Skip to content
Snippets Groups Projects
Commit 6c071df2 authored by Mathieu Benoit's avatar Mathieu Benoit
Browse files
parents df7664e7 0634f7ea
No related branches found
No related tags found
No related merge requests found
{
"cmake.configureOnOpen": false
}
\ No newline at end of file
......@@ -2,6 +2,8 @@ package main
import (
"flag"
"fmt"
"os"
"time"
log "github.com/sirupsen/logrus"
......@@ -12,6 +14,15 @@ import (
"gitlab.cern.ch/bnl-omega-go/io/writers"
)
func MakeMeasurementFolder(base_folder, basename string) string {
t := time.Now()
folderstr := fmt.Sprintf("%v/%v_%d-%02d-%02dT%02dh%02dm%02ds%03dms", base_folder, basename, t.Year(), t.Month(), t.Day(), t.Hour(), t.Minute(), t.Second(), t.Nanosecond()/1e6)
if err := os.MkdirAll(folderstr, os.ModePerm); err != nil {
log.Fatal(err)
}
return folderstr
}
func main() {
serialport := flag.String("sp", "/dev/ttyUSB0", "Instrument IP")
......@@ -25,20 +36,31 @@ func main() {
avg := flag.Int("avg", 10, "Number of points for averaging, if 1, averaging is turned off")
vmin := flag.Float64("vmin", 0, "Minimum (absolute) voltage value of the IV Sweep")
vmax := flag.Float64("vmax", -5, "Max (absolute) voltage value of the IV Sweep")
delay := flag.Float64("delay", 0.5, "Delay between source and measure (s)")
delay := flag.Int64("delay", 500, "Delay between source and measure (ms)")
nplc := flag.Float64("nplc", 5, "Aperture for the voltage and current measurements (s)")
//autorange := flag.Bool("autor", false, "Use auto current measurement range")
//autoaper := flag.Bool("autoa", false, "Use auto current aperture range")
autorange := flag.Bool("autor", false, "Use auto current measurement range")
autoaper := flag.Bool("autoa", false, "Use auto current aperture range")
//updown := flag.Bool("ud", true, "Perform sweep and reverse sweep, or not")
basename := flag.String("f", "", "CSV File to write the results in")
folder := flag.String("f", "", "base folders to write results in")
basename := flag.String("b", "IV", "basename of saved files")
ch1label := flag.String("ch1", "Diode", "basename for channel 1")
ch2label := flag.String("ch2", "GR", "basename for channel 2")
rootfile := flag.Bool("rf", false, "Write root files")
pngfile := flag.Bool("png", false, "write png files")
csvfile := flag.Bool("csv", false, "write CSV file")
emulation := flag.Bool("emulation", false, "write CSV file")
loglevel := flag.String("log", "INFO", "Set verbosity level of the tool")
flag.Parse()
log.Infof("Performing IV with 2 x B6517B, npoints=%v, nplc=%v, vmin=%v, vmax=%v, delay=%v, avg=%v", *npoints, *nplc, *vmin, *vmax, *delay, *avg)
log.Infof("Setting logging filtering to %v", *loglevel)
switch *loglevel {
case "INFO":
log.SetLevel(log.InfoLevel)
......@@ -54,49 +76,55 @@ func main() {
log.SetLevel(log.InfoLevel)
}
log.Info("Performing IV with 2 x B6517B, npoints=%v, nplc=%v, vmin=%v, vmax=%v, delay=%v, avg=%v", *npoints, *nplc, *vmin, *vmax, *delay, *avg)
flag.Parse()
log.SetFormatter(&log.TextFormatter{
DisableLevelTruncation: true,
FullTimestamp: true,
})
// B6517B
serialctrl := Protocol.USBSerialController{}
serialctrl.Init(*serialport)
serialctrl.Init(*serialport, *emulation)
emeter_ch1 := electrometer.Electrometer{}
emeter_ch2 := electrometer.Electrometer{}
emeter_ch1 := electrometer.Electrometer{Emulation: *emulation}
emeter_ch2 := electrometer.Electrometer{Emulation: *emulation}
// Check if electrometers are alive
emeter_ch1.Init(&serialctrl, "emeter_ch1", *addr1)
emeter_ch1.IDN()
emeter_ch2.Init(&serialctrl, "bla", *addr2)
emeter_ch2.Init(&serialctrl, "emeter_ch2", *addr2)
emeter_ch2.IDN()
//emeter_ch1.SetMeterConnect(true)
// Initialize setup
emeter_ch1.SetMeterConnect(true)
emeter_ch1.SetCurrentMeasurement()
emeter_ch1.SetOutput(true)
//emeter_ch1.SetNPLC(*nplc)
emeter_ch1.SetZeroCheck(false)
//emeter_ch2.SetMeterConnect(true)
emeter_ch2.SetMeterConnect(true)
emeter_ch2.SetCurrentMeasurement()
emeter_ch2.SetOutput(true)
//emeter_ch2.SetNPLC(*nplc)
emeter_ch2.SetZeroCheck(false)
// if *autorange {
// emeter_ch1.SetAutoCurrentRange(true)
// emeter_ch2.SetAutoCurrentRange(true)
// Configure range
if *autorange {
emeter_ch1.SetAutoCurrentRange(true)
emeter_ch2.SetAutoCurrentRange(true)
// } else {
// emeter_ch1.SetAutoCurrentRange(false)
// emeter_ch2.SetAutoCurrentRange(false)
// }
} else {
emeter_ch1.SetAutoCurrentRange(false)
emeter_ch2.SetAutoCurrentRange(false)
}
// if *autoaper {
// emeter_ch1.SetAutoCurrentAperture(true)
// emeter_ch2.SetAutoCurrentAperture(true)
// } else {
// emeter_ch1.SetAutoCurrentAperture(false)
// emeter_ch2.SetAutoCurrentAperture(false)
// }
if *autoaper {
emeter_ch1.SetAutoCurrentAperture(true)
emeter_ch2.SetAutoCurrentAperture(true)
} else {
emeter_ch1.SetAutoCurrentAperture(false)
emeter_ch2.SetAutoCurrentAperture(false)
emeter_ch1.SetNPLC(*nplc)
emeter_ch2.SetNPLC(*nplc)
}
if *avg > 1 {
emeter_ch1.ConfigureAveraging(*avg, true)
......@@ -108,53 +136,71 @@ func main() {
}
//Configure source
if *vmax > 100 {
emeter_ch1.SetVoltageRange(1000)
emeter_ch2.SetVoltageRange(1000)
} else {
emeter_ch1.SetVoltageRange(100)
emeter_ch2.SetVoltageRange(100)
}
emeter_ch1.SetSourceVoltage(0)
emeter_ch2.SetSourceVoltage(0)
// Prepare Voltage ram parray
bias_points := make([]float64, *npoints)
vstep := (*vmax - *vmin) / (float64(*npoints) - 1)
for i := 0; i < *npoints; i++ {
bias_points[i] = float64(i) * vstep
}
//Result data structure
type datap struct {
Voltage, Current1, Current2 float64
}
data := make([]datap, *npoints*2)
//IV from Low to High voltage
for i := 0; i < *npoints; i++ {
emeter_ch1.SetSourceVoltage(bias_points[i])
time.Sleep(time.Duration(*delay) * (time.Second))
time.Sleep(time.Duration(*delay) * (time.Millisecond))
voltage1, current_ch1, _, _, _ := emeter_ch1.Measure()
voltage2, current_ch2, _, _, _ := emeter_ch2.Measure()
voltage := voltage1
if voltage == 0 {
voltage = voltage2
}
log.Printf("Voltage CH1 : %v V, Voltage CH2 : %v V, Current CH1 : %v A, Current CH2 : %v A", voltage1, voltage2, current_ch1, current_ch2)
log.Infof("Voltage CH1 : %v V, Voltage CH2 : %v V, Current CH1 : %v A, Current CH2 : %v A", voltage1, voltage2, current_ch1, current_ch2)
data[i] = datap{Voltage: voltage, Current1: current_ch1, Current2: current_ch2}
}
//IV From High to Low voltage
for i := *npoints - 1; i >= 0; i-- {
emeter_ch1.SetSourceVoltage(bias_points[i])
time.Sleep(time.Duration(*delay) * (time.Second))
time.Sleep(time.Duration(*delay) * (time.Millisecond))
voltage1, current_ch1, _, _, _ := emeter_ch1.Measure()
voltage2, current_ch2, _, _, _ := emeter_ch2.Measure()
voltage := voltage1
if voltage == 0 {
voltage = voltage2
}
log.Info("Voltage CH1 : %v V, Voltage CH2 : %v V, Current CH1 : %v A, Current CH2 : %v A", voltage1, voltage2, current_ch1, current_ch2)
log.Infof("Voltage CH1 : %v V, Voltage CH2 : %v V, Current CH1 : %v A, Current CH2 : %v A", voltage1, voltage2, current_ch1, current_ch2)
data[*npoints+i] = datap{Voltage: voltage, Current1: current_ch1, Current2: current_ch2}
}
//reset source to 0V
emeter_ch1.SetSourceVoltage(0)
emeter_ch2.SetSourceVoltage(0)
//Shut output
emeter_ch1.SetOutput(false)
emeter_ch2.SetOutput(false)
// Fill up data rrays
vup, iup1, iup2, vdown, idown1, idown2 := make([]float64, *npoints), make([]float64, *npoints), make([]float64, *npoints), make([]float64, *npoints), make([]float64, *npoints), make([]float64, *npoints)
for i, v := range data {
log.Info("point %v : %v V, %v A, %v A", i, v.Voltage, v.Current1, v.Current2)
log.Infof("point %v : %v V, %v A, %v A", i, v.Voltage, v.Current1, v.Current2)
if i < *npoints {
vup[i] = v.Voltage
iup1[i] = v.Current1
......@@ -166,27 +212,34 @@ func main() {
}
}
// Write results to file
resultfolder := MakeMeasurementFolder(*folder, *basename)
if *rootfile {
log.Infof("Writing result to ROOT file %v", resultfolder+"/"+*basename+".root")
wr := writers.ROOTWriter{}
wr.Init(*basename + ".root")
wr.Write("Voltage (V)", "Current (A)", "IV Curve 1 (Up)", vup, iup1)
wr.Write("Voltage (V)", "Current (A)", "IV Curve 1 (Down)", vdown, idown1)
wr.Write("Voltage (V)", "Current (A)", "IV Curve 2 (Up)", vup, iup2)
wr.Write("Voltage (V)", "Current (A)", "IV Curve 2 (Down)", vdown, idown2)
wr.Init(resultfolder + "/" + *basename + ".root")
wr.Write("Voltage (V)", "Current (A)", fmt.Sprintf("IV Curve %v (Up)", *ch1label), vup, iup1)
wr.Write("Voltage (V)", "Current (A)", fmt.Sprintf("IV Curve %v (Down)", *ch1label), vdown, idown1)
wr.Write("Voltage (V)", "Current (A)", fmt.Sprintf("IV Curve %v (Up)", *ch2label), vup, iup2)
wr.Write("Voltage (V)", "Current (A)", fmt.Sprintf("IV Curve %v (Down)", *ch2label), vdown, idown2)
wr.Close()
}
if *pngfile {
io.WriteWaveformToPNG("Voltage (V)", "Current (A)", "IV Curve 1 (Up)", *basename+"_1_up.png", vup, iup1)
io.WriteWaveformToPNG("Voltage (V)", "Current (A)", "IV Curve 1 (Down)", *basename+"_1_down.png", vdown, idown1)
io.WriteWaveformToPNG("Voltage (V)", "Current (A)", "IV Curve 2 (Up)", *basename+"_2_up.png", vup, iup2)
io.WriteWaveformToPNG("Voltage (V)", "Current (A)", "IV Curve 2 (Down)", *basename+"_2_down.png", vdown, idown2)
log.Infof("Writing plots to %v_%v/%v_up/down.png", resultfolder+"/"+*basename, *ch1label, *ch2label)
io.WriteWaveformToPNG("Voltage (V)", "Current (A)", "IV Curve 1 (Up)", resultfolder+"/"+*basename+fmt.Sprintf("_%v_up.png", *ch1label), vup, iup1)
io.WriteWaveformToPNG("Voltage (V)", "Current (A)", "IV Curve 1 (Down)", resultfolder+"/"+*basename+fmt.Sprintf("_%v_down.png", *ch1label), vdown, idown1)
io.WriteWaveformToPNG("Voltage (V)", "Current (A)", "IV Curve 2 (Up)", resultfolder+"/"+*basename+fmt.Sprintf("_%v_up.png", *ch2label), vup, iup2)
io.WriteWaveformToPNG("Voltage (V)", "Current (A)", "IV Curve 2 (Down)", resultfolder+"/"+*basename+fmt.Sprintf("_%v_down.png", *ch2label), vdown, idown2)
}
if *csvfile {
io.WriteWaveformToCSV("Voltage (V)", "Current (A)", "IV Curve 1 (Up)", *basename+"_1_up.csv", vup, iup1)
io.WriteWaveformToCSV("Voltage (V)", "Current (A)", "IV Curve 1 (Down)", *basename+"_1_down.csv", vdown, idown1)
io.WriteWaveformToCSV("Voltage (V)", "Current (A)", "IV Curve 2 (Up)", *basename+"_2_up.csv", vup, iup2)
io.WriteWaveformToCSV("Voltage (V)", "Current (A)", "IV Curve 2 (Down)", *basename+"_2_down.csv", vdown, idown2)
log.Infof("Writing plots to %v_1/2_up/down.csv", *basename)
io.WriteWaveformToCSV("Voltage (V)", "Current (A)", "IV Curve 1 (Up)", resultfolder+"/"+*basename+fmt.Sprintf("_%v_up.csv", *ch1label), vup, iup1)
io.WriteWaveformToCSV("Voltage (V)", "Current (A)", "IV Curve 1 (Down)", resultfolder+"/"+*basename+fmt.Sprintf("_%v_down.csv", *ch1label), vdown, idown1)
io.WriteWaveformToCSV("Voltage (V)", "Current (A)", "IV Curve 2 (Up)", resultfolder+"/"+*basename+fmt.Sprintf("_%v_up.csv", *ch2label), vup, iup2)
io.WriteWaveformToCSV("Voltage (V)", "Current (A)", "IV Curve 2 (Down)", resultfolder+"/"+*basename+fmt.Sprintf("_%v_down.csv", *ch2label), vdown, idown2)
}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment