include <iostream>
namespace Mantid
{
namespace API
{
DECLARE_FUNCTION(CompositeFunction)
/// Copy contructor
CompositeFunction::CompositeFunction(const CompositeFunction& f)
:m_nActive(f.m_nParams),m_nParams(f.m_nParams),m_iConstraintFunction(0)
{
m_functions.assign(f.m_functions.begin(),f.m_functions.end());
m_activeOffsets.assign(f.m_activeOffsets.begin(),f.m_activeOffsets.end());
m_paramOffsets.assign(f.m_paramOffsets.begin(),f.m_paramOffsets.end());
}
///Assignment operator
CompositeFunction& CompositeFunction::operator=(const CompositeFunction& f)
{
m_nActive = f.m_nActive;
m_nParams = f.m_nParams;
m_functions.assign(f.m_functions.begin(),f.m_functions.end());
m_activeOffsets.assign(f.m_activeOffsets.begin(),f.m_activeOffsets.end());
m_paramOffsets.assign(f.m_paramOffsets.begin(),f.m_paramOffsets.end());
m_iConstraintFunction = f.m_iConstraintFunction;
return *this;
}
///Destructor
CompositeFunction::~CompositeFunction()
{
for(int i=0;i<nFunctions();i++)
if (m_functions[i]) delete m_functions[i];
}
/// Function initialization. Declare function parameters in this method.
void CompositeFunction::init()
{
}
Roman Tolchenov
committed
/**
* Writes itself into a string. Functions derived from CompositeFunction must
* override this method with something like this:
* std::string NewFunction::asString()const
* {
* ostr << "composite=" << this->name() << ';';
* // write NewFunction's own attributes and parameters
* ostr << CompositeFunction::asString();
* // write NewFunction's own ties and constraints
* // ostr << ";constraints=(" << ... <<")";
* }
*/
Roman Tolchenov
committed
std::string CompositeFunction::asString()const
{
std::ostringstream ostr;
for(int i=0;i<nFunctions();i++)
{
Roman Tolchenov
committed
IFunction* fun = getFunction(i);
bool isComp = dynamic_cast<CompositeFunction*>(fun) != 0;
if (isComp) ostr << '(';
Roman Tolchenov
committed
ostr << fun->asString();
Roman Tolchenov
committed
if (isComp) ostr << ')';
Roman Tolchenov
committed
if (i < nFunctions() - 1)
{
ostr << ';';
}
}
std::string ties;
for(int i=0;i<nParams();i++)
{
const ParameterTie* tie = getTie(i);
if (tie)
{
IFunction* fun = getFunction(functionIndex(i));
std::string tmp = tie->asString(fun);
if (tmp.empty())
{
tmp = tie->asString(this);
if (!tmp.empty())
{
if (!ties.empty())
{
ties += ",";
}
ties += tmp;
}
}
}
}
if (!ties.empty())
{
ostr << ";ties=(" << ties << ")";
Roman Tolchenov
committed
}
return ostr.str();
}
/// Function you want to fit to.
void CompositeFunction::function(double* out, const double* xValues, const int& nData)
{
if (nData <= 0) return;
boost::shared_array<double> tmpOut(new double[nData]);
for(int i=0;i<nFunctions();i++)
{
if (i == 0)
m_functions[i]->function(out,xValues,nData);
else
{
m_functions[i]->function(tmpOut.get(),xValues,nData);
std::transform(out,out+nData,tmpOut.get(),out,std::plus<double>());
}
}
}
/** A Jacobian for individual functions
*/
class PartialJacobian: public Jacobian
{
Jacobian* m_J; ///< pointer to the overall Jacobian
int m_iP0; ///< offset in the overall Jacobian for a particular function
Anders Markvardsen
committed
int m_iaP0; ///< offset in the active Jacobian for a particular function
public:
/** Constructor
* @param J A pointer to the overall Jacobian
* @param iP0 The parameter index (declared) offset for a particular function
Anders Markvardsen
committed
* @param iap0 The active parameter index (declared) offset for a particular function
Anders Markvardsen
committed
PartialJacobian(Jacobian* J,int iP0, int iap0):m_J(J),m_iP0(iP0),m_iaP0(iap0)
/**
* Overridden Jacobian::set(...).
* @param iY The index of the data point
* @param iP The parameter index of an individual function.
* @param value The derivative value
*/
void set(int iY, int iP, double value)
{
Anders Markvardsen
committed
/** Add number to all iY (data) Jacobian elements for a given iP (parameter)
* @param value Value to add
* @param iActiveP The index of an active parameter.
