Skip to content
Snippets Groups Projects
Commit f8832ffe authored by Federico Montesino Pouzols's avatar Federico Montesino Pouzols Committed by GitHub
Browse files

Merge pull request #17179 from mantidproject/17177_CFS_Remove_property_logging

Indirect ConvolutionFitSequential -  remove property logging
parents cc58df49 9fbe2e8a
No related merge requests found
......@@ -133,12 +133,12 @@ void ConvolutionFitSequential::exec() {
const std::string minimizer = getProperty("Minimizer");
// Inspect function to obtain fit Type and background
std::vector<std::string> functionValues = findValuesFromFunction(function);
const std::string LorentzNum = functionValues[0];
const std::string funcName = functionValues[1];
const auto functionValues = findValuesFromFunction(function);
const auto LorentzNum = functionValues[0];
const auto funcName = functionValues[1];
// Check if a delta function is being used
bool delta = false;
auto delta = false;
std::string usingDelta = "false";
auto pos = function.find("Delta");
if (pos != std::string::npos) {
......@@ -146,14 +146,14 @@ void ConvolutionFitSequential::exec() {
usingDelta = "true";
}
// Add logger information
// Log information to result log
m_log.information("Input files: " + inputWs->getName());
m_log.information("Fit type: Delta=" + usingDelta + "; Lorentzians=" +
LorentzNum);
m_log.information("Background type: " + backType);
// Output workspace name
std::string outputWsName = inputWs->getName();
auto outputWsName = inputWs->getName();
pos = outputWsName.rfind('_');
if (pos != std::string::npos) {
outputWsName = outputWsName.substr(0, pos + 1);
......@@ -180,14 +180,14 @@ void ConvolutionFitSequential::exec() {
// Construct plotpeak string
std::string plotPeakInput;
for (int i = specMin; i < specMax + 1; i++) {
std::string nextWs = tempFitWsName + ",i";
auto nextWs = tempFitWsName + ",i";
nextWs += std::to_string(i);
plotPeakInput += nextWs + ";";
plotPeakStringProg.report("Constructing PlotPeak name");
}
// passWSIndex
bool passIndex = false;
auto passIndex = false;
if (funcName.find("Diff") != std::string::npos ||
funcName.find("Stretched") != std::string::npos) {
passIndex = true;
......@@ -212,22 +212,21 @@ void ConvolutionFitSequential::exec() {
// Delete workspaces
Progress deleteProgress(this, 0.90, 0.91, 2);
auto deleter = createChildAlgorithm("DeleteWorkspace");
auto deleter = createChildAlgorithm("DeleteWorkspace", -1.0, -1.0, false);
deleter->setProperty("WorkSpace",
outputWsName + "_NormalisedCovarianceMatrices");
deleter->executeAsChildAlg();
deleteProgress.report("Deleting PlotPeak Output");
deleter = createChildAlgorithm("DeleteWorkspace");
deleter->setProperty("WorkSpace", outputWsName + "_Parameters");
deleter->executeAsChildAlg();
deleteProgress.report("Deleting PlotPeak Output");
std::string paramTableName = outputWsName + "_Parameters";
const auto paramTableName = outputWsName + "_Parameters";
AnalysisDataService::Instance().add(paramTableName, outputWs);
// Construct output workspace
std::string resultWsName = outputWsName + "_Result";
const auto resultWsName = outputWsName + "_Result";
Progress workflowProg(this, 0.91, 0.94, 4);
auto paramNames = std::vector<std::string>();
......@@ -253,7 +252,6 @@ void ConvolutionFitSequential::exec() {
// Run calcEISF if Delta
if (delta) {
auto columns = outputWs->getColumnNames();
calculateEISF(outputWs);
}
......@@ -282,7 +280,7 @@ void ConvolutionFitSequential::exec() {
AnalysisDataService::Instance().addOrReplace(resultWsName, resultWs);
// Handle sample logs
auto logCopier = createChildAlgorithm("CopyLogs");
auto logCopier = createChildAlgorithm("CopyLogs", -1.0, -1.0, false);
logCopier->setProperty("InputWorkspace", inputWs);
logCopier->setProperty("OutputWorkspace", resultWs);
logCopier->executeAsChildAlg();
......@@ -302,7 +300,7 @@ void ConvolutionFitSequential::exec() {
Progress logAdderProg(this, 0.96, 0.97, 6);
// Add String Logs
auto logAdder = createChildAlgorithm("AddSampleLog");
auto logAdder = createChildAlgorithm("AddSampleLog", -1.0, -1.0, false);
for (auto &sampleLogString : sampleLogStrings) {
logAdder->setProperty("Workspace", resultWs);
logAdder->setProperty("LogName", sampleLogString.first);
......@@ -323,7 +321,7 @@ void ConvolutionFitSequential::exec() {
}
// Copy Logs to GroupWorkspace
logCopier = createChildAlgorithm("CopyLogs", 0.97, 0.98, true);
logCopier = createChildAlgorithm("CopyLogs", 0.97, 0.98, false);
logCopier->setProperty("InputWorkspace", resultWs);
std::string groupName = outputWsName + "_Workspaces";
logCopier->setProperty("OutputWorkspace", groupName);
......@@ -333,12 +331,12 @@ void ConvolutionFitSequential::exec() {
WorkspaceGroup_sptr groupWs =
AnalysisDataService::Instance().retrieveWS<WorkspaceGroup>(outputWsName +
"_Workspaces");
auto groupWsNames = groupWs->getNames();
auto renamer = createChildAlgorithm("RenameWorkspace");
const auto groupWsNames = groupWs->getNames();
auto renamer = createChildAlgorithm("RenameWorkspace", -1.0, -1.0, false);
Progress renamerProg(this, 0.98, 1.0, specMax + 1);
for (int i = specMin; i < specMax + 1; i++) {
renamer->setProperty("InputWorkspace", groupWsNames.at(i - specMin));
std::string outName = outputWsName + "_";
auto outName = outputWsName + "_";
outName += std::to_string(i);
outName += "_Workspace";
renamer->setProperty("OutputWorkspace", outName);
......@@ -482,15 +480,15 @@ void ConvolutionFitSequential::convertInputToElasticQ(
void ConvolutionFitSequential::calculateEISF(
API::ITableWorkspace_sptr &tableWs) {
// Get height data from parameter table
auto columns = tableWs->getColumnNames();
std::string height = searchForFitParams("Height", columns).at(0);
std::string heightErr = searchForFitParams("Height_Err", columns).at(0);
const auto columns = tableWs->getColumnNames();
const auto height = searchForFitParams("Height", columns).at(0);
const auto heightErr = searchForFitParams("Height_Err", columns).at(0);
auto heightY = tableWs->getColumn(height)->numeric_fill<>();
auto heightE = tableWs->getColumn(heightErr)->numeric_fill<>();
// Get amplitude column names
auto ampNames = searchForFitParams("Amplitude", columns);
auto ampErrorNames = searchForFitParams("Amplitude_Err", columns);
const auto ampNames = searchForFitParams("Amplitude", columns);
const auto ampErrorNames = searchForFitParams("Amplitude_Err", columns);
// For each lorentzian, calculate EISF
size_t maxSize = ampNames.size();
......@@ -499,9 +497,9 @@ void ConvolutionFitSequential::calculateEISF(
}
for (size_t i = 0; i < maxSize; i++) {
// Get amplitude from column in table workspace
std::string ampName = ampNames.at(i);
const auto ampName = ampNames.at(i);
auto ampY = tableWs->getColumn(ampName)->numeric_fill<>();
std::string ampErrorName = ampErrorNames.at(i);
const auto ampErrorName = ampErrorNames.at(i);
auto ampErr = tableWs->getColumn(ampErrorName)->numeric_fill<>();
// Calculate EISF and EISF error
......@@ -555,10 +553,10 @@ void ConvolutionFitSequential::calculateEISF(
eisfErr.begin(), std::plus<double>());
// Append the calculated values to the table workspace
std::string columnName =
auto columnName =
ampName.substr(0, (ampName.size() - std::string("Amplitude").size()));
columnName += "EISF";
std::string errorColumnName = ampErrorName.substr(
auto errorColumnName = ampErrorName.substr(
0, (ampName.size() - std::string("Amplitude_Err").size()));
errorColumnName += "EISF_Err";
......@@ -586,8 +584,8 @@ void ConvolutionFitSequential::calculateEISF(
*/
std::string
ConvolutionFitSequential::convertBackToShort(const std::string &original) {
std::string result = original.substr(0, 3);
auto pos = original.find(' ');
auto result = original.substr(0, 3);
const auto pos = original.find(' ');
if (pos != std::string::npos) {
result += original.at(pos + 1);
}
......@@ -611,7 +609,7 @@ ConvolutionFitSequential::convertFuncToShort(const std::string &original) {
} else {
return "SFT";
}
auto pos = original.find("Circle");
const auto pos = original.find("Circle");
if (pos != std::string::npos) {
result += "DC";
} else {
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment