-
William F Godoy authored
Remove cdash warnings for unused variables, type cast (including HDF5 char vs. int8) and virtual functions overloads.
William F Godoy authoredRemove cdash warnings for unused variables, type cast (including HDF5 char vs. int8) and virtual functions overloads.
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
TestADIOSDefineAttribute.cpp 24.89 KiB
#include <cstdint>
#include <iostream>
#include <stdexcept>
#include <adios2.h>
#include <gtest/gtest.h>
#include "../engine/SmallTestData.h"
class ADIOSDefineAttributeTest : public ::testing::Test
{
public:
ADIOSDefineAttributeTest() : adios(true), io(adios.DeclareIO("TestIO")) {}
SmallTestData m_TestData;
protected:
adios2::ADIOS adios;
adios2::IO &io;
};
TEST_F(ADIOSDefineAttributeTest, DefineAttributeNameException)
{
int mpiRank = 0;
#ifdef ADIOS2_HAVE_MPI
int mpiSize = 1;
MPI_Comm_rank(MPI_COMM_WORLD, &mpiRank);
MPI_Comm_size(MPI_COMM_WORLD, &mpiSize);
#endif
std::string name = std::string("attributeString") + std::to_string(mpiRank);
// Attribute should be unique per process
auto &attributeString1 = io.DefineAttribute<std::string>(name, "-1");
EXPECT_THROW(auto &attributeString2 =
io.DefineAttribute<std::string>(name, "0"),
std::invalid_argument);
auto *attributeString2 =
io.InquireAttribute<std::string>("NoExistingAttribute");
EXPECT_EQ(attributeString2, nullptr);
auto *attributeString3 = io.InquireAttribute<std::string>(name);
EXPECT_NE(attributeString3, nullptr);
}
TEST_F(ADIOSDefineAttributeTest, DefineAttributeTypeByValue)
{
int mpiRank = 0;
int mpiSize = 1;
#ifdef ADIOS2_HAVE_MPI
MPI_Comm_rank(MPI_COMM_WORLD, &mpiRank);
MPI_Comm_size(MPI_COMM_WORLD, &mpiSize);
#endif
// Define unique data for each process
SmallTestData currentTestData =
generateNewSmallTestData(m_TestData, 0, mpiRank, mpiSize);
std::string mpiRankString = std::to_string(mpiRank);
std::string s1_Single = std::string("s1_Single_") + mpiRankString;
std::string i8_Single = std::string("i8_Single_") + mpiRankString;
std::string i16_Single = std::string("i16_Single_") + mpiRankString;
std::string i32_Single = std::string("i32_Single_") + mpiRankString;
std::string i64_Single = std::string("i64_Single_") + mpiRankString;
std::string u8_Single = std::string("u8_Single_") + mpiRankString;
std::string u16_Single = std::string("u16_Single_") + mpiRankString;
std::string u32_Single = std::string("u32_Single_") + mpiRankString;
std::string u64_Single = std::string("u64_Single_") + mpiRankString;
std::string float_Single = std::string("float_Single_") + mpiRankString;
std::string double_Single = std::string("double_Single_") + mpiRankString;
// Define ADIOS global value
auto &attributeS1 =
io.DefineAttribute<std::string>(s1_Single, currentTestData.S1);
auto &attributeI8 =
io.DefineAttribute<int8_t>(i8_Single, currentTestData.I8.front());
auto &attributeI16 =
io.DefineAttribute<int16_t>(i16_Single, currentTestData.I16.front());
auto &attributeI32 =
io.DefineAttribute<int32_t>(i32_Single, currentTestData.I32.front());
auto &attributeI64 =
io.DefineAttribute<int64_t>(i64_Single, currentTestData.I64.front());
auto &attributeU8 =
io.DefineAttribute<uint8_t>(u8_Single, currentTestData.U8.front());
auto &attributeU16 =
io.DefineAttribute<uint16_t>(u16_Single, currentTestData.U16.front());
auto &attributeU32 =
io.DefineAttribute<uint32_t>(u32_Single, currentTestData.U32.front());
auto &attributeU64 =
io.DefineAttribute<uint64_t>(u64_Single, currentTestData.U64.front());
auto &attributeFloat =
io.DefineAttribute<float>(float_Single, currentTestData.R32.front());
auto &attributeDouble =
io.DefineAttribute<double>(double_Single, currentTestData.R64.front());
// Verify the return type is as expected
::testing::StaticAssertTypeEq<decltype(attributeS1),
adios2::Attribute<std::string> &>();
::testing::StaticAssertTypeEq<decltype(attributeI8),
adios2::Attribute<int8_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeI16),
adios2::Attribute<int16_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeI32),
adios2::Attribute<int32_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeI64),
adios2::Attribute<int64_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU8),
adios2::Attribute<uint8_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU16),
adios2::Attribute<uint16_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU32),
adios2::Attribute<uint32_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU64),
adios2::Attribute<uint64_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeFloat),
adios2::Attribute<float> &>();
::testing::StaticAssertTypeEq<decltype(attributeDouble),
adios2::Attribute<double> &>();
// Verify the members are correct
ASSERT_EQ(attributeS1.m_IsSingleValue, true);
ASSERT_EQ(attributeS1.m_DataArray.empty(), true);
EXPECT_EQ(attributeS1.m_Name, s1_Single);
EXPECT_EQ(attributeS1.m_DataSingleValue, currentTestData.S1);
EXPECT_EQ(attributeS1.m_Elements, 1);
EXPECT_EQ(attributeS1.m_Type, "string");
ASSERT_EQ(attributeI8.m_IsSingleValue, true);
ASSERT_EQ(attributeI8.m_DataArray.empty(), true);
EXPECT_EQ(attributeI8.m_Name, i8_Single);
EXPECT_EQ(attributeI8.m_DataSingleValue, currentTestData.I8.front());
EXPECT_EQ(attributeI8.m_Elements, 1);
EXPECT_EQ(attributeI8.m_Type, "signed char");
ASSERT_EQ(attributeI16.m_IsSingleValue, true);
ASSERT_EQ(attributeI16.m_DataArray.empty(), true);
EXPECT_EQ(attributeI16.m_Name, i16_Single);
EXPECT_EQ(attributeI16.m_DataSingleValue, currentTestData.I16.front());
EXPECT_EQ(attributeI16.m_Elements, 1);
EXPECT_EQ(attributeI16.m_Type, "short");
ASSERT_EQ(attributeI32.m_IsSingleValue, true);
ASSERT_EQ(attributeI32.m_DataArray.empty(), true);
EXPECT_EQ(attributeI32.m_Name, i32_Single);
EXPECT_EQ(attributeI32.m_DataSingleValue, currentTestData.I32.front());
EXPECT_EQ(attributeI32.m_Elements, 1);
EXPECT_EQ(attributeI32.m_Type, "int");
ASSERT_EQ(attributeI64.m_IsSingleValue, true);
ASSERT_EQ(attributeI64.m_DataArray.empty(), true);
EXPECT_EQ(attributeI64.m_Name, i64_Single);
EXPECT_EQ(attributeI64.m_DataSingleValue, currentTestData.I64.front());
EXPECT_EQ(attributeI64.m_Elements, 1);
EXPECT_EQ(sizeof(attributeI64.m_DataSingleValue), 8);
ASSERT_EQ(attributeU8.m_IsSingleValue, true);
ASSERT_EQ(attributeU8.m_DataArray.empty(), true);
EXPECT_EQ(attributeU8.m_Name, u8_Single);
EXPECT_EQ(attributeU8.m_DataSingleValue, currentTestData.U8.front());
EXPECT_EQ(attributeU8.m_Elements, 1);
EXPECT_EQ(attributeU8.m_Type, "unsigned char");
ASSERT_EQ(attributeU16.m_IsSingleValue, true);
ASSERT_EQ(attributeU16.m_DataArray.empty(), true);
EXPECT_EQ(attributeU16.m_Name, u16_Single);
EXPECT_EQ(attributeU16.m_DataSingleValue, currentTestData.U16.front());
EXPECT_EQ(attributeU16.m_Elements, 1);
EXPECT_EQ(attributeU16.m_Type, "unsigned short");
ASSERT_EQ(attributeU32.m_IsSingleValue, true);
ASSERT_EQ(attributeU32.m_DataArray.empty(), true);
EXPECT_EQ(attributeU32.m_Name, u32_Single);
EXPECT_EQ(attributeU32.m_DataSingleValue, currentTestData.U32.front());
EXPECT_EQ(attributeU32.m_Elements, 1);
EXPECT_EQ(attributeU32.m_Type, "unsigned int");
ASSERT_EQ(attributeU64.m_IsSingleValue, true);
ASSERT_EQ(attributeU64.m_DataArray.empty(), true);
EXPECT_EQ(attributeU64.m_Name, u64_Single);
EXPECT_EQ(attributeU64.m_DataSingleValue, currentTestData.U64.front());
EXPECT_EQ(attributeU64.m_Elements, 1);
EXPECT_EQ(sizeof(attributeU64.m_DataSingleValue), 8);
ASSERT_EQ(attributeFloat.m_IsSingleValue, true);
ASSERT_EQ(attributeFloat.m_DataArray.empty(), true);
EXPECT_EQ(attributeFloat.m_Name, float_Single);
EXPECT_EQ(attributeFloat.m_DataSingleValue, currentTestData.R32.front());
EXPECT_EQ(attributeFloat.m_Elements, 1);
EXPECT_EQ(attributeFloat.m_Type, "float");
ASSERT_EQ(attributeDouble.m_IsSingleValue, true);
ASSERT_EQ(attributeDouble.m_DataArray.empty(), true);
EXPECT_EQ(attributeDouble.m_Name, double_Single);
EXPECT_EQ(attributeDouble.m_DataSingleValue, currentTestData.R64.front());
EXPECT_EQ(attributeDouble.m_Elements, 1);
EXPECT_EQ(attributeDouble.m_Type, "double");
}
TEST_F(ADIOSDefineAttributeTest, DefineAttributeTypeByReference)
{
int mpiRank = 0, mpiSize = 1;
size_t numberOfElements = 10;
#ifdef ADIOS2_HAVE_MPI
MPI_Comm_rank(MPI_COMM_WORLD, &mpiRank);
MPI_Comm_size(MPI_COMM_WORLD, &mpiSize);
#endif
// Define unique data for each process
SmallTestData currentTestData =
generateNewSmallTestData(m_TestData, 0, mpiRank, mpiSize);
std::string mpiRankString = std::to_string(mpiRank);
std::string s3_Single = std::string("s3_Single_") + mpiRankString;
std::string i8_Single = std::string("i8_Single_") + mpiRankString;
std::string i16_Single = std::string("i16_Single_") + mpiRankString;
std::string i32_Single = std::string("i32_Single_") + mpiRankString;
std::string i64_Single = std::string("i64_Single_") + mpiRankString;
std::string u8_Single = std::string("u8_Single_") + mpiRankString;
std::string u16_Single = std::string("u16_Single_") + mpiRankString;
std::string u32_Single = std::string("u32_Single_") + mpiRankString;
std::string u64_Single = std::string("u64_Single_") + mpiRankString;
std::string float_Single = std::string("float_Single_") + mpiRankString;
std::string double_Single = std::string("double_Single_") + mpiRankString;
// Define ADIOS global value
auto &attributeS3 = io.DefineAttribute<std::string>(
s3_Single, currentTestData.S3.data(), 3);
auto &attributeI8 = io.DefineAttribute<int8_t>(
i8_Single, currentTestData.I8.data(), numberOfElements);
auto &attributeI16 = io.DefineAttribute<int16_t>(
i16_Single, currentTestData.I16.data(), numberOfElements);