*/
virtual void addNumberToColumn(const double& value, const int& iActiveP)
{
m_J->addNumberToColumn(value,m_iaP0+iActiveP);
}
};
/// Derivatives of function with respect to active parameters
void CompositeFunction::functionDeriv(Jacobian* out, const double* xValues, const int& nData)
Anders Markvardsen
committed
{
for(int i=0;i<nFunctions();i++)
{
Anders Markvardsen
committed
PartialJacobian J(out,m_paramOffsets[i],m_activeOffsets[i]);
m_functions[i]->functionDeriv(&J,xValues,nData);
}
}
/// Derivatives to be used in covariance matrix calculation.
void CompositeFunction::calJacobianForCovariance(Jacobian* out, const double* xValues, const int& nData)
{
if (nData <= 0) return;
for(int i=0;i<nFunctions();i++)
{
Anders Markvardsen
committed
PartialJacobian J(out,m_paramOffsets[i],m_activeOffsets[i]);
m_functions[i]->calJacobianForCovariance(&J,xValues,nData);
}
}
/** Sets a new value to the i-th parameter.
* @param i The parameter index
* @param value The new value
* @param explicitlySet A boolean falgging the parameter as explicitly set (by user)
*/
void CompositeFunction::setParameter(int i, const double& value, bool explicitlySet)
m_functions[ iFun ]->setParameter(i - m_paramOffsets[iFun],value,explicitlySet);
/** Get the i-th parameter.
* @param i The parameter index
*/
double CompositeFunction::getParameter(int i)const
return m_functions[ iFun ]->getParameter(i - m_paramOffsets[iFun]);
/**
* Sets a new value to a parameter by name.
* @param name The name of the parameter.
* @param value The new value
* @param explicitlySet A boolean falgging the parameter as explicitly set (by user)
*/
void CompositeFunction::setParameter(const std::string& name, const double& value, bool explicitlySet)
std::string pname;
int index;
parseName(name,index,pname);
if (index < 0)
throw std::invalid_argument("CompositeFunction::getParameter: parameter name must contain function index");
else
{
getFunction(index)->setParameter(pname,value,explicitlySet);
/**
* Parameters by name.
* @param name The name of the parameter.
*/
double CompositeFunction::getParameter(const std::string& name)const
{
std::string pname;
int index;
parseName(name,index,pname);
if (index < 0)
throw std::invalid_argument("CompositeFunction::getParameter: parameter name must contain function index");
else
{
return getFunction(index)->getParameter(pname);
}
}
/// Total number of parameters
int CompositeFunction::nParams()const
{
return m_nParams;
}
* @param name The name of a parameter
*/
int CompositeFunction::parameterIndex(const std::string& name)const
{
std::string pname;
int index;
parseName(name,index,pname);
if (index < 0)
throw std::invalid_argument("CompositeFunction::getParameter: parameter name must contain function index");
return m_paramOffsets[index] + getFunction(index)->parameterIndex(pname);
}
Roman Tolchenov
committed
/**
* Checks that a pointer points to a parameter of this function and returns its index.
* @param p A pointer to a double variable.
* @return The index of the parameter or -1 if p is not a pointer to any of the function's parameters.
Roman Tolchenov
committed
*/
Roman Tolchenov
committed
//int CompositeFunction::parameterIndex(const double* p)const
//{
// for(int iFun=0;iFun<nFunctions();iFun++)
// {
// int i = m_functions[iFun]->parameterIndex(p);
// if (i >= 0)
// {
// return m_paramOffsets[iFun] + i;
// }
// }
// return -1;
//}
Roman Tolchenov
committed
/// Returns the name of parameter i
std::string CompositeFunction::parameterName(int i)const
{
std::ostringstream ostr;
ostr << 'f' << iFun << '.' << m_functions[ iFun ]->parameterName(i - m_paramOffsets[iFun]);
return ostr.str();
}
/// Number of active (in terms of fitting) parameters
int CompositeFunction::nActive()const
{
return m_nActive;
}
/// Value of i-th active parameter. Override this method to make fitted parameters different from the declared
double CompositeFunction::activeParameter(int i)const
{
return m_functions[ iFun ]->activeParameter(i - m_activeOffsets[iFun]);
}
/// Set new value of i-th active parameter. Override this method to make fitted parameters different from the declared
void CompositeFunction::setActiveParameter(int i, double value)
{
return m_functions[ iFun ]->setActiveParameter(i - m_activeOffsets[iFun],value);
}
/// Update parameters after a fitting iteration
void CompositeFunction::updateActive(const double* in)
{
for(int iFun = 0; iFun < int(m_functions.size()); iFun++)
{
m_functions[ iFun ]->updateActive(in + m_activeOffsets[ iFun ]);
}
}
/// Returns "global" index of active parameter i
int CompositeFunction::indexOfActive(int i)const
{
return m_paramOffsets[ iFun ] + m_functions[ iFun ]->indexOfActive(i - m_activeOffsets[iFun]);
}
/// Returns the name of active parameter i
std::string CompositeFunction::nameOfActive(int i)const
{
std::ostringstream ostr;
ostr << 'f' << iFun << '.' << m_functions[ iFun ]->nameOfActive(i - m_activeOffsets[iFun]);
return ostr.str();
/**
* Returns true if parameter i is active
* @param i The index of a declared parameter
*/
bool CompositeFunction::isActive(int i)const
{
int iFun = functionIndex(i);
return m_functions[ iFun ]->isActive(i - m_paramOffsets[iFun]);
}
/**
* @param i A declared parameter index to be removed from active
*/
void CompositeFunction::removeActive(int i)
{
int iFun = functionIndex(i);
int ia = m_activeOffsets[iFun] + m_functions[iFun]->activeIndex(i - m_paramOffsets[iFun]);
m_iFunctionActive.erase(m_iFunctionActive.begin()+ia);
m_functions[ iFun ]->removeActive(i - m_paramOffsets[iFun]);
Roman Tolchenov
committed
m_nActive--;
for(int j=iFun+1;j<nFunctions();j++)
m_activeOffsets[j] -= 1;
}
Roman Tolchenov
committed
/** Makes a parameter active again. It doesn't change the parameter's tie.
* @param i A declared parameter index to be restored to active
*/
void CompositeFunction::restoreActive(int i)
{
int iFun = functionIndex(i);
int ia = m_activeOffsets[iFun] + m_functions[iFun]->activeIndex(i - m_paramOffsets[iFun]);
std::vector<int>::iterator itFun =
std::find_if(m_iFunctionActive.begin(),m_iFunctionActive.end(),std::bind2nd(std::greater<int>(),i));
m_iFunctionActive.insert(itFun,1,ia);
m_functions[ iFun ]->restoreActive(i - m_paramOffsets[iFun]);
m_nActive++;
for(int j=iFun+1;j<nFunctions();j++)
m_activeOffsets[j] += 1;
}
/**
* @param i The index of a declared parameter
* @return The index of declared parameter i in the list of active parameters or -1
* if the parameter is tied.
*/
int CompositeFunction::activeIndex(int i)const
{
int iFun = functionIndex(i);
Roman Tolchenov
committed
int j = m_functions[iFun]->activeIndex(i - m_paramOffsets[iFun]);
if (j == -1)
{
return -1;
}
return m_activeOffsets[iFun] + j;
/** Makes sure that the function is consistent.
*/
void CompositeFunction::checkFunction()
{
m_nParams = 0;
m_nActive = 0;
m_paramOffsets.clear();
m_activeOffsets.clear();
m_iFunction.clear();
m_iFunctionActive.clear();
std::vector<IFunction*> functions(m_functions.begin(),m_functions.end());
m_functions.clear();
for(int i=0;i<functions.size();i++)
{
IFunction* f = functions[i];
CompositeFunction* cf = dynamic_cast<CompositeFunction*>(f);
if (cf) cf->checkFunction();
/** Add a function
* @param f A pointer to the added function
* @return The function index
int CompositeFunction::addFunction(IFunction* f)
{
m_iFunction.insert(m_iFunction.end(),f->nParams(),m_functions.size());
m_iFunctionActive.insert(m_iFunctionActive.end(),f->nActive(),m_functions.size());
m_functions.push_back(f);
//?f->init();
if (m_paramOffsets.size() == 0)
{
m_paramOffsets.push_back(0);
m_activeOffsets.push_back(0);
m_nParams = f->nParams();
m_nActive = f->nActive();
}
else
{
m_paramOffsets.push_back(m_nParams);
m_activeOffsets.push_back(m_nActive);
m_nParams += f->nParams();
m_nActive += f->nActive();
}
return m_functions.size()-1;
Roman Tolchenov
committed
/** Remove a function
* @param i The index of the function to remove
Roman Tolchenov
committed
* @param del The deletion flag. If true the function will be deleted otherwise - simply detached
Roman Tolchenov
committed
*/
Roman Tolchenov
committed
void CompositeFunction::removeFunction(int i, bool del)
Roman Tolchenov
committed
{
if ( i >= nFunctions() )
throw std::out_of_range("Function index out of range.");
IFunction* fun = getFunction(i);
int dna = fun->nActive();
int dnp = fun->nParams();
for(int j=0;j<nParams();)
{
ParameterTie* tie = getTie(j);
Roman Tolchenov
committed
if (tie && tie->findParametersOf(fun))
Roman Tolchenov
committed
{
removeTie(j);
}
else
{
j++;
}
}
// Shift down the function indeces for parameters
Roman Tolchenov
committed
for(std::vector<int>::iterator it=m_iFunction.begin();it!=m_iFunction.end();)
Roman Tolchenov
committed
{
Roman Tolchenov
committed
Roman Tolchenov
committed
if (*it == i)
{
it = m_iFunction.erase(it);
}
Roman Tolchenov
committed
else
Roman Tolchenov
committed
{
Roman Tolchenov
committed
if (*it > i)
{
*it -= 1;
}
it++;
Roman Tolchenov
committed
}
}
// Shift down the function indeces for active parameters
Roman Tolchenov
committed
for(std::vector<int>::iterator it=m_iFunctionActive.begin();it!=m_iFunctionActive.end();)
Roman Tolchenov
committed
{
if (*it == i)
{
it = m_iFunctionActive.erase(it);
}
Roman Tolchenov
committed
else
Roman Tolchenov
committed
{
Roman Tolchenov
committed
if (*it > i)
{
*it -= 1;
}
it++;
Roman Tolchenov
committed
}
}
m_nActive -= dna;
// Shift the active offsets down by the number of i-th function's active params
for(int j=i+1;j<nFunctions();j++)
{
m_activeOffsets[j] -= dna;
}
m_activeOffsets.erase(m_activeOffsets.begin()+i);
m_nParams -= dnp;
// Shift the parameter offsets down by the total number of i-th function's params
for(int j=i+1;j<nFunctions();j++)
{
m_paramOffsets[j] -= dnp;
}
m_paramOffsets.erase(m_paramOffsets.begin()+i);
m_functions.erase(m_functions.begin()+i);
Roman Tolchenov
committed
if (del)
{
delete fun;
}
Roman Tolchenov
committed
}
/** Replace a function with a new one. The old function is deleted.
* @param i The index of the function to replace
* @param f A pointer to the new function
*/
void CompositeFunction::replaceFunction(int i,IFunction* f)
{
if ( i >= nFunctions() )
throw std::out_of_range("Function index out of range.");
IFunction* fun = getFunction(i);
int na_old = fun->nActive();
int np_old = fun->nParams();
int na_new = f->nActive();
int np_new = f->nParams();
// Modify function indeces: The new function may have different number of parameters
{
std::vector<int>::iterator itFun = std::find(m_iFunction.begin(),m_iFunction.end(),i);
if(itFun != m_iFunction.end()) // functions must have at least 1 parameter
Roman Tolchenov
committed
{
if (np_old > np_new)
{
m_iFunction.erase(itFun,itFun + np_old - np_new);
}
else if (np_old < np_new)
{
m_iFunction.insert(itFun,np_new - np_old,i);
}
Roman Tolchenov
committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
}
}
// Modify function indeces: The new function may have different number of active parameters
{
std::vector<int>::iterator itFun = std::find(m_iFunctionActive.begin(),m_iFunctionActive.end(),i);
if (itFun != m_iFunctionActive.end())
{
if (na_old > na_new)
{
m_iFunctionActive.erase(itFun,itFun + na_old - na_new);
}
else if (na_old < na_new)
{
m_iFunctionActive.insert(itFun,na_new - na_old,i);
}
}
else if (na_new > 0)
{
itFun = std::find_if(m_iFunctionActive.begin(),m_iFunctionActive.end(),std::bind2nd(std::greater<int>(),i));
m_iFunctionActive.insert(itFun,na_new,i);
}
}
int dna = na_new - na_old;
m_nActive += dna;
// Recalc the active offsets
for(int j=i+1;j<nFunctions();j++)
{
m_activeOffsets[j] += dna;
}
int dnp = np_new - np_old;
