Newer
Older
#include <cstdint>
#include <iostream>
#include <stdexcept>
#include <adios2.h>
#include <gtest/gtest.h>
#include "../engine/SmallTestData.h"
class ADIOSDefineAttributeTest : public ::testing::Test
{
public:
ADIOSDefineAttributeTest() : adios(true), io(adios.DeclareIO("TestIO")) {}
SmallTestData m_TestData;
protected:
adios2::ADIOS adios;
adios2::IO &io;
};
TEST_F(ADIOSDefineAttributeTest, DefineAttributeNameException)
{
// Attribute should be unique per process
auto &attributeString1 =
io.DefineAttribute<std::string>("attributeString", "-1");
EXPECT_THROW(auto &attributeString2 =
io.DefineAttribute<std::string>("attributeString", "0"),
std::invalid_argument);
EXPECT_THROW(auto &attributeString2 =
io.GetAttribute<std::string>("NoExistingAttribute"),
std::invalid_argument);
EXPECT_NO_THROW(auto &attributeString3 =
io.GetAttribute<std::string>("attributeString"));
}
TEST_F(ADIOSDefineAttributeTest, DefineAttributeTypeByValue)
{
int mpiRank = 0, mpiSize = 1;
#ifdef ADIOS2_HAVE_MPI
MPI_Comm_rank(MPI_COMM_WORLD, &mpiRank);
MPI_Comm_size(MPI_COMM_WORLD, &mpiSize);
#endif
// Define unique data for each process
SmallTestData currentTestData =
generateNewSmallTestData(m_TestData, 0, mpiRank, mpiSize);
std::string mpiRankString = std::to_string(mpiRank);
std::string s1_Single = std::string("s1_Single_") + mpiRankString;
std::string i8_Single = std::string("i8_Single_") + mpiRankString;
std::string i16_Single = std::string("i16_Single_") + mpiRankString;
std::string i32_Single = std::string("i32_Single_") + mpiRankString;
std::string i64_Single = std::string("i64_Single_") + mpiRankString;
std::string u8_Single = std::string("u8_Single_") + mpiRankString;
std::string u16_Single = std::string("u16_Single_") + mpiRankString;
std::string u32_Single = std::string("u32_Single_") + mpiRankString;
std::string u64_Single = std::string("u64_Single_") + mpiRankString;
std::string float_Single = std::string("float_Single_") + mpiRankString;
std::string double_Single = std::string("double_Single_") + mpiRankString;
// Define ADIOS global value
auto &attributeS1 =
io.DefineAttribute<std::string>(s1_Single, currentTestData.S1);
auto &attributeI8 =
io.DefineAttribute<int8_t>(i8_Single, currentTestData.I8.front());
auto &attributeI16 =
io.DefineAttribute<int16_t>(i16_Single, currentTestData.I16.front());
auto &attributeI32 =
io.DefineAttribute<int32_t>(i32_Single, currentTestData.I32.front());
auto &attributeI64 =
io.DefineAttribute<int64_t>(i64_Single, currentTestData.I64.front());
auto &attributeU8 =
io.DefineAttribute<uint8_t>(u8_Single, currentTestData.U8.front());
auto &attributeU16 =
io.DefineAttribute<uint16_t>(u16_Single, currentTestData.U16.front());
auto &attributeU32 =
io.DefineAttribute<uint32_t>(u32_Single, currentTestData.U32.front());
auto &attributeU64 =
io.DefineAttribute<uint64_t>(u64_Single, currentTestData.U64.front());
auto &attributeFloat =
io.DefineAttribute<float>(float_Single, currentTestData.R32.front());
auto &attributeDouble =
io.DefineAttribute<double>(double_Single, currentTestData.R64.front());
// Verify the return type is as expected
