Skip to content
Snippets Groups Projects
Commit f05da782 authored by Anders Markvardsen's avatar Anders Markvardsen
Browse files

Prepare modification of interface to minimizer. Test this on SimplexMinimizer first. Refs #1254.

parent 67f89933
No related branches found
No related tags found
No related merge requests found
...@@ -6,6 +6,8 @@ ...@@ -6,6 +6,8 @@
//---------------------------------------------------------------------- //----------------------------------------------------------------------
#include "MantidAPI/Algorithm.h" #include "MantidAPI/Algorithm.h"
#include "MantidAPI/IFunction.h" #include "MantidAPI/IFunction.h"
#include "MantidCurveFitting/CostFuncLeastSquares.h"
#include "MantidCurveFitting/CostFuncIgnorePosPeaks.h"
namespace Mantid namespace Mantid
{ {
...@@ -74,7 +76,7 @@ namespace Mantid ...@@ -74,7 +76,7 @@ namespace Mantid
/// Set a function for fitting /// Set a function for fitting
void setFunction(API::IFunction* fun); void setFunction(API::IFunction* fun);
/// Get the function for fitting /// Get the function for fitting
const API::IFunction* getFunction()const{return m_function;} API::IFunction* getFunction()const{return m_function;}
protected: protected:
// Overridden Algorithm methods // Overridden Algorithm methods
......
...@@ -80,9 +80,9 @@ namespace Mantid ...@@ -80,9 +80,9 @@ namespace Mantid
}; };
/// Structure to contain least squares data and used by GSL /// Structure to contain least squares data and used by GSL
struct FitData1 { struct GSL_FitData {
/// Constructor /// Constructor
FitData1(Fit* f); GSL_FitData(Fit* f);
/// number of points to be fitted (size of X, Y and sqrtWeightData arrays) /// number of points to be fitted (size of X, Y and sqrtWeightData arrays)
size_t n; size_t n;
/// number of (active) fit parameters /// number of (active) fit parameters
......
...@@ -7,6 +7,8 @@ ...@@ -7,6 +7,8 @@
#include "MantidCurveFitting/IFuncMinimizer.h" #include "MantidCurveFitting/IFuncMinimizer.h"
#include <gsl/gsl_multifit_nlin.h> #include <gsl/gsl_multifit_nlin.h>
#include "MantidAPI/IFunction.h" #include "MantidAPI/IFunction.h"
#include "MantidCurveFitting/Fit.h"
#include "MantidCurveFitting/GSLFunctions.h"
namespace Mantid namespace Mantid
{ {
...@@ -52,16 +54,27 @@ public: ...@@ -52,16 +54,27 @@ public:
int hasConverged(); int hasConverged();
double costFunctionVal(); double costFunctionVal();
void calCovarianceMatrix(double epsrel, gsl_matrix * covar); void calCovarianceMatrix(double epsrel, gsl_matrix * covar);
void initialize(double* X, const double* Y, double *sqrtWeight, const int& nData, const int& nParam,
gsl_vector* startGuess, Fit* fit, const std::string& costFunction);
private: private:
/// name of this minimizer /// name of this minimizer
const std::string m_name; const std::string m_name;
/// GSL data container
GSL_FitData *m_data;
/// GSL minimizer container
gsl_multifit_function_fdf gslContainer;
/// pointer to the GSL solver doing the work /// pointer to the GSL solver doing the work
gsl_multifit_fdfsolver *m_gslSolver; gsl_multifit_fdfsolver *m_gslSolver;
/// Stored to access IFunction interface in iterate() /// Stored to access IFunction interface in iterate()
API::IFunction* m_function; API::IFunction* m_function;
/// Static reference to the logger class
static Kernel::Logger& g_log;
}; };
......
...@@ -5,6 +5,8 @@ ...@@ -5,6 +5,8 @@
// Includes // Includes
//---------------------------------------------------------------------- //----------------------------------------------------------------------
#include "MantidCurveFitting/IFuncMinimizer.h" #include "MantidCurveFitting/IFuncMinimizer.h"
#include "MantidCurveFitting/Fit.h"
#include "MantidCurveFitting/GSLFunctions.h"
#include <gsl/gsl_multimin.h> #include <gsl/gsl_multimin.h>
namespace Mantid namespace Mantid
...@@ -42,7 +44,10 @@ class DLLExport SimplexMinimizer : public IFuncMinimizer ...@@ -42,7 +44,10 @@ class DLLExport SimplexMinimizer : public IFuncMinimizer
public: public:
/// constructor and destructor /// constructor and destructor
~SimplexMinimizer(); ~SimplexMinimizer();
SimplexMinimizer(gsl_multimin_function& gslContainer, gsl_vector* startGuess, const double& size); SimplexMinimizer(): m_name("Simplex"), m_size(1.0) {}
void resetSize(double* X, const double* Y, double *sqrtWeight, const int& nData, const int& nParam,
gsl_vector* startGuess, const double& size, Fit* fit, const std::string& costFunction);
/// Overloading base class methods /// Overloading base class methods
std::string name()const; std::string name()const;
...@@ -50,6 +55,8 @@ public: ...@@ -50,6 +55,8 @@ public:
int hasConverged(); int hasConverged();
double costFunctionVal(); double costFunctionVal();
void calCovarianceMatrix(double epsrel, gsl_matrix * covar); void calCovarianceMatrix(double epsrel, gsl_matrix * covar);
void initialize(double* X, const double* Y, double *sqrtWeight, const int& nData, const int& nParam,
gsl_vector* startGuess, Fit* fit, const std::string& costFunction);
private: private:
/// name of this minimizer /// name of this minimizer
...@@ -58,8 +65,23 @@ private: ...@@ -58,8 +65,23 @@ private:
/// pointer to the GSL solver doing the work /// pointer to the GSL solver doing the work
gsl_multimin_fminimizer *m_gslSolver; gsl_multimin_fminimizer *m_gslSolver;
/// clear memory
void clearMemory();
/// size of simplex
double m_size;
/// used by GSL /// used by GSL
gsl_vector *m_simplexStepSize; gsl_vector *m_simplexStepSize;
/// GSL data container
GSL_FitData *m_data;
/// GSL simplex minimizer container
gsl_multimin_function gslContainer;
/// Static reference to the logger class
static Kernel::Logger& g_log;
}; };
......
...@@ -12,8 +12,6 @@ ...@@ -12,8 +12,6 @@
#include "MantidDataObjects/Workspace2D.h" #include "MantidDataObjects/Workspace2D.h"
#include "MantidKernel/UnitFactory.h" #include "MantidKernel/UnitFactory.h"
#include "MantidCurveFitting/ICostFunction.h" #include "MantidCurveFitting/ICostFunction.h"
#include "MantidCurveFitting/CostFuncLeastSquares.h"
#include "MantidCurveFitting/CostFuncIgnorePosPeaks.h"
#include "MantidCurveFitting/BoundaryConstraint.h" #include "MantidCurveFitting/BoundaryConstraint.h"
#include "MantidCurveFitting/LevenbergMarquardtMinimizer.h" #include "MantidCurveFitting/LevenbergMarquardtMinimizer.h"
#include "MantidCurveFitting/SimplexMinimizer.h" #include "MantidCurveFitting/SimplexMinimizer.h"
...@@ -211,7 +209,7 @@ namespace CurveFitting ...@@ -211,7 +209,7 @@ namespace CurveFitting
// since as a rule of thumb this is required as a minimum to obtained 'accurate' // since as a rule of thumb this is required as a minimum to obtained 'accurate'
// fitting parameter values. // fitting parameter values.
FitData1 l_data(this); GSL_FitData l_data(this);
l_data.p = m_function->nActive(); l_data.p = m_function->nActive();
l_data.n = m_maxX - m_minX; // m_minX and m_maxX are array index markers. I.e. e.g. 0 & 19. l_data.n = m_maxX - m_minX; // m_minX and m_maxX are array index markers. I.e. e.g. 0 & 19.
...@@ -282,10 +280,10 @@ namespace CurveFitting ...@@ -282,10 +280,10 @@ namespace CurveFitting
// set-up GSL container to be used with GSL simplex algorithm // set-up GSL container to be used with GSL simplex algorithm
gsl_multimin_function gslSimplexContainer; /* gsl_multimin_function gslSimplexContainer;
gslSimplexContainer.n = l_data.p; // n here refers to number of parameters gslSimplexContainer.n = l_data.p; // n here refers to number of parameters
gslSimplexContainer.f = &gsl_costFunction; gslSimplexContainer.f = &gsl_costFunction;
