Newer
Older
/*
* Capsule.h
*
* Created on: Nov 7, 2016
* Author: wfg
*/
#ifndef ENGINE_H_
#define ENGINE_H_
/// \cond EXCLUDE_FROM_DOXYGEN
#include <vector>
#include <string>
#include <memory> //std::shared_ptr
#include <map>
#include <utility> //std::pair
#include <complex> //std::complex
/// \endcond
#ifdef HAVE_MPI
#include <mpi.h>
#else
#include "mpidummy.h"
#endif
#include "core/Method.h"
#include "core/Variable.h"
#include "core/VariableCompound.h"
#include "core/Transform.h"
#include "core/Transport.h"
#include "core/Capsule.h"
namespace adios
{
typedef enum { NONBLOCKINGREAD = 0, BLOCKINGREAD = 1 } PerformReadMode;
typedef enum {
APPEND = 0, UPDATE = 1, // writer advance modes
NEXT_AVAILABLE = 2, LATEST_AVAILABLE = 3, // reader advance modes
} AdvanceMode;
/**
* Base class for Engine operations managing shared-memory, and buffer and variables transform and transport operations
*/
class Engine
{
public:
/**
* @param adios
* @param accessMode
* @param mpiComm
* @param debugMode
* @param cores
* @param endMessage
Engine( ADIOS& adios, const std::string engineType, const std::string name, const std::string accessMode,
MPI_Comm mpiComm, const Method& method, const bool debugMode, const unsigned int cores,
const std::string endMessage );
/** @brief Let ADIOS allocate memory for a variable, which can be used by the user.
*
* To decrease the cost of copying memory, a user may let ADIOS allocate the memory for a user-variable,
* according to the definition of an ADIOS-variable. The memory will be part of the ADIOS buffer used
* by the engine and it lives until the engine (file, stream) is closed.
* A variable that has been allocated this way (cannot have its local dimensions changed, and AdvanceAsync() should be
* used instead of Advance() and the user-variable must not be modified by the application until the notification arrives.
* This is required so that any reader can access the written data before the application overwrites it.
* @param var Variable with defined local dimensions and offsets in global space
* @param fillValue Fill the allocated array with this value
* @return A constant pointer to the non-constant allocated array. User should not deallocate this pointer.
*/
template<class T> inline
T * const AllocateVariable( Variable<T>& var, T fillValue = 0 )
{
throw std::invalid_argument( "ERROR: type not supported for variable " + var->name + " in call to GetVariable\n" );
}
/*
* Needed for DataMan Engine
* @param callback
*/
//virtual void SetCallBack( std::function<void( const void*, std::string, std::string, std::string, Dims )> callback );
/**
* Write function that adds static checking on the variable to be passed by values
* It then calls its corresponding derived class virtual function
* This version uses m_Group to look for the variableName.
* @param variable name of variable to the written
* @param values pointer passed from the application
*/
template< class T >
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/**
* String version
* @param variableName
* @param values
*/
template< class T >
void Write( const std::string variableName, const T* values )
{
Write( variableName, values );
}
/**
* Single value version
* @param variable
* @param values
*/
template< class T >
void Write( Variable<T>& variable, const T& values )
{
Write( variable, &values );
}
/**
* Single value version using string as variable handlers
* @param variableName
* @param values
*/
template< class T >
void Write( const std::string variableName, const T& values )
{
Write( variableName, &values );
}
virtual void Write( Variable<char>& variable, const char* values );
virtual void Write( Variable<unsigned char>& variable, const unsigned char* values );
virtual void Write( Variable<short>& variable, const short* values );
virtual void Write( Variable<unsigned short>& variable, const unsigned short* values );
virtual void Write( Variable<int>& variable, const int* values );
virtual void Write( Variable<unsigned int>& variable, const unsigned int* values );
virtual void Write( Variable<long int>& variable, const long int* values );
virtual void Write( Variable<unsigned long int>& variable, const unsigned long int* values );
virtual void Write( Variable<long long int>& variable, const long long int* values );
virtual void Write( Variable<unsigned long long int>& variable, const unsigned long long int* values );
virtual void Write( Variable<float>& variable, const float* values );
virtual void Write( Variable<double>& variable, const double* values );
virtual void Write( Variable<long double>& variable, const long double* values );
virtual void Write( Variable<std::complex<float>>& variable, const std::complex<float>* values );
virtual void Write( Variable<std::complex<double>>& variable, const std::complex<double>* values );
virtual void Write( Variable<std::complex<long double>>& variable, const std::complex<long double>* values );
virtual void Write( VariableCompound& variable, const void* values );
/**
* @brief Write functions can be overridden by derived classes. Base class behavior is to:
* 1) Write to Variable values (m_Values) using the pointer to default group *m_Group set with SetDefaultGroup function
* 2) Transform the data
* 3) Write to all capsules -> data and metadata
* @param variableName
* @param values coming from user app
*/
virtual void Write( const std::string variableName, const char* values );
virtual void Write( const std::string variableName, const unsigned char* values );
virtual void Write( const std::string variableName, const short* values );
virtual void Write( const std::string variableName, const unsigned short* values );
virtual void Write( const std::string variableName, const int* values );
virtual void Write( const std::string variableName, const unsigned int* values );
virtual void Write( const std::string variableName, const long int* values );
virtual void Write( const std::string variableName, const unsigned long int* values );
virtual void Write( const std::string variableName, const long long int* values );
virtual void Write( const std::string variableName, const unsigned long long int* values );
virtual void Write( const std::string variableName, const float* values );
virtual void Write( const std::string variableName, const double* values );
virtual void Write( const std::string variableName, const long double* values );
virtual void Write( const std::string variableName, const std::complex<float>* values );
virtual void Write( const std::string variableName, const std::complex<double>* values );
virtual void Write( const std::string variableName, const std::complex<long double>* values );
virtual void Write( const std::string variableName, const void* values );
* Read function that adds static checking on the variable to be passed by values
* It then calls its corresponding derived class virtual function
* This version uses m_Group to look for the variableName.
* @param variable name of variable to the written
* @param values pointer passed from the application, nullptr not allowed, must use Read(variable) instead intentionally
template< class T >
void Read( Variable<T>& variable, const T* values )
{
Read( variable, values );
}
/**
* String version
* @param variableName
* @param values
*/
template< class T >
void Read( const std::string variableName, const T* values )
{
Read( variableName, values );
}
* Single value version
* @param variable
* @param values
template< class T >
void Read( Variable<T>& variable, const T& values)
{
Read( variable, &values );
}
/**
* Single value version using string as variable handlers
* @param variableName
* @param values
*/
template< class T >
void Read( const std::string variableName, const T& values )
{
Read( variableName, &values );
}
/**
* Unallocated version, ADIOS will allocate space for incoming data
* @param variable
*/
template< class T >
void Read( Variable<T>& variable )
{
Read( variable, nullptr );
}
/**
* Unallocated version, ADIOS will allocate space for incoming data
* @param variableName
*/
template< class T >
void Read( const std::string variableName )
{
Read( variableName, nullptr );
}
virtual void Read( Variable<double>& variable, const double* values );
* Read function that adds static checking on the variable to be passed by values
* It then calls its corresponding derived class virtual function
* This version uses m_Group to look for the variableName.
* @param variable name of variable to the written
* @param values pointer passed from the application
template< class T >
void ScheduleRead( Variable<T>& variable, const T* values )
{
ScheduleRead( variable, values );
}
/**
* String version
* @param variableName
* @param values
*/
template< class T >
void ScheduleRead( const std::string variableName, const T* values )
{
ScheduleRead( variableName, values );
}
/**
* Single value version
* @param variable
* @param values
*/
template< class T >
void ScheduleRead( Variable<T>& variable, const T& values )
{
ScheduleRead( variable, &values );
}
* Single value version using string as variable handlers
* @param variableName
* @param values
*/
template< class T >
void ScheduleRead( const std::string variableName, const T& values )
{
ScheduleRead( variableName, &values );
}
/**
* Single value version using string as variable handlers
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
void ScheduleRead();
virtual void ScheduleRead( Variable<double>& variable, const double* values );
/**
* Perform all scheduled reads, either blocking until all reads completed, or return immediately.
* @param mode Blocking or non-blocking modes
*/
void PerformReads( PerformReadMode mode );
/**
* Reader application indicates that no more data will be read from the current stream before advancing.
* This is necessary to allow writers to advance as soon as possible.
*/
virtual void Release( );
/**
* Indicates that a new step is going to be written as new variables come in.
*/
virtual void Advance( float timeout_sec=0.0 );
/**
* Indicates that a new step is going to be written as new variables come in.
* @param mode Advance mode, there are different options for writers and readers
*/
virtual void Advance( AdvanceMode mode, float timeout_sec=0.0 );
/** @brief Advance asynchronously and get a callback when readers release access to the buffered step.
*
* User variables that were allocated through AllocateVariable()
* must not be modified until advance is completed.
* @param mode Advance mode, there are different options for writers and readers
* @param callback Will be called when advance is completed.
*/
virtual void AdvanceAsync ( AdvanceMode mode, std::function<void( std::shared_ptr<adios::Engine> )> callback );
//Read API
/**
* Inquires and (optionally) allocates and copies the contents of a variable
* If success: it returns a pointer to the internal stored variable object in ADIOS class.
* If failure: it returns nullptr
* @param name variable name to look for
* @param readIn if true: reads the full variable and payload, allocating values in memory, if false: internal payload is nullptr
* @return success: it returns a pointer to the internal stored variable object in ADIOS class, failure: nullptr
*/
virtual Variable<void> InquireVariable( const std::string name, const bool readIn = true );
virtual Variable<char> InquireVariableChar( const std::string name, const bool readIn = true );
virtual Variable<unsigned char> InquireVariableUChar( const std::string name, const bool readIn = true );
virtual Variable<short> InquireVariableShort( const std::string name, const bool readIn = true );
virtual Variable<unsigned short> InquireVariableUShort( const std::string name, const bool readIn = true );
virtual Variable<int> InquireVariableInt( const std::string name, const bool readIn = true );
virtual Variable<unsigned int> InquireVariableUInt( const std::string name, const bool readIn = true );
virtual Variable<long int> InquireVariableLInt( const std::string name, const bool readIn = true );
virtual Variable<unsigned long int> InquireVariableULInt( const std::string name, const bool readIn = true );
virtual Variable<long long int> InquireVariableLLInt( const std::string name, const bool readIn = true );
virtual Variable<unsigned long long int> InquireVariableULLInt( const std::string name, const bool readIn = true );
virtual Variable<float> InquireVariableFloat( const std::string name, const bool readIn = true );
virtual Variable<double> InquireVariableDouble( const std::string name, const bool readIn = true );
virtual Variable<long double> InquireVariableLDouble( const std::string name, const bool readIn = true );
virtual Variable<std::complex<float>> InquireVariableCFloat( const std::string name, const bool readIn = true );
virtual Variable<std::complex<double>> InquireVariableCDouble( const std::string name, const bool readIn = true );
virtual Variable<std::complex<long double>> InquireVariableCLDouble( const std::string name, const bool readIn = true );
virtual VariableCompound InquireVariableCompound( const std::string name, const bool readIn = true );
/** Return the names of all variables present in a stream/file opened for reading
*
* @return a vector of strings
*/
std::vector<std::string> VariableNames();
virtual void Close( const int transportIndex = -1 ) = 0; ///< Closes a particular transport, or all if -1