auto &attributeI32 = io.DefineAttribute<int32_t>(
i32_Single, currentTestData.I32.data(), numberOfElements);
auto &attributeI64 = io.DefineAttribute<int64_t>(
i64_Single, currentTestData.I64.data(), numberOfElements);
auto &attributeU8 = io.DefineAttribute<uint8_t>(
u8_Single, currentTestData.U8.data(), numberOfElements);
auto &attributeU16 = io.DefineAttribute<uint16_t>(
u16_Single, currentTestData.U16.data(), numberOfElements);
auto &attributeU32 = io.DefineAttribute<uint32_t>(
u32_Single, currentTestData.U32.data(), numberOfElements);
auto &attributeU64 = io.DefineAttribute<uint64_t>(
u64_Single, currentTestData.U64.data(), numberOfElements);
auto &attributeFloat = io.DefineAttribute<float>(
float_Single, currentTestData.R32.data(), numberOfElements);
auto &attributeDouble = io.DefineAttribute<double>(
double_Single, currentTestData.R64.data(), numberOfElements);
// Verify the return type is as expected
::testing::StaticAssertTypeEq<decltype(attributeS3),
adios2::Attribute<std::string> &>();
::testing::StaticAssertTypeEq<decltype(attributeI8),
adios2::Attribute<int8_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeI16),
adios2::Attribute<int16_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeI32),
adios2::Attribute<int32_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeI64),
adios2::Attribute<int64_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU8),
adios2::Attribute<uint8_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU16),
adios2::Attribute<uint16_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU32),
adios2::Attribute<uint32_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU64),
adios2::Attribute<uint64_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeFloat),
adios2::Attribute<float> &>();
::testing::StaticAssertTypeEq<decltype(attributeDouble),
adios2::Attribute<double> &>();
// Verify the members are correct
ASSERT_EQ(attributeS3.m_IsSingleValue, false);
ASSERT_EQ(attributeS3.m_DataArray.empty(), false);
EXPECT_EQ(attributeS3.m_Name, s3_Single);
EXPECT_EQ(attributeS3.m_Elements, 3);
EXPECT_EQ(attributeS3.m_Type, "string");
ASSERT_EQ(attributeI8.m_IsSingleValue, false);
ASSERT_EQ(attributeI8.m_DataArray.empty(), false);
EXPECT_EQ(attributeI8.m_Name, i8_Single);
EXPECT_EQ(attributeI8.m_Elements, numberOfElements);
EXPECT_EQ(attributeI8.m_Type, "signed char");
ASSERT_EQ(attributeI16.m_IsSingleValue, false);
ASSERT_EQ(attributeI16.m_DataArray.empty(), false);
EXPECT_EQ(attributeI16.m_Name, i16_Single);
EXPECT_EQ(attributeI16.m_Elements, numberOfElements);
EXPECT_EQ(attributeI16.m_Type, "short");
ASSERT_EQ(attributeI32.m_IsSingleValue, false);
ASSERT_EQ(attributeI32.m_DataArray.empty(), false);
EXPECT_EQ(attributeI32.m_Name, i32_Single);
EXPECT_EQ(attributeI32.m_Elements, numberOfElements);
EXPECT_EQ(attributeI32.m_Type, "int");
ASSERT_EQ(attributeI64.m_IsSingleValue, false);
ASSERT_EQ(attributeI64.m_DataArray.empty(), false);
EXPECT_EQ(attributeI64.m_Name, i64_Single);
EXPECT_EQ(attributeI64.m_Elements, numberOfElements);
EXPECT_EQ(sizeof(attributeI64.m_DataSingleValue), 8);
ASSERT_EQ(attributeU8.m_IsSingleValue, false);
ASSERT_EQ(attributeU8.m_DataArray.empty(), false);
EXPECT_EQ(attributeU8.m_Name, u8_Single);
EXPECT_EQ(attributeU8.m_Elements, numberOfElements);
EXPECT_EQ(attributeU8.m_Type, "unsigned char");
ASSERT_EQ(attributeU16.m_IsSingleValue, false);
ASSERT_EQ(attributeU16.m_DataArray.empty(), false);
EXPECT_EQ(attributeU16.m_Name, u16_Single);
EXPECT_EQ(attributeU16.m_Elements, numberOfElements);
EXPECT_EQ(attributeU16.m_Type, "unsigned short");
ASSERT_EQ(attributeU32.m_IsSingleValue, false);
ASSERT_EQ(attributeU32.m_DataArray.empty(), false);
EXPECT_EQ(attributeU32.m_Name, u32_Single);
EXPECT_EQ(attributeU32.m_Elements, numberOfElements);
EXPECT_EQ(attributeU32.m_Type, "unsigned int");
ASSERT_EQ(attributeU64.m_IsSingleValue, false);
ASSERT_EQ(attributeU64.m_DataArray.empty(), false);
EXPECT_EQ(attributeU64.m_Name, u64_Single);
EXPECT_EQ(attributeU64.m_Elements, numberOfElements);
EXPECT_EQ(sizeof(attributeU64.m_DataSingleValue), 8);
ASSERT_EQ(attributeFloat.m_IsSingleValue, false);
ASSERT_EQ(attributeFloat.m_DataArray.empty(), false);
EXPECT_EQ(attributeFloat.m_Name, float_Single);
EXPECT_EQ(attributeFloat.m_Elements, numberOfElements);
EXPECT_EQ(attributeFloat.m_Type, "float");
ASSERT_EQ(attributeDouble.m_IsSingleValue, false);
ASSERT_EQ(attributeDouble.m_DataArray.empty(), false);
EXPECT_EQ(attributeDouble.m_Name, double_Single);
EXPECT_EQ(attributeDouble.m_Elements, numberOfElements);
EXPECT_EQ(attributeDouble.m_Type, "double");
// Verify data
for (size_t index = 0; index < numberOfElements; index++)
{
EXPECT_EQ(attributeI8.m_DataArray[index], currentTestData.I8.at(index));
EXPECT_EQ(attributeI16.m_DataArray[index],
currentTestData.I16.at(index));
EXPECT_EQ(attributeI32.m_DataArray[index],
currentTestData.I32.at(index));
EXPECT_EQ(attributeU8.m_DataArray[index], currentTestData.U8.at(index));
EXPECT_EQ(attributeU16.m_DataArray[index],
currentTestData.U16.at(index));
EXPECT_EQ(attributeU32.m_DataArray[index],
currentTestData.U32.at(index));
EXPECT_EQ(attributeFloat.m_DataArray[index],
currentTestData.R32.at(index));
EXPECT_EQ(attributeDouble.m_DataArray[index],
currentTestData.R64.at(index));
}
}
TEST_F(ADIOSDefineAttributeTest, GetAttribute)
{
int mpiRank = 0, mpiSize = 1;
size_t numberOfElements = 10;
#ifdef ADIOS2_HAVE_MPI
MPI_Comm_rank(MPI_COMM_WORLD, &mpiRank);
MPI_Comm_size(MPI_COMM_WORLD, &mpiSize);
#endif
// Define unique data for each process
SmallTestData currentTestData =
generateNewSmallTestData(m_TestData, 0, mpiRank, mpiSize);
std::string mpiRankString = std::to_string(mpiRank);
std::string s3_Single = std::string("s3_Array_") + mpiRankString;
std::string i8_Single = std::string("i8_Array_") + mpiRankString;
std::string i16_Single = std::string("i16_Array_") + mpiRankString;
std::string i32_Single = std::string("i32_Array_") + mpiRankString;
std::string i64_Single = std::string("i64_Array_") + mpiRankString;
std::string u8_Single = std::string("u8_Array_") + mpiRankString;
std::string u16_Single = std::string("u16_Array_") + mpiRankString;
std::string u32_Single = std::string("u32_Array_") + mpiRankString;
std::string u64_Single = std::string("u64_Array_") + mpiRankString;
std::string float_Single = std::string("float_Array_") + mpiRankString;
std::string double_Single = std::string("double_Array_") + mpiRankString;
// Define ADIOS global value
{
io.DefineAttribute<std::string>(s3_Single, currentTestData.S3.data(),
3);
io.DefineAttribute<int8_t>(i8_Single, currentTestData.I8.data(),
numberOfElements);
io.DefineAttribute<int16_t>(i16_Single, currentTestData.I16.data(),
numberOfElements);
io.DefineAttribute<int32_t>(i32_Single, currentTestData.I32.data(),
numberOfElements);
io.DefineAttribute<int64_t>(i64_Single, currentTestData.I64.data(),
numberOfElements);
io.DefineAttribute<uint8_t>(u8_Single, currentTestData.U8.data(),
numberOfElements);
io.DefineAttribute<uint16_t>(u16_Single, currentTestData.U16.data(),
numberOfElements);
io.DefineAttribute<uint32_t>(u32_Single, currentTestData.U32.data(),
numberOfElements);
io.DefineAttribute<uint64_t>(u64_Single, currentTestData.U64.data(),
numberOfElements);
io.DefineAttribute<float>(float_Single, currentTestData.R32.data(),
numberOfElements);
io.DefineAttribute<double>(double_Single, currentTestData.R64.data(),
numberOfElements);
}
auto &attributeS3 = *io.InquireAttribute<std::string>(s3_Single);
auto &attributeI8 = *io.InquireAttribute<int8_t>(i8_Single);
auto &attributeI16 = *io.InquireAttribute<int16_t>(i16_Single);
auto &attributeI32 = *io.InquireAttribute<int32_t>(i32_Single);
auto &attributeI64 = *io.InquireAttribute<int64_t>(i64_Single);
auto &attributeU8 = *io.InquireAttribute<uint8_t>(u8_Single);
auto &attributeU16 = *io.InquireAttribute<uint16_t>(u16_Single);
auto &attributeU32 = *io.InquireAttribute<uint32_t>(u32_Single);
auto &attributeU64 = *io.InquireAttribute<uint64_t>(u64_Single);
auto &attributeFloat = *io.InquireAttribute<float>(float_Single);
auto &attributeDouble = *io.InquireAttribute<double>(double_Single);
// Verify the return type is as expected
::testing::StaticAssertTypeEq<decltype(attributeS3),
adios2::Attribute<std::string> &>();
::testing::StaticAssertTypeEq<decltype(attributeI8),
adios2::Attribute<int8_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeI16),
adios2::Attribute<int16_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeI32),
adios2::Attribute<int32_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeI64),
adios2::Attribute<int64_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU8),
adios2::Attribute<uint8_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU16),
adios2::Attribute<uint16_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU32),
adios2::Attribute<uint32_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU64),
adios2::Attribute<uint64_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeFloat),
adios2::Attribute<float> &>();
::testing::StaticAssertTypeEq<decltype(attributeDouble),
adios2::Attribute<double> &>();
// Verify the members are correct
ASSERT_EQ(attributeS3.m_IsSingleValue, false);
ASSERT_EQ(attributeS3.m_DataArray.empty(), false);
EXPECT_EQ(attributeS3.m_Name, s3_Single);
EXPECT_EQ(attributeS3.m_Elements, 3);
EXPECT_EQ(attributeS3.m_Type, "string");
ASSERT_EQ(attributeI8.m_IsSingleValue, false);
ASSERT_EQ(attributeI8.m_DataArray.empty(), false);
EXPECT_EQ(attributeI8.m_Name, i8_Single);
EXPECT_EQ(attributeI8.m_Elements, numberOfElements);
EXPECT_EQ(attributeI8.m_Type, "signed char");
ASSERT_EQ(attributeI16.m_IsSingleValue, false);
ASSERT_EQ(attributeI16.m_DataArray.empty(), false);
EXPECT_EQ(attributeI16.m_Name, i16_Single);
EXPECT_EQ(attributeI16.m_Elements, numberOfElements);
EXPECT_EQ(attributeI16.m_Type, "short");
ASSERT_EQ(attributeI32.m_IsSingleValue, false);
ASSERT_EQ(attributeI32.m_DataArray.empty(), false);
EXPECT_EQ(attributeI32.m_Name, i32_Single);
EXPECT_EQ(attributeI32.m_Elements, numberOfElements);
EXPECT_EQ(attributeI32.m_Type, "int");
ASSERT_EQ(attributeI64.m_IsSingleValue, false);
ASSERT_EQ(attributeI64.m_DataArray.empty(), false);
EXPECT_EQ(attributeI64.m_Name, i64_Single);
EXPECT_EQ(attributeI64.m_Elements, numberOfElements);
EXPECT_EQ(sizeof(attributeI64.m_DataSingleValue), 8);
ASSERT_EQ(attributeU8.m_IsSingleValue, false);
ASSERT_EQ(attributeU8.m_DataArray.empty(), false);
EXPECT_EQ(attributeU8.m_Name, u8_Single);
EXPECT_EQ(attributeU8.m_Elements, numberOfElements);
EXPECT_EQ(attributeU8.m_Type, "unsigned char");
ASSERT_EQ(attributeU16.m_IsSingleValue, false);
ASSERT_EQ(attributeU16.m_DataArray.empty(), false);
EXPECT_EQ(attributeU16.m_Name, u16_Single);
EXPECT_EQ(attributeU16.m_Elements, numberOfElements);
EXPECT_EQ(attributeU16.m_Type, "unsigned short");
ASSERT_EQ(attributeU32.m_IsSingleValue, false);
ASSERT_EQ(attributeU32.m_DataArray.empty(), false);
EXPECT_EQ(attributeU32.m_Name, u32_Single);
EXPECT_EQ(attributeU32.m_Elements, numberOfElements);
EXPECT_EQ(attributeU32.m_Type, "unsigned int");
ASSERT_EQ(attributeU64.m_IsSingleValue, false);
ASSERT_EQ(attributeU64.m_DataArray.empty(), false);
EXPECT_EQ(attributeU64.m_Name, u64_Single);
EXPECT_EQ(attributeU64.m_Elements, numberOfElements);
EXPECT_EQ(sizeof(attributeU64.m_DataSingleValue), 8);
ASSERT_EQ(attributeFloat.m_IsSingleValue, false);
ASSERT_EQ(attributeFloat.m_DataArray.empty(), false);
EXPECT_EQ(attributeFloat.m_Name, float_Single);
EXPECT_EQ(attributeFloat.m_Elements, numberOfElements);
EXPECT_EQ(attributeFloat.m_Type, "float");
ASSERT_EQ(attributeDouble.m_IsSingleValue, false);
ASSERT_EQ(attributeDouble.m_DataArray.empty(), false);
EXPECT_EQ(attributeDouble.m_Name, double_Single);
EXPECT_EQ(attributeDouble.m_Elements, numberOfElements);
EXPECT_EQ(attributeDouble.m_Type, "double");
// Verify data
for (size_t index = 0; index < numberOfElements; index++)
{
EXPECT_EQ(attributeI8.m_DataArray[index], currentTestData.I8.at(index));
EXPECT_EQ(attributeI16.m_DataArray[index],
currentTestData.I16.at(index));
EXPECT_EQ(attributeI32.m_DataArray[index],
currentTestData.I32.at(index));
EXPECT_EQ(attributeU8.m_DataArray[index], currentTestData.U8.at(index));
EXPECT_EQ(attributeU16.m_DataArray[index],
currentTestData.U16.at(index));
EXPECT_EQ(attributeU32.m_DataArray[index],
currentTestData.U32.at(index));
EXPECT_EQ(attributeFloat.m_DataArray[index],
currentTestData.R32.at(index));
EXPECT_EQ(attributeDouble.m_DataArray[index],
currentTestData.R64.at(index));
}
}
int main(int argc, char **argv)
{
#ifdef ADIOS2_HAVE_MPI
MPI_Init(nullptr, nullptr);
#endif
::testing::InitGoogleTest(&argc, argv);
int result = RUN_ALL_TESTS();
#ifdef ADIOS2_HAVE_MPI
MPI_Finalize();
#endif
return result;
}