gslSimplexContainer.params = &l_data; gslSimplexContainer.params = &l_data;*/
// set-up GSL container to be used with none-least squares GSL routines using derivatives // set-up GSL container to be used with none-least squares GSL routines using derivatives
...@@ -341,7 +339,11 @@ namespace CurveFitting ...@@ -341,7 +339,11 @@ namespace CurveFitting
if ( methodUsed.compare("Simplex") == 0 ) if ( methodUsed.compare("Simplex") == 0 )
{ {
minimizer = new SimplexMinimizer(gslSimplexContainer, initFuncArg, 1.0); //minimizer = new SimplexMinimizer(gslSimplexContainer, initFuncArg, 1.0);
SimplexMinimizer* sm = new SimplexMinimizer;
sm->initialize(l_data.X, l_data.Y, l_data.sqrtWeightData, l_data.n, l_data.p,
initFuncArg, this, costFunction);
minimizer = sm;
} }
else else
{ {
...@@ -392,7 +394,10 @@ namespace CurveFitting ...@@ -392,7 +394,10 @@ namespace CurveFitting
methodUsed = "Simplex"; methodUsed = "Simplex";
//simplexFallBack = true; //simplexFallBack = true;
delete minimizer; delete minimizer;
minimizer = new SimplexMinimizer(gslSimplexContainer, initFuncArg, 1.0); SimplexMinimizer* sm = new SimplexMinimizer;
sm->initialize(l_data.X, l_data.Y, l_data.sqrtWeightData, l_data.n, l_data.p,
initFuncArg, this, costFunction);
minimizer = sm;
iter = 0; iter = 0;
g_log.warning() << "Fit algorithm using Levenberg-Marquardt failed " g_log.warning() << "Fit algorithm using Levenberg-Marquardt failed "
<< "reporting the following: " << gsl_strerror(status) << "\n" << "reporting the following: " << gsl_strerror(status) << "\n"
...@@ -423,8 +428,14 @@ namespace CurveFitting ...@@ -423,8 +428,14 @@ namespace CurveFitting
{ {
g_log.information() << "Simplex step size reduced to 0.1\n"; g_log.information() << "Simplex step size reduced to 0.1\n";
delete minimizer; delete minimizer;
minimizer = new SimplexMinimizer(gslSimplexContainer, initFuncArg, 0.1); SimplexMinimizer* sm = new SimplexMinimizer;
//iter = 0; sm->initialize(l_data.X, l_data.Y, l_data.sqrtWeightData, l_data.n, l_data.p,
initFuncArg, this, costFunction);
sm->resetSize(l_data.X, l_data.Y, l_data.sqrtWeightData, l_data.n, l_data.p,
initFuncArg, 0.1, this, costFunction);
minimizer = sm;
//sm = static_cast<SimplexMinimizer*>(minimizer);
status = GSL_CONTINUE; status = GSL_CONTINUE;
continue; continue;
} }
...@@ -781,24 +792,5 @@ namespace CurveFitting ...@@ -781,24 +792,5 @@ namespace CurveFitting
return deriv; return deriv;
} }
/**
* Constructor. Creates declared -> active index map
* @param f Pointer to the Fit algorithm
*/
FitData1::FitData1(Fit* f):fit(f)
{
int j = 0;
for(int i=0;i<f->m_function->nParams();++i)
{
if (f->m_function->isActive(i))
{
J.m_index.push_back(j);
j++;
}
else
J.m_index.push_back(-1);
}
}
} // namespace Algorithm } // namespace Algorithm
} // namespace Mantid } // namespace Mantid
...@@ -4,6 +4,7 @@ ...@@ -4,6 +4,7 @@
#include "MantidCurveFitting/GSLFunctions.h" #include "MantidCurveFitting/GSLFunctions.h"
#include "MantidCurveFitting/Fit.h" #include "MantidCurveFitting/Fit.h"
#include "MantidCurveFitting/ICostFunction.h" #include "MantidCurveFitting/ICostFunction.h"
#include "MantidAPI/CompositeFunction.h"
namespace Mantid namespace Mantid
...@@ -21,7 +22,7 @@ namespace CurveFitting ...@@ -21,7 +22,7 @@ namespace CurveFitting
*/ */
int gsl_f(const gsl_vector * x, void *params, gsl_vector * f) { int gsl_f(const gsl_vector * x, void *params, gsl_vector * f) {
struct FitData1 *p = (struct FitData1 *)params; struct GSL_FitData *p = (struct GSL_FitData *)params;
p->fit->function (x->data, f->data, p->X, p->n); p->fit->function (x->data, f->data, p->X, p->n);
// function() return calculated data values. Need to convert this values into // function() return calculated data values. Need to convert this values into
...@@ -42,7 +43,7 @@ namespace CurveFitting ...@@ -42,7 +43,7 @@ namespace CurveFitting
*/ */
int gsl_df(const gsl_vector * x, void *params, gsl_matrix * J) { int gsl_df(const gsl_vector * x, void *params, gsl_matrix * J) {
struct FitData1 *p = (struct FitData1 *)params; struct GSL_FitData *p = (struct GSL_FitData *)params;
p->J.setJ(J); p->J.setJ(J);
...@@ -83,7 +84,7 @@ namespace CurveFitting ...@@ -83,7 +84,7 @@ namespace CurveFitting
double gsl_costFunction(const gsl_vector * x, void *params) double gsl_costFunction(const gsl_vector * x, void *params)
{ {
struct FitData1 *p = (struct FitData1 *)params; struct GSL_FitData *p = (struct GSL_FitData *)params;
double * l_holdCalculatedData = p->holdCalculatedData; double * l_holdCalculatedData = p->holdCalculatedData;
// calculate yCal and store in l_holdCalculatedData // calculate yCal and store in l_holdCalculatedData
...@@ -101,7 +102,7 @@ namespace CurveFitting ...@@ -101,7 +102,7 @@ namespace CurveFitting
void gsl_costFunction_df(const gsl_vector * x, void *params, gsl_vector *df) void gsl_costFunction_df(const gsl_vector * x, void *params, gsl_vector *df)
{ {
struct FitData1 *p = (struct FitData1 *)params; struct GSL_FitData *p = (struct GSL_FitData *)params;
double * l_holdCalculatedData = p->holdCalculatedData; double * l_holdCalculatedData = p->holdCalculatedData;
p->fit->function (x->data, l_holdCalculatedData, p->X, p->n); p->fit->function (x->data, l_holdCalculatedData, p->X, p->n);
...@@ -127,6 +128,24 @@ namespace CurveFitting ...@@ -127,6 +128,24 @@ namespace CurveFitting
gsl_costFunction_df(x, params, df); gsl_costFunction_df(x, params, df);
} }
/**
* Constructor. Creates declared -> active index map
* @param f Pointer to the Fit algorithm
*/
GSL_FitData::GSL_FitData(Fit* f):fit(f)
{
int j = 0;
for(int i=0;i<f->getFunction()->nParams();++i)
{
if (f->getFunction()->isActive(i))
{
J.m_index.push_back(j);
j++;
}
else
J.m_index.push_back(-1);
}
}
} // namespace CurveFitting } // namespace CurveFitting
} // namespace Mantid } // namespace Mantid
...@@ -11,6 +11,53 @@ namespace Mantid ...@@ -11,6 +11,53 @@ namespace Mantid
namespace CurveFitting namespace CurveFitting
{ {
// Get a reference to the logger
Kernel::Logger& LevenbergMarquardtMinimizer::g_log = Kernel::Logger::get("LevenbergMarquardtMinimizer");
void LevenbergMarquardtMinimizer::initialize(double* X, const double* Y,
double *sqrtWeight, const int& nData,
const int& nParam, gsl_vector* startGuess,
Fit* fit, const std::string& costFunction)
{
// set-up GSL container to be used with GSL simplex algorithm
m_data = new GSL_FitData(fit); //,X, Y, sqrtWeight, nData, nParam);
m_data->p = nParam;
m_data->n = nData;
m_data->X = X;
m_data->Y = Y;
m_data->sqrtWeightData = sqrtWeight;
m_data->holdCalculatedData = new double[nData];
m_data->holdCalculatedJacobian = gsl_matrix_alloc (nData, nParam);
if ( costFunction.compare("Least squares") == 0 )
m_data->costFunc = new CostFuncLeastSquares();
else if ( costFunction.compare("Ignore positive peaks") == 0 )
m_data->costFunc = new CostFuncIgnorePosPeaks();
else
{
g_log.error("Unrecognised cost function. Default to Least squares\n");
m_data->costFunc = new CostFuncLeastSquares();
}
// specify the type of GSL solver to use
const gsl_multifit_fdfsolver_type *T = gsl_multifit_fdfsolver_lmsder;
gslContainer.f = &gsl_f;
gslContainer.df = &gsl_df;
gslContainer.fdf = &gsl_fdf;
gslContainer.n = nData;
gslContainer.p = nParam;
gslContainer.params = m_data;
// setup GSL solver
m_gslSolver = gsl_multifit_fdfsolver_alloc(T, nData, nParam);
gsl_multifit_fdfsolver_set(m_gslSolver, &gslContainer, startGuess);
m_function = fit->getFunction();
}
LevenbergMarquardtMinimizer::LevenbergMarquardtMinimizer( LevenbergMarquardtMinimizer::LevenbergMarquardtMinimizer(
gsl_multifit_function_fdf& gslContainer, gsl_multifit_function_fdf& gslContainer,
gsl_vector* startGuess, API::IFunction* func) : m_name("Levenberg Marquardt") gsl_vector* startGuess, API::IFunction* func) : m_name("Levenberg Marquardt")
...@@ -27,6 +74,11 @@ LevenbergMarquardtMinimizer::LevenbergMarquardtMinimizer( ...@@ -27,6 +74,11 @@ LevenbergMarquardtMinimizer::LevenbergMarquardtMinimizer(
LevenbergMarquardtMinimizer::~LevenbergMarquardtMinimizer() LevenbergMarquardtMinimizer::~LevenbergMarquardtMinimizer()
{ {
//delete [] m_data->holdCalculatedData;
//delete m_data->costFunc;
//gsl_matrix_free (m_data->holdCalculatedJacobian);
//delete m_data;
gsl_multifit_fdfsolver_free(m_gslSolver); gsl_multifit_fdfsolver_free(m_gslSolver);
} }
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment