Newer
Older
* Distributed under the OSI-approved Apache License, Version 2.0. See
* accompanying file Copyright.txt for details.
*
* BP1Writer.cpp
*
* Created on: Feb 1, 2017
* Author: wfg
*/
/// \cond EXCLUDE_FROM_DOXYGEN
#include "utilities/format/bp1/BP1Writer.h"
/// \endcond
namespace adios
{
namespace format
{
std::size_t BP1Writer::GetProcessGroupIndexSize(
const std::string name, const std::string timeStepName,
const std::size_t numberOfTransports) const noexcept
{
// pgIndex + list of methods (transports)
return (name.length() + timeStepName.length() + 23) +
(3 +
numberOfTransports); // should be sufficient for data and metadata
// pgindices
}
void BP1Writer::WriteProcessGroupIndex(
const bool isFortran, const std::string name, const std::uint32_t processID,
const std::vector<std::shared_ptr<Transport>> &transports,
capsule::STLVector &heap, BP1MetadataSet &metadataSet) const noexcept
{
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
std::vector<char> &metadataBuffer = metadataSet.PGIndex.Buffer;
std::vector<char> &dataBuffer = heap.m_Data;
metadataSet.DataPGLengthPosition = dataBuffer.size();
dataBuffer.insert(dataBuffer.end(), 8, 0); // skip pg length (8)
const std::size_t metadataPGLengthPosition = metadataBuffer.size();
metadataBuffer.insert(metadataBuffer.end(), 2, 0); // skip pg length (2)
// write name to metadata
WriteNameRecord(name, metadataBuffer);
// write if host language Fortran in metadata and data
const char hostFortran =
(isFortran) ? 'y' : 'n'; // if host language is fortran
CopyToBuffer(metadataBuffer, &hostFortran);
CopyToBuffer(dataBuffer, &hostFortran);
// write name in data
WriteNameRecord(name, dataBuffer);
// processID in metadata,
CopyToBuffer(metadataBuffer, &processID);
// skip coordination var in data ....what is coordination var?
dataBuffer.insert(dataBuffer.end(), 4, 0);
// time step name to metadata and data
const std::string timeStepName(std::to_string(metadataSet.TimeStep));
WriteNameRecord(timeStepName, metadataBuffer);
WriteNameRecord(timeStepName, dataBuffer);
// time step to metadata and data
CopyToBuffer(metadataBuffer, &metadataSet.TimeStep);
CopyToBuffer(dataBuffer, &metadataSet.TimeStep);
// offset to pg in data in metadata which is the current absolute position
CopyToBuffer(metadataBuffer, reinterpret_cast<std::uint64_t *>(
&heap.m_DataAbsolutePosition));
// Back to writing metadata pg index length (length of group)
const std::uint16_t metadataPGIndexLength =
metadataBuffer.size() - metadataPGLengthPosition -
2; // without length of group record
CopyToBuffer(metadataBuffer, metadataPGLengthPosition,
&metadataPGIndexLength);
// DONE With metadataBuffer
// here write method in data
const std::vector<std::uint8_t> methodIDs = GetMethodIDs(transports);
const std::uint8_t methodsCount = methodIDs.size();
CopyToBuffer(dataBuffer, &methodsCount); // count
const std::uint16_t methodsLength =
methodIDs.size() *
3; // methodID (1) + method params length(2), no parameters for now
CopyToBuffer(dataBuffer, &methodsLength); // length
for (const auto methodID : methodIDs)
{
CopyToBuffer(dataBuffer, &methodID); // method ID,
dataBuffer.insert(dataBuffer.end(), 2,
0); // skip method params length = 0 (2 bytes) for now
}
// update absolute position
heap.m_DataAbsolutePosition +=
dataBuffer.size() - metadataSet.DataPGLengthPosition;
// pg vars count and position
metadataSet.DataPGVarsCount = 0;
metadataSet.DataPGVarsCountPosition = dataBuffer.size();
// add vars count and length
dataBuffer.insert(dataBuffer.end(), 12, 0);
heap.m_DataAbsolutePosition += 12; // add vars count and length
++metadataSet.DataPGCount;
metadataSet.DataPGIsOpen = true;
}
void BP1Writer::Advance(BP1MetadataSet &metadataSet, capsule::STLVector &buffer)
{
}
void BP1Writer::Close(BP1MetadataSet &metadataSet, capsule::STLVector &heap,
Transport &transport, bool &isFirstClose,