::testing::StaticAssertTypeEq<decltype(attributeS1),
adios2::Attribute<std::string> &>();
::testing::StaticAssertTypeEq<decltype(attributeI8),
adios2::Attribute<int8_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeI16),
adios2::Attribute<int16_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeI32),
adios2::Attribute<int32_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeI64),
adios2::Attribute<int64_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU8),
adios2::Attribute<uint8_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU16),
adios2::Attribute<uint16_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU32),
adios2::Attribute<uint32_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU64),
adios2::Attribute<uint64_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeFloat),
adios2::Attribute<float> &>();
::testing::StaticAssertTypeEq<decltype(attributeDouble),
adios2::Attribute<double> &>();
// Verify the members are correct
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
ASSERT_EQ(attributeS1.m_IsSingleValue, true);
ASSERT_EQ(attributeS1.m_DataArray.empty(), true);
EXPECT_EQ(attributeS1.m_Name, s1_Single);
EXPECT_EQ(attributeS1.m_DataSingleValue, currentTestData.S1);
EXPECT_EQ(attributeS1.m_Elements, 1);
EXPECT_EQ(attributeS1.m_Type, "string");
ASSERT_EQ(attributeI8.m_IsSingleValue, true);
ASSERT_EQ(attributeI8.m_DataArray.empty(), true);
EXPECT_EQ(attributeI8.m_Name, i8_Single);
EXPECT_EQ(attributeI8.m_DataSingleValue, currentTestData.I8.front());
EXPECT_EQ(attributeI8.m_Elements, 1);
EXPECT_EQ(attributeI8.m_Type, "signed char");
ASSERT_EQ(attributeI16.m_IsSingleValue, true);
ASSERT_EQ(attributeI16.m_DataArray.empty(), true);
EXPECT_EQ(attributeI16.m_Name, i16_Single);
EXPECT_EQ(attributeI16.m_DataSingleValue, currentTestData.I16.front());
EXPECT_EQ(attributeI16.m_Elements, 1);
EXPECT_EQ(attributeI16.m_Type, "short");
ASSERT_EQ(attributeI32.m_IsSingleValue, true);
ASSERT_EQ(attributeI32.m_DataArray.empty(), true);
EXPECT_EQ(attributeI32.m_Name, i32_Single);
EXPECT_EQ(attributeI32.m_DataSingleValue, currentTestData.I32.front());
EXPECT_EQ(attributeI32.m_Elements, 1);
EXPECT_EQ(attributeI32.m_Type, "int");
ASSERT_EQ(attributeI64.m_IsSingleValue, true);
ASSERT_EQ(attributeI64.m_DataArray.empty(), true);
EXPECT_EQ(attributeI64.m_Name, i64_Single);
EXPECT_EQ(attributeI64.m_DataSingleValue, currentTestData.I64.front());
EXPECT_EQ(attributeI64.m_Elements, 1);
EXPECT_EQ(attributeI64.m_Type, "long int");
ASSERT_EQ(attributeU8.m_IsSingleValue, true);
ASSERT_EQ(attributeU8.m_DataArray.empty(), true);
EXPECT_EQ(attributeU8.m_Name, u8_Single);
EXPECT_EQ(attributeU8.m_DataSingleValue, currentTestData.U8.front());
EXPECT_EQ(attributeU8.m_Elements, 1);
EXPECT_EQ(attributeU8.m_Type, "unsigned char");
ASSERT_EQ(attributeU16.m_IsSingleValue, true);
ASSERT_EQ(attributeU16.m_DataArray.empty(), true);
EXPECT_EQ(attributeU16.m_Name, u16_Single);
EXPECT_EQ(attributeU16.m_DataSingleValue, currentTestData.U16.front());
EXPECT_EQ(attributeU16.m_Elements, 1);
EXPECT_EQ(attributeU16.m_Type, "unsigned short");
ASSERT_EQ(attributeU32.m_IsSingleValue, true);
ASSERT_EQ(attributeU32.m_DataArray.empty(), true);
EXPECT_EQ(attributeU32.m_Name, u32_Single);
EXPECT_EQ(attributeU32.m_DataSingleValue, currentTestData.U32.front());
EXPECT_EQ(attributeU32.m_Elements, 1);
EXPECT_EQ(attributeU32.m_Type, "unsigned int");
ASSERT_EQ(attributeU64.m_IsSingleValue, true);
ASSERT_EQ(attributeU64.m_DataArray.empty(), true);
EXPECT_EQ(attributeU64.m_Name, u64_Single);
EXPECT_EQ(attributeU64.m_DataSingleValue, currentTestData.U64.front());
EXPECT_EQ(attributeU64.m_Elements, 1);
EXPECT_EQ(attributeU64.m_Type, "unsigned long int");
ASSERT_EQ(attributeFloat.m_IsSingleValue, true);
ASSERT_EQ(attributeFloat.m_DataArray.empty(), true);
EXPECT_EQ(attributeFloat.m_Name, float_Single);
EXPECT_EQ(attributeFloat.m_DataSingleValue, currentTestData.R32.front());
EXPECT_EQ(attributeFloat.m_Elements, 1);
EXPECT_EQ(attributeFloat.m_Type, "float");
ASSERT_EQ(attributeDouble.m_IsSingleValue, true);
ASSERT_EQ(attributeDouble.m_DataArray.empty(), true);
EXPECT_EQ(attributeDouble.m_Name, double_Single);
EXPECT_EQ(attributeDouble.m_DataSingleValue, currentTestData.R64.front());
EXPECT_EQ(attributeDouble.m_Elements, 1);
EXPECT_EQ(attributeDouble.m_Type, "double");
}
TEST_F(ADIOSDefineAttributeTest, DefineAttributeTypeByReference)
{
int mpiRank = 0, mpiSize = 1;
size_t numberOfElements = 10;
#ifdef ADIOS2_HAVE_MPI
MPI_Comm_rank(MPI_COMM_WORLD, &mpiRank);
MPI_Comm_size(MPI_COMM_WORLD, &mpiSize);
#endif
// Define unique data for each process
SmallTestData currentTestData =
generateNewSmallTestData(m_TestData, 0, mpiRank, mpiSize);
std::string mpiRankString = std::to_string(mpiRank);
std::string s3_Single = std::string("s3_Single_") + mpiRankString;
std::string i8_Single = std::string("i8_Single_") + mpiRankString;
std::string i16_Single = std::string("i16_Single_") + mpiRankString;
std::string i32_Single = std::string("i32_Single_") + mpiRankString;
std::string i64_Single = std::string("i64_Single_") + mpiRankString;
std::string u8_Single = std::string("u8_Single_") + mpiRankString;
std::string u16_Single = std::string("u16_Single_") + mpiRankString;
std::string u32_Single = std::string("u32_Single_") + mpiRankString;
std::string u64_Single = std::string("u64_Single_") + mpiRankString;
std::string float_Single = std::string("float_Single_") + mpiRankString;
std::string double_Single = std::string("double_Single_") + mpiRankString;
// Define ADIOS global value
auto &attributeS3 = io.DefineAttribute<std::string>(
s3_Single, currentTestData.S3.data(), 3);
auto &attributeI8 = io.DefineAttribute<int8_t>(
i8_Single, currentTestData.I8.data(), numberOfElements);
auto &attributeI16 = io.DefineAttribute<int16_t>(
i16_Single, currentTestData.I16.data(), numberOfElements);
auto &attributeI32 = io.DefineAttribute<int32_t>(
i32_Single, currentTestData.I32.data(), numberOfElements);
auto &attributeI64 = io.DefineAttribute<int64_t>(
i64_Single, currentTestData.I64.data(), numberOfElements);
auto &attributeU8 = io.DefineAttribute<uint8_t>(
u8_Single, currentTestData.U8.data(), numberOfElements);
auto &attributeU16 = io.DefineAttribute<uint16_t>(
u16_Single, currentTestData.U16.data(), numberOfElements);
auto &attributeU32 = io.DefineAttribute<uint32_t>(
u32_Single, currentTestData.U32.data(), numberOfElements);
auto &attributeU64 = io.DefineAttribute<uint64_t>(
u64_Single, currentTestData.U64.data(), numberOfElements);
auto &attributeFloat = io.DefineAttribute<float>(
float_Single, currentTestData.R32.data(), numberOfElements);
auto &attributeDouble = io.DefineAttribute<double>(
double_Single, currentTestData.R64.data(), numberOfElements);
// Verify the return type is as expected
::testing::StaticAssertTypeEq<decltype(attributeS3),
adios2::Attribute<std::string> &>();
::testing::StaticAssertTypeEq<decltype(attributeI8),
adios2::Attribute<int8_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeI16),
adios2::Attribute<int16_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeI32),
adios2::Attribute<int32_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeI64),
adios2::Attribute<int64_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU8),
adios2::Attribute<uint8_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU16),
adios2::Attribute<uint16_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU32),
adios2::Attribute<uint32_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU64),
adios2::Attribute<uint64_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeFloat),
adios2::Attribute<float> &>();
::testing::StaticAssertTypeEq<decltype(attributeDouble),
adios2::Attribute<double> &>();
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
// Verify the members are correct
ASSERT_EQ(attributeS3.m_IsSingleValue, false);
ASSERT_EQ(attributeS3.m_DataArray.empty(), false);
EXPECT_EQ(attributeS3.m_Name, s3_Single);
EXPECT_EQ(attributeS3.m_Elements, 3);
EXPECT_EQ(attributeS3.m_Type, "string");
ASSERT_EQ(attributeI8.m_IsSingleValue, false);
ASSERT_EQ(attributeI8.m_DataArray.empty(), false);
EXPECT_EQ(attributeI8.m_Name, i8_Single);
EXPECT_EQ(attributeI8.m_Elements, numberOfElements);
EXPECT_EQ(attributeI8.m_Type, "signed char");
ASSERT_EQ(attributeI16.m_IsSingleValue, false);
ASSERT_EQ(attributeI16.m_DataArray.empty(), false);
EXPECT_EQ(attributeI16.m_Name, i16_Single);
EXPECT_EQ(attributeI16.m_Elements, numberOfElements);
EXPECT_EQ(attributeI16.m_Type, "short");
ASSERT_EQ(attributeI32.m_IsSingleValue, false);
ASSERT_EQ(attributeI32.m_DataArray.empty(), false);
EXPECT_EQ(attributeI32.m_Name, i32_Single);
EXPECT_EQ(attributeI32.m_Elements, numberOfElements);
EXPECT_EQ(attributeI32.m_Type, "int");
ASSERT_EQ(attributeI64.m_IsSingleValue, false);
ASSERT_EQ(attributeI64.m_DataArray.empty(), false);
EXPECT_EQ(attributeI64.m_Name, i64_Single);
EXPECT_EQ(attributeI64.m_Elements, numberOfElements);
EXPECT_EQ(attributeI64.m_Type, "long int");
ASSERT_EQ(attributeU8.m_IsSingleValue, false);
ASSERT_EQ(attributeU8.m_DataArray.empty(), false);
EXPECT_EQ(attributeU8.m_Name, u8_Single);
EXPECT_EQ(attributeU8.m_Elements, numberOfElements);
EXPECT_EQ(attributeU8.m_Type, "unsigned char");
ASSERT_EQ(attributeU16.m_IsSingleValue, false);
ASSERT_EQ(attributeU16.m_DataArray.empty(), false);
EXPECT_EQ(attributeU16.m_Name, u16_Single);
EXPECT_EQ(attributeU16.m_Elements, numberOfElements);
EXPECT_EQ(attributeU16.m_Type, "unsigned short");
ASSERT_EQ(attributeU32.m_IsSingleValue, false);
ASSERT_EQ(attributeU32.m_DataArray.empty(), false);
EXPECT_EQ(attributeU32.m_Name, u32_Single);
EXPECT_EQ(attributeU32.m_Elements, numberOfElements);
EXPECT_EQ(attributeU32.m_Type, "unsigned int");
ASSERT_EQ(attributeU64.m_IsSingleValue, false);
ASSERT_EQ(attributeU64.m_DataArray.empty(), false);
EXPECT_EQ(attributeU64.m_Name, u64_Single);
EXPECT_EQ(attributeU64.m_Elements, numberOfElements);
EXPECT_EQ(attributeU64.m_Type, "unsigned long int");
ASSERT_EQ(attributeFloat.m_IsSingleValue, false);
ASSERT_EQ(attributeFloat.m_DataArray.empty(), false);
EXPECT_EQ(attributeFloat.m_Name, float_Single);
EXPECT_EQ(attributeFloat.m_Elements, numberOfElements);
EXPECT_EQ(attributeFloat.m_Type, "float");
ASSERT_EQ(attributeDouble.m_IsSingleValue, false);
ASSERT_EQ(attributeDouble.m_DataArray.empty(), false);
EXPECT_EQ(attributeDouble.m_Name, double_Single);
EXPECT_EQ(attributeDouble.m_Elements, numberOfElements);
EXPECT_EQ(attributeDouble.m_Type, "double");
// Verify data
for (size_t index = 0; index < numberOfElements; index++)
{
EXPECT_EQ(attributeI8.m_DataArray[index], currentTestData.I8.at(index));
EXPECT_EQ(attributeI16.m_DataArray[index],
currentTestData.I16.at(index));
EXPECT_EQ(attributeI32.m_DataArray[index],
currentTestData.I32.at(index));
EXPECT_EQ(attributeU8.m_DataArray[index], currentTestData.U8.at(index));
EXPECT_EQ(attributeU16.m_DataArray[index],
currentTestData.U16.at(index));
EXPECT_EQ(attributeU32.m_DataArray[index],
currentTestData.U32.at(index));
EXPECT_EQ(attributeFloat.m_DataArray[index],
currentTestData.R32.at(index));
EXPECT_EQ(attributeDouble.m_DataArray[index],
currentTestData.R64.at(index));
}
}
TEST_F(ADIOSDefineAttributeTest, GetAttribute)
{
int mpiRank = 0, mpiSize = 1;
size_t numberOfElements = 10;
#ifdef ADIOS2_HAVE_MPI
MPI_Comm_rank(MPI_COMM_WORLD, &mpiRank);
MPI_Comm_size(MPI_COMM_WORLD, &mpiSize);
#endif
// Define unique data for each process
SmallTestData currentTestData =
generateNewSmallTestData(m_TestData, 0, mpiRank, mpiSize);
std::string mpiRankString = std::to_string(mpiRank);
std::string s3_Single = std::string("s3_Single_") + mpiRankString;
std::string i8_Single = std::string("i8_Single_") + mpiRankString;
std::string i16_Single = std::string("i16_Single_") + mpiRankString;
std::string i32_Single = std::string("i32_Single_") + mpiRankString;
std::string i64_Single = std::string("i64_Single_") + mpiRankString;
std::string u8_Single = std::string("u8_Single_") + mpiRankString;
std::string u16_Single = std::string("u16_Single_") + mpiRankString;
std::string u32_Single = std::string("u32_Single_") + mpiRankString;
std::string u64_Single = std::string("u64_Single_") + mpiRankString;
std::string float_Single = std::string("float_Single_") + mpiRankString;
std::string double_Single = std::string("double_Single_") + mpiRankString;
// Define ADIOS global value
io.DefineAttribute<std::string>(s3_Single, currentTestData.S3.data(),
3);
io.DefineAttribute<int8_t>(i8_Single, currentTestData.I8.data(),
numberOfElements);
io.DefineAttribute<int16_t>(i16_Single, currentTestData.I16.data(),
numberOfElements);
io.DefineAttribute<int32_t>(i32_Single, currentTestData.I32.data(),
numberOfElements);
io.DefineAttribute<int64_t>(i64_Single, currentTestData.I64.data(),
numberOfElements);
io.DefineAttribute<uint8_t>(u8_Single, currentTestData.U8.data(),
numberOfElements);
io.DefineAttribute<uint16_t>(u16_Single, currentTestData.U16.data(),
numberOfElements);
io.DefineAttribute<uint32_t>(u32_Single, currentTestData.U32.data(),
numberOfElements);
io.DefineAttribute<uint64_t>(u64_Single, currentTestData.U64.data(),
numberOfElements);
io.DefineAttribute<float>(float_Single, currentTestData.R32.data(),
numberOfElements);
io.DefineAttribute<double>(double_Single, currentTestData.R64.data(),
numberOfElements);
auto &attributeS3 = io.GetAttribute<std::string>(s3_Single);
auto &attributeI8 = io.GetAttribute<int8_t>(i8_Single);
auto &attributeI16 = io.GetAttribute<int16_t>(i16_Single);
auto &attributeI32 = io.GetAttribute<int32_t>(i32_Single);
auto &attributeI64 = io.GetAttribute<int64_t>(i64_Single);
auto &attributeU8 = io.GetAttribute<uint8_t>(i8_Single);
auto &attributeU16 = io.GetAttribute<uint16_t>(i16_Single);
auto &attributeU32 = io.GetAttribute<uint32_t>(i32_Single);
auto &attributeU64 = io.GetAttribute<uint64_t>(i64_Single);
auto &attributeFloat = io.GetAttribute<float>(float_Single);
auto &attributeDouble = io.GetAttribute<double>(double_Single);
// Verify the return type is as expected
::testing::StaticAssertTypeEq<decltype(attributeS3),
adios2::Attribute<std::string> &>();
::testing::StaticAssertTypeEq<decltype(attributeI8),
adios2::Attribute<int8_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeI16),
adios2::Attribute<int16_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeI32),
adios2::Attribute<int32_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeI64),
adios2::Attribute<int64_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU8),
adios2::Attribute<uint8_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU16),
adios2::Attribute<uint16_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU32),
adios2::Attribute<uint32_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeU64),
adios2::Attribute<uint64_t> &>();
::testing::StaticAssertTypeEq<decltype(attributeFloat),
adios2::Attribute<float> &>();
::testing::StaticAssertTypeEq<decltype(attributeDouble),
adios2::Attribute<double> &>();
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
// Verify the members are correct
ASSERT_EQ(attributeS3.m_IsSingleValue, false);
ASSERT_EQ(attributeS3.m_DataArray.empty(), false);
EXPECT_EQ(attributeS3.m_Name, s3_Single);
EXPECT_EQ(attributeS3.m_Elements, 3);
EXPECT_EQ(attributeS3.m_Type, "string");
ASSERT_EQ(attributeI8.m_IsSingleValue, false);
ASSERT_EQ(attributeI8.m_DataArray.empty(), false);
EXPECT_EQ(attributeI8.m_Name, i8_Single);
EXPECT_EQ(attributeI8.m_Elements, numberOfElements);
EXPECT_EQ(attributeI8.m_Type, "signed char");
ASSERT_EQ(attributeI16.m_IsSingleValue, false);
ASSERT_EQ(attributeI16.m_DataArray.empty(), false);
EXPECT_EQ(attributeI16.m_Name, i16_Single);
EXPECT_EQ(attributeI16.m_Elements, numberOfElements);
EXPECT_EQ(attributeI16.m_Type, "short");
ASSERT_EQ(attributeI32.m_IsSingleValue, false);
ASSERT_EQ(attributeI32.m_DataArray.empty(), false);
EXPECT_EQ(attributeI32.m_Name, i32_Single);
EXPECT_EQ(attributeI32.m_Elements, numberOfElements);
EXPECT_EQ(attributeI32.m_Type, "int");
ASSERT_EQ(attributeI64.m_IsSingleValue, false);
ASSERT_EQ(attributeI64.m_DataArray.empty(), false);
EXPECT_EQ(attributeI64.m_Name, i64_Single);
EXPECT_EQ(attributeI64.m_Elements, numberOfElements);
EXPECT_EQ(attributeI64.m_Type, "long int");
ASSERT_EQ(attributeU8.m_IsSingleValue, false);
ASSERT_EQ(attributeU8.m_DataArray.empty(), false);
EXPECT_EQ(attributeU8.m_Name, u8_Single);
EXPECT_EQ(attributeU8.m_Elements, numberOfElements);
EXPECT_EQ(attributeU8.m_Type, "unsigned char");
ASSERT_EQ(attributeU16.m_IsSingleValue, false);
ASSERT_EQ(attributeU16.m_DataArray.empty(), false);
EXPECT_EQ(attributeU16.m_Name, u16_Single);
EXPECT_EQ(attributeU16.m_Elements, numberOfElements);
EXPECT_EQ(attributeU16.m_Type, "unsigned short");
ASSERT_EQ(attributeU32.m_IsSingleValue, false);
ASSERT_EQ(attributeU32.m_DataArray.empty(), false);
EXPECT_EQ(attributeU32.m_Name, u32_Single);
EXPECT_EQ(attributeU32.m_Elements, numberOfElements);
EXPECT_EQ(attributeU32.m_Type, "unsigned int");
ASSERT_EQ(attributeU64.m_IsSingleValue, false);
ASSERT_EQ(attributeU64.m_DataArray.empty(), false);
EXPECT_EQ(attributeU64.m_Name, u64_Single);
EXPECT_EQ(attributeU64.m_Elements, numberOfElements);
EXPECT_EQ(attributeU64.m_Type, "unsigned long int");
ASSERT_EQ(attributeFloat.m_IsSingleValue, false);
ASSERT_EQ(attributeFloat.m_DataArray.empty(), false);
EXPECT_EQ(attributeFloat.m_Name, float_Single);
EXPECT_EQ(attributeFloat.m_Elements, numberOfElements);
EXPECT_EQ(attributeFloat.m_Type, "float");
ASSERT_EQ(attributeDouble.m_IsSingleValue, false);
ASSERT_EQ(attributeDouble.m_DataArray.empty(), false);
EXPECT_EQ(attributeDouble.m_Name, double_Single);
EXPECT_EQ(attributeDouble.m_Elements, numberOfElements);
EXPECT_EQ(attributeDouble.m_Type, "double");
// Verify data
for (size_t index = 0; index < numberOfElements; index++)
{
EXPECT_EQ(attributeI8.m_DataArray[index], currentTestData.I8.at(index));
EXPECT_EQ(attributeI16.m_DataArray[index],
currentTestData.I16.at(index));
EXPECT_EQ(attributeI32.m_DataArray[index],
currentTestData.I32.at(index));
EXPECT_EQ(attributeU8.m_DataArray[index], currentTestData.U8.at(index));
EXPECT_EQ(attributeU16.m_DataArray[index],
currentTestData.U16.at(index));
EXPECT_EQ(attributeU32.m_DataArray[index],
currentTestData.U32.at(index));
EXPECT_EQ(attributeFloat.m_DataArray[index],
currentTestData.R32.at(index));
EXPECT_EQ(attributeDouble.m_DataArray[index],
currentTestData.R64.at(index));
}
}
int main(int argc, char **argv)
{
#ifdef ADIOS2_HAVE_MPI
MPI_Init(nullptr, nullptr);
#endif
::testing::InitGoogleTest(&argc, argv);
int result = RUN_ALL_TESTS();
#ifdef ADIOS2_HAVE_MPI
MPI_Finalize();
#endif
return result;
}