m_nParams += dnp;
// Shift the parameter offsets down by the total number of i-th function's params
for(int j=i+1;j<nFunctions();j++)
{
m_paramOffsets[j] += dnp;
}
m_functions[i] = f;
delete fun;
}
/**
* @param i The index of the function
*/
IFunction* CompositeFunction::getFunction(int i)const
Roman Tolchenov
committed
if ( i >= nFunctions() || i < 0)
{
throw std::out_of_range("Function index out of range.");
Roman Tolchenov
committed
}
/**
* Get the index of the function to which parameter i belongs
* @param i The parameter index
*/
int CompositeFunction::functionIndex(int i)const
{
Roman Tolchenov
committed
if (i >= nParams() || i < 0)
{
throw std::out_of_range("Function parameter index out of range.");
Roman Tolchenov
committed
}
return m_iFunction[i];
}
/**
* Get the index of the function to which parameter i belongs
* @param i The active parameter index
*/
int CompositeFunction::functionIndexActive(int i)const
{
Roman Tolchenov
committed
if (i >= nParams() || i < 0)
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
throw std::out_of_range("Function parameter index out of range.");
return m_iFunctionActive[i];
}
/**
* @param varName The variable name which may contain function index ( [f<index.>]name )
* @param index Receives function index or -1
* @param name Receives the parameter name
*/
void CompositeFunction::parseName(const std::string& varName,int& index, std::string& name)
{
size_t i = varName.find('.');
if (i == std::string::npos)
{
name = varName;
index = -1;
return;
}
else
{
if (varName[0] != 'f')
throw std::invalid_argument("External function parameter name must start with 'f'");
std::string sindex = varName.substr(1,i-1);
index = boost::lexical_cast<int>(sindex);
if (i == varName.size() - 1)
throw std::invalid_argument("Name cannot be empty");
name = varName.substr(i+1);
}
}
Roman Tolchenov
committed
/** Returns the index of parameter i as it declared in its function
* @param i The parameter index
* @return The local index of the parameter
*/
int CompositeFunction::parameterLocalIndex(int i)const
{
int iFun = functionIndex(i);
return i - m_paramOffsets[iFun];
}
/** Returns the name of parameter i as it declared in its function
* @param i The parameter index
* @return The pure parameter name (without the function identifier f#.)
*/
std::string CompositeFunction::parameterLocalName(int i)const
{
int iFun = functionIndex(i);
return m_functions[ iFun ]->parameterName(i - m_paramOffsets[iFun]);
}
/** Initialize the function providing it the workspace
* @param workspace The shared pointer to a workspace to which the function will be fitted
* @param spec The number of a spectrum for fitting
* @param xMin The minimum bin index of spectrum spec that will be used in fitting
* @param xMax The maximum bin index of spectrum spec that will be used in fitting
*/
Roman Tolchenov
committed
void CompositeFunction::setWorkspace(boost::shared_ptr<const API::MatrixWorkspace> workspace,int spec,int xMin,int xMax)
{
Roman Tolchenov
committed
IFunction::setWorkspace(workspace,spec,xMin,xMax);
for(int i=0;i<nFunctions();i++)
Roman Tolchenov
committed
getFunction(i)->setWorkspace(workspace,spec,xMin,xMax);
}
Roman Tolchenov
committed
/**
Roman Tolchenov
committed
* Apply the ties.
Roman Tolchenov
committed
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
*/
void CompositeFunction::applyTies()
{
for(int i=0;i<nFunctions();i++)
{
getFunction(i)->applyTies();
}
}
/**
* Clear the ties.
*/
void CompositeFunction::clearTies()
{
for(int i=0;i<nFunctions();i++)
{
getFunction(i)->clearTies();
}
}
/** Removes i-th parameter's tie if it is tied or does nothing.
* @param i The index of the tied parameter.
* @return True if successfull
*/
bool CompositeFunction::removeTie(int i)
{
int iFun = functionIndex(i);
bool res = m_functions[ iFun ]->removeTie(i - m_paramOffsets[iFun]);
if (res)
{
m_nActive++;
}
return res;
}
/** Get the tie of i-th parameter
* @param i The parameter index
* @return A pointer to the tie.
Roman Tolchenov
committed
*/
ParameterTie* CompositeFunction::getTie(int i)const
{
int iFun = functionIndex(i);
return m_functions[ iFun ]->getTie(i - m_paramOffsets[iFun]);
}
/**
* Attaches a tie to this function. The attached tie is owned by the function.