const bool doAggregation) const noexcept
{
if (metadataSet.Log.IsActive == true)
metadataSet.Log.Timers[0].SetInitialTime();
if (isFirstClose == true)
{
if (metadataSet.DataPGIsOpen == true)
FlattenData(metadataSet, heap);
if (metadataSet.Log.IsActive == true)
metadataSet.Log.Timers[0].SetInitialTime();
if (doAggregation ==
true) // N-to-M where 1 <= M <= N-1, might need a new
// Log metadataSet.Log.m_Timers just for
// aggregation
{
// here call aggregator
}
isFirstClose = false;
}
if (doAggregation == true) // N-to-M where 1 <= M <= N-1
{
// here call aggregator to select transports for Write and Close
}
else // N-to-N
transport.Write(heap.m_Data.data(), heap.m_Data.size()); // single write
transport.Close();
}
}
std::string BP1Writer::GetRankProfilingLog(
const int rank, const BP1MetadataSet &metadataSet,
const std::vector<std::shared_ptr<Transport>> &transports) const noexcept
{
auto lf_WriterTimer = [](std::string &rankLog,
const profiling::Timer &timer) {
rankLog += "'" + timer.m_Process + "_" + timer.GetUnits() + "': " +
std::to_string(timer.m_ProcessTime);
// prepare string dictionary per rank
std::string rankLog("'rank_" + std::to_string(rank) + "': { ");
auto &profiler = metadataSet.Log;
rankLog += "'bytes': " + std::to_string(profiler.TotalBytes[0]) + ", ";
lf_WriterTimer(rankLog, profiler.Timers[0]);
for (unsigned int t = 0; t < transports.size(); ++t)
{
rankLog += "'transport_" + std::to_string(t) + "': { ";
rankLog += "'lib': '" + transports[t]->m_Type + "', ";
{
lf_WriterTimer(rankLog, transports[t]->m_Profiler.Timers[i]);
if (i < 2)
{
rankLog += ", ";
}
else
{
rankLog += " ";
}
}
if (t == transports.size() - 1) // last element
{
rankLog += "}";
}
else
{
rankLog += "},";
}
}
// PRIVATE FUNCTIONS
void BP1Writer::WriteDimensionsRecord(
std::vector<char> &buffer, const std::vector<std::size_t> &localDimensions,
const std::vector<std::size_t> &globalDimensions,
const std::vector<std::size_t> &globalOffsets, const unsigned int skip,
const bool addType) const noexcept
{
auto lf_WriteFlaggedDim = [](std::vector<char> &buffer, const char no,
const std::size_t dimension) {
CopyToBuffer(buffer, &no);
reinterpret_cast<const std::uint64_t *>(&dimension));
};
// BODY Starts here
if (globalDimensions.empty())
if (addType == true)
{
constexpr char no =
'n'; // dimension format unsigned int value (not using
// memberID for now)
for (const auto &localDimension : localDimensions)
{
lf_WriteFlaggedDim(buffer, no, localDimension);
buffer.insert(buffer.end(), skip, 0);
}
}
else
{
for (const auto &localDimension : localDimensions)
{
CopyToBuffer(buffer, reinterpret_cast<const std::uint64_t *>(
&localDimension));
buffer.insert(buffer.end(), skip, 0);
}
}
if (addType == true)
{
constexpr char no = 'n';
for (unsigned int d = 0; d < localDimensions.size(); ++d)
{
lf_WriteFlaggedDim(buffer, no, localDimensions[d]);
lf_WriteFlaggedDim(buffer, no, globalDimensions[d]);
lf_WriteFlaggedDim(buffer, no, globalOffsets[d]);
}
}
else
{
for (unsigned int d = 0; d < localDimensions.size(); ++d)
{
CopyToBuffer(buffer, reinterpret_cast<const std::uint64_t *>(
&localDimensions[d]));
CopyToBuffer(buffer, reinterpret_cast<const std::uint64_t *>(
&globalDimensions[d]));
CopyToBuffer(buffer, reinterpret_cast<const std::uint64_t *>(
&globalOffsets[d]));
}
}
}
}
void BP1Writer::WriteNameRecord(const std::string name,
std::vector<char> &buffer) const noexcept
{
const std::uint16_t length = name.length();
CopyToBuffer(buffer, &length);
CopyToBuffer(buffer, name.c_str(), length);
}
BP1Index &
BP1Writer::GetBP1Index(const std::string name,
std::unordered_map<std::string, BP1Index> &indices,
bool &isNew) const noexcept
{
auto itName = indices.find(name);
if (itName == indices.end())
{
indices.emplace(name, BP1Index(indices.size()));
isNew = true;
return indices.at(name);
}
isNew = false;
return itName->second;
}
