Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
//----------------------------------------------------------------------
// Includes
//----------------------------------------------------------------------
#include "MantidAPI/CompositeFunction.h"
#include "MantidKernel/Exception.h"
#include <boost/shared_array.hpp>
#include <sstream>
#include <iostream>
namespace Mantid
{
namespace API
{
/// Copy contructor
CompositeFunction::CompositeFunction(const CompositeFunction& f)
:m_nActive(f.m_nParams),m_nParams(f.m_nParams)
{
m_functions.assign(f.m_functions.begin(),f.m_functions.end());
m_activeOffsets.assign(f.m_activeOffsets.begin(),f.m_activeOffsets.end());
m_paramOffsets.assign(f.m_paramOffsets.begin(),f.m_paramOffsets.end());
}
///Assignment operator
CompositeFunction& CompositeFunction::operator=(const CompositeFunction& f)
{
m_nActive = f.m_nActive;
m_nParams = f.m_nParams;
m_functions.assign(f.m_functions.begin(),f.m_functions.end());
m_activeOffsets.assign(f.m_activeOffsets.begin(),f.m_activeOffsets.end());
m_paramOffsets.assign(f.m_paramOffsets.begin(),f.m_paramOffsets.end());
return *this;
}
///Destructor
CompositeFunction::~CompositeFunction()
{
for(int i=0;i<nFunctions();i++)
if (m_functions[i]) delete m_functions[i];
}
/// Function initialization. Declare function parameters in this method.
void CompositeFunction::init()
{
}
/// Function you want to fit to.
void CompositeFunction::function(double* out, const double* xValues, const int& nData)
{
if (nData <= 0) return;
boost::shared_array<double> tmpOut(new double[nData]);
for(int i=0;i<nFunctions();i++)
{
if (i == 0)
m_functions[i]->function(out,xValues,nData);
else
{
m_functions[i]->function(tmpOut.get(),xValues,nData);
std::transform(out,out+nData,tmpOut.get(),out,std::plus<double>());
}
}
}
/** A Jacobian for individual functions
*/
class PartialJacobian: public Jacobian
{
Jacobian* m_J;///< pointer to the overall Jacobian
int m_iP0; ///< offset in the overall Jacobian for a particular function
public:
/** Constructor
* @param J A pointer to the overall Jacobian
*/
PartialJacobian(Jacobian* J,int iP0):m_J(J),m_iP0(iP0){}
/**
* Overridden Jacobian::set(...).
* @param iY The index of the data point
* @param iP The parameter index of an individual function.
*/
void set(int iY, int iP, double value)
{
m_J->set(iY,m_iP0 + iP,value);
}
};
/// Derivatives of function with respect to active parameters
void CompositeFunction::functionDeriv(Jacobian* out, const double* xValues, const int& nData)
{
if (nData <= 0) return;
for(int i=0;i<nFunctions();i++)
{
PartialJacobian J(out,m_activeOffsets[i]);
m_functions[i]->functionDeriv(&J,xValues,nData);
}
}
/// Derivatives to be used in covariance matrix calculation.
void CompositeFunction::calJacobianForCovariance(Jacobian* out, const double* xValues, const int& nData)
{
if (nData <= 0) return;
for(int i=0;i<nFunctions();i++)
{
PartialJacobian J(out,m_activeOffsets[i]);
m_functions[i]->calJacobianForCovariance(&J,xValues,nData);
}
}
/// Address of i-th parameter
double& CompositeFunction::parameter(int i)
{
if (i >= nParams())
throw std::out_of_range("Function parameter index out of range.");
int iFun = m_iFunction[i];
return m_functions[ iFun ]->parameter(i - m_activeOffsets[iFun]);
}
/// Address of i-th parameter
double CompositeFunction::parameter(int i)const
{
if (i >= nParams())
throw std::out_of_range("Function parameter index out of range.");
int iFun = m_iFunction[i];
return m_functions[ iFun ]->parameter(i - m_activeOffsets[iFun]);
}
/// Get parameter by name.
double& CompositeFunction::getParameter(const std::string& name)
{
throw Kernel::Exception::NotImplementedError("CompositeFunction::getParameter is not implemented");
return m_tst;
}
/// Get parameter by name.
double CompositeFunction::getParameter(const std::string& name)const
{
throw Kernel::Exception::NotImplementedError("CompositeFunction::getParameter is not implemented");
return m_tst;
}
/// Total number of parameters
int CompositeFunction::nParams()const
{
return m_nParams;
}
/// Returns the name of parameter i
std::string CompositeFunction::parameterName(int i)const
{
if (i >= nParams())
throw std::out_of_range("Function parameter index out of range.");
int iFun = m_iFunction[i];
return m_functions[ iFun ]->parameterName(i - m_activeOffsets[iFun]);
}
/// Number of active (in terms of fitting) parameters
int CompositeFunction::nActive()const
{
return m_nActive;
}
/// Value of i-th active parameter. Override this method to make fitted parameters different from the declared
double CompositeFunction::activeParameter(int i)const
{
if (i >= nParams())
throw std::out_of_range("Function parameter index out of range.");
int iFun = m_iFunction[i];
return m_functions[ iFun ]->activeParameter(i - m_activeOffsets[iFun]);
}
/// Set new value of i-th active parameter. Override this method to make fitted parameters different from the declared
void CompositeFunction::setActiveParameter(int i, double value)
{
if (i >= nParams())
throw std::out_of_range("Function parameter index out of range.");
int iFun = m_iFunction[i];
return m_functions[ iFun ]->setActiveParameter(i - m_activeOffsets[iFun],value);
}
/// Update parameters after a fitting iteration
void CompositeFunction::updateActive(const double* in)
{
for(int iFun = 0; iFun < int(m_functions.size()); iFun++)
{
m_functions[ iFun ]->updateActive(in + m_activeOffsets[ iFun ]);
}
}
/// Returns "global" index of active parameter i
int CompositeFunction::indexOfActive(int i)const
{
if (i >= nParams())
throw std::out_of_range("Function parameter index out of range.");
int iFun = m_iFunction[i];
return m_paramOffsets[ iFun ] + m_functions[ iFun ]->indexOfActive(i - m_activeOffsets[iFun]);
}
/// Returns the name of active parameter i
std::string CompositeFunction::nameOfActive(int i)const
{
if (i >= nParams())
throw std::out_of_range("Function parameter index out of range.");
int iFun = m_iFunction[i];
return m_functions[ iFun ]->nameOfActive(i - m_activeOffsets[iFun]);
}
/** Add a function
* @param f A pointer to the added function
*/
void CompositeFunction::addFunction(IFunction* f)
{
m_iFunction.insert(m_iFunction.end(),f->nParams(),m_functions.size());
m_functions.push_back(f);
//?f->init();
if (m_paramOffsets.size() == 0)
{
m_paramOffsets.push_back(0);
m_activeOffsets.push_back(0);
m_nParams = f->nParams();
m_nActive = f->nActive();
}
else
{
m_paramOffsets.push_back(m_nParams);
m_activeOffsets.push_back(m_nActive);
m_nParams += f->nParams();
m_nActive += f->nActive();
}
}
IFunction* CompositeFunction::getFunction(int i)
{
if ( i >= nFunctions() )
throw std::out_of_range("Function index out of range.");
return m_functions[i];
}
} // namespace API
} // namespace Mantid