* @param tie A pointer to a new tie
*/
void CompositeFunction::addTie(ParameterTie* tie)
{
Roman Tolchenov
committed
int i = getParameterIndex(*tie);
Roman Tolchenov
committed
if (i < 0)
{
throw std::logic_error("Trying to use a tie on a parameter not belonging to this function");
}
int iFun = functionIndex(i);
m_functions[iFun]->addTie(tie);
}
/**
* Declare a new parameter. To used in the implementation'c constructor.
* @param name The parameter name.
* @param initValue The initial value for the parameter
*/
void CompositeFunction::declareParameter(const std::string& name,double initValue )
{
throw Kernel::Exception::NotImplementedError("CompositeFunction cannot not have its own parameters.");
}
/** Add a constraint
* @param ic Pointer to a constraint.
*/
void CompositeFunction::addConstraint(IConstraint* ic)
{
int i = getParameterIndex(*ic);
int iFun = functionIndex(i);
getFunction(iFun)->addConstraint(ic);
Roman Tolchenov
committed
}
Anders Markvardsen
committed
void CompositeFunction::setParametersToSatisfyConstraints()
{
for(int i=0;i<nFunctions();i++)
{
getFunction(i)->setParametersToSatisfyConstraints();
}
}
Roman Tolchenov
committed
IConstraint* CompositeFunction::firstConstraint()const
{
m_iConstraintFunction = 0;
if (nFunctions() == 0)
{
return 0;
}
IConstraint* c = 0;
while(m_iConstraintFunction < nFunctions()
&& !(c = getFunction(m_iConstraintFunction)->firstConstraint()) )
{
m_iConstraintFunction++;
}
return c;
}
/// Get next constraint
Roman Tolchenov
committed
IConstraint* CompositeFunction::nextConstraint()const
{
if (nFunctions() == 0)
{
return 0;
}
if (m_iConstraintFunction >= nFunctions()-1)
{
return getFunction(m_iConstraintFunction)->nextConstraint();
}
IConstraint* c = getFunction(m_iConstraintFunction)->nextConstraint();
if (c)
{
return c;
}
++m_iConstraintFunction;
return getFunction(m_iConstraintFunction)->firstConstraint();
}
/** Remove a constraint
* @param parName The name of a parameter which constarint to remove.
*/
void CompositeFunction::removeConstraint(const std::string& parName)
{
int iPar = parameterIndex(parName);
int iFun = functionIndex(iPar);
getFunction(iFun)->removeConstraint(parameterLocalName(iPar));
}
/**
* @param i The parameter index
*/
bool CompositeFunction::isExplicitlySet(int i)const
{
int iFun = functionIndex(i);
return m_functions[ iFun ]->isExplicitlySet(i - m_paramOffsets[iFun]);
}
/**
* Returns the index of parameter if the ref points to one of the member function or -1
* @param ref A reference to a parameter
* @return Parameter index or -1
*/
int CompositeFunction::getParameterIndex(const ParameterReference& ref)const
{
Roman Tolchenov
committed
if (ref.getFunction() == this && ref.getIndex() < nParams())
{
return ref.getIndex();
}
Roman Tolchenov
committed
for(int iFun=0;iFun<nFunctions();iFun++)
{
int iLocalIndex = getFunction(iFun)->getParameterIndex(ref);
if (iLocalIndex >= 0)
{
return m_paramOffsets[iFun] + iLocalIndex;
}
}
return -1;
}
/**
* @param ref The reference
* @return A function containing parameter pointed to by ref
*/
IFunction* CompositeFunction::getContainingFunction(const ParameterReference& ref)const
{
if (ref.getFunction() == this && ref.getIndex() < nParams())
{
return ref.getFunction();
}
for(int iFun=0;iFun<nFunctions();iFun++)
{
IFunction* fun = getFunction(iFun)->getContainingFunction(ref);
if (fun)
{
return getFunction(iFun);
}
}
return NULL;
}
/**
* @param fun The searched function
* @return A function containing the argument function fun
*/
IFunction* CompositeFunction::getContainingFunction(const IFunction* fun)
{
if (fun == this)
{
return this;
}
for(int iFun=0;iFun<nFunctions();iFun++)
{
IFunction* f = getFunction(iFun)->getContainingFunction(fun);
if (f)
{
return getFunction(iFun);
}
}
return NULL;
}
} // namespace API
} // namespace Mantid