void BP1Writer::FlattenData(BP1MetadataSet &metadataSet,
capsule::STLVector &heap) const noexcept
{
auto &buffer = heap.m_Data;
// vars count and Length (only for PG)
CopyToBuffer(buffer, metadataSet.DataPGVarsCountPosition,
&metadataSet.DataPGVarsCount);
const std::uint64_t varsLength = buffer.size() -
metadataSet.DataPGVarsCountPosition - 8 -
4; // without record itself and vars count
CopyToBuffer(buffer, metadataSet.DataPGVarsCountPosition + 4, &varsLength);
// attributes (empty for now) count (4) and length (8) are zero by moving
// positions in time step zero
buffer.insert(buffer.end(), 12, 0);
heap.m_DataAbsolutePosition += 12;
// Finish writing pg group length
const std::uint64_t dataPGLength =
buffer.size() - metadataSet.DataPGLengthPosition -
8; // without record itself, 12 due to empty attributes
CopyToBuffer(buffer, metadataSet.DataPGLengthPosition, &dataPGLength);
++metadataSet.TimeStep;
metadataSet.DataPGIsOpen = false;
}
void BP1Writer::FlattenMetadata(BP1MetadataSet &metadataSet,
capsule::STLVector &heap) const noexcept
{
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
auto lf_IndexCountLength =
[](std::unordered_map<std::string, BP1Index> &indices,
std::uint32_t &count, std::uint64_t &length) {
count = indices.size();
length = 0;
for (auto &indexPair : indices) // set each index length
{
auto &indexBuffer = indexPair.second.Buffer;
const std::uint32_t indexLength = indexBuffer.size() - 4;
CopyToBuffer(indexBuffer, 0, &indexLength);
length += indexBuffer.size(); // overall length
}
};
auto lf_FlattenIndices =
[](const std::uint32_t count, const std::uint64_t length,
const std::unordered_map<std::string, BP1Index> &indices,
std::vector<char> &buffer) {
CopyToBuffer(buffer, &count);
CopyToBuffer(buffer, &length);
for (const auto &indexPair : indices) // set each index length
{
const auto &indexBuffer = indexPair.second.Buffer;
CopyToBuffer(buffer, indexBuffer.data(), indexBuffer.size());
}
};
// Finish writing metadata counts and lengths
// PG Index
const std::uint64_t pgCount = metadataSet.DataPGCount;
const std::uint64_t pgLength = metadataSet.PGIndex.Buffer.size();
// var index count and length (total), and each index length
std::uint32_t varsCount;
std::uint64_t varsLength;
lf_IndexCountLength(metadataSet.VarsIndices, varsCount, varsLength);
// attribute index count and length, and each index length
std::uint32_t attributesCount;
std::uint64_t attributesLength;
lf_IndexCountLength(metadataSet.AttributesIndices, attributesCount,
attributesLength);
const std::size_t footerSize = (pgLength + 16) + (varsLength + 12) +
(attributesLength + 12) +
metadataSet.MiniFooterSize;
auto &buffer = heap.m_Data;
buffer.reserve(buffer.size() + footerSize); // reserve data to fit metadata,
// must replace with growth buffer
// strategy
// write pg index
CopyToBuffer(buffer, &pgCount);
CopyToBuffer(buffer, &pgLength);
CopyToBuffer(buffer, metadataSet.PGIndex.Buffer.data(), pgLength);
// Vars indices
lf_FlattenIndices(varsCount, varsLength, metadataSet.VarsIndices, buffer);
// Attribute indices
lf_FlattenIndices(attributesCount, attributesLength,
metadataSet.AttributesIndices, buffer);
// getting absolute offsets, minifooter is 28 bytes for now
const std::uint64_t offsetPGIndex = heap.m_DataAbsolutePosition;
const std::uint64_t offsetVarsIndex = offsetPGIndex + (pgLength + 16);
const std::uint64_t offsetAttributeIndex =
offsetVarsIndex + (varsLength + 12);
CopyToBuffer(buffer, &offsetPGIndex);
CopyToBuffer(buffer, &offsetVarsIndex);
CopyToBuffer(buffer, &offsetAttributeIndex);
// version
if (IsLittleEndian())
{
const std::uint8_t endian = 0;
CopyToBuffer(buffer, &endian);
buffer.insert(buffer.end(), 2, 0);
CopyToBuffer(buffer, &m_Version);
}
else
{
}
if (metadataSet.Log.IsActive == true)
metadataSet.Log.TotalBytes.push_back(heap.m_DataAbsolutePosition);
}
} // end namespace format
} // end namespace adios