Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
mantid
Manage
Activity
Members
Labels
Plan
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Deploy
Releases
Model registry
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Code review analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
mantidproject
mantid
Commits
e4e3cd6d
Commit
e4e3cd6d
authored
11 years ago
by
Doucet, Mathieu
Browse files
Options
Downloads
Patches
Plain Diff
Re #9159 Fixed issue with tube orientation
parent
92a867b6
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Code/Mantid/Framework/PythonInterface/plugins/algorithms/WorkflowAlgorithms/USANSReduction.py
+143
-0
143 additions, 0 deletions
...e/plugins/algorithms/WorkflowAlgorithms/USANSReduction.py
with
143 additions
and
0 deletions
Code/Mantid/Framework/PythonInterface/plugins/algorithms/WorkflowAlgorithms/USANSReduction.py
0 → 100644
+
143
−
0
View file @
e4e3cd6d
"""
*WIKI*
Simulate a USANS workspace.
A matrix workspace is created for a given analyzer angle. A list of wavelength peaks coming out
of the monochromator can be specified. The width of those peaks can also be specified.
Both the main detector and the transmission detector are filled with compatible signals
according to a dummy transmission curve.
The amplitude of the signal in the main detector is given by a sphere model.
A monitor workspace is created with a fake beam profile.
*WIKI*
"""
from
mantid.simpleapi
import
*
from
mantid.api
import
*
from
mantid.kernel
import
*
import
math
import
numpy
class
USANSSimulation
(
PythonAlgorithm
):
def
category
(
self
):
return
"
SANS
"
def
name
(
self
):
return
"
USANSSimulation
"
def
PyInit
(
self
):
self
.
declareProperty
(
"
TwoTheta
"
,
0.01
,
"
Scattering angle in degrees
"
)
self
.
declareProperty
(
FloatArrayProperty
(
"
WavelengthPeaks
"
,
values
=
[
0.72
,
0.9
,
1.2
,
1.8
,
3.6
],
direction
=
Direction
.
Input
),
"
Wavelength peaks out of the monochromator
"
)
self
.
declareProperty
(
"
CountTime
"
,
1000.0
,
"
Fake count time
"
)
# Model parameters
self
.
declareProperty
(
"
EmptyRun
"
,
False
,
"
If True, the run is considered an empty run
"
)
self
.
declareProperty
(
"
SphereRadius
"
,
60.0
,
"
Radius for the sphere model (Angstrom)
"
)
self
.
declareProperty
(
"
Background
"
,
0.0
,
"
Background
"
)
self
.
declareProperty
(
"
SigmaPeak
"
,
0.01
,
"
Width of the wavelength peaks
"
)
self
.
declareProperty
(
MatrixWorkspaceProperty
(
"
OutputWorkspace
"
,
""
,
Direction
.
Output
),
"
Output workspace
"
)
self
.
declareProperty
(
MatrixWorkspaceProperty
(
"
MonitorWorkspace
"
,
""
,
Direction
.
Output
),
"
Output monitor workspace
"
)
def
PyExec
(
self
):
workspace
=
self
.
getPropertyValue
(
"
OutputWorkspace
"
)
out_ws
=
CreateSimulationWorkspace
(
Instrument
=
"
USANS
"
,
BinParams
=
"
0,50,32000
"
,
UnitX
=
"
TOF
"
,
OutputWorkspace
=
workspace
)
out_ws
.
setYUnitLabel
(
"
1/cm
"
)
data_x
=
out_ws
.
dataX
(
0
)
mon_ws_name
=
self
.
getPropertyValue
(
"
MonitorWorkspace
"
)
mon_ws
=
CreateWorkspace
(
dataX
=
data_x
,
dataY
=
numpy
.
zeros
(
len
(
data_x
)
-
1
),
UnitX
=
"
TOF
"
,
OutputWorkspace
=
mon_ws_name
)
mon_y
=
mon_ws
.
dataY
(
0
)
mon_e
=
mon_ws
.
dataE
(
0
)
# Number of pixels for the main detector
n_pixels
=
out_ws
.
getNumberHistograms
()
/
2
# Clean up the workspace
for
j
in
range
(
n_pixels
):
data_y
=
out_ws
.
dataY
(
j
)
for
i
in
range
(
len
(
data_y
)):
data_y
[
i
]
=
0.0
# Fill monitor workspace with fake beam profile
count_time
=
self
.
getProperty
(
"
CountTime
"
).
value
for
i
in
range
(
len
(
data_x
)
-
1
):
wl_i
=
0.0039560
/
30.0
*
(
data_x
[
i
]
+
data_x
[
i
+
1
])
/
2.0
mon_y
[
i
]
=
count_time
*
math
.
exp
(
-
wl_i
)
mon_e
[
i
]
=
math
.
sqrt
(
mon_y
[
i
])
# Add analyzer theta value and monochromator angle theta_b in logs
two_theta
=
self
.
getProperty
(
"
TwoTheta
"
).
value
is_empty_run
=
self
.
getProperty
(
"
EmptyRun
"
).
value
if
is_empty_run
:
two_theta
=
0.0
theta_b
=
70.0
theta
=
theta_b
+
two_theta
out_ws
.
getRun
().
addProperty
(
"
AnalyzerTheta
"
,
theta
,
'
degree
'
,
True
)
out_ws
.
getRun
().
addProperty
(
"
TwoTheta
"
,
two_theta
,
'
degree
'
,
True
)
out_ws
.
getRun
().
addProperty
(
"
MonochromatorTheta
"
,
theta_b
,
'
degree
'
,
True
)
out_ws
.
getRun
().
addProperty
(
"
run_title
"
,
"
Simulated USANS
"
,
True
)
out_ws
.
getRun
().
addProperty
(
"
run_number
"
,
"
1234
"
,
True
)
# List of wavelength peaks, and width of the peaks
wl_peaks
=
self
.
getProperty
(
"
WavelengthPeaks
"
).
value
sigma
=
self
.
getProperty
(
"
SigmaPeak
"
).
value
for
wl
in
wl_peaks
:
q
=
6.28
*
math
.
sin
(
two_theta
)
/
wl
Logger
.
get
(
"
USANS
"
).
notice
(
"
wl = %g; Q = %g
"
%
(
wl
,
q
))
for
i
in
range
(
len
(
data_x
)
-
1
):
wl_i
=
0.0039560
/
30.0
*
(
data_x
[
i
]
+
data_x
[
i
+
1
])
/
2.0
# Scale the I(q) by a Gaussian to simulate the wavelength peaks selected by the monochromator
flux
=
1.0e6
/
(
sigma
*
math
.
sqrt
(
2.0
*
math
.
pi
))
*
math
.
exp
(
-
(
wl_i
-
wl
)
*
(
wl_i
-
wl
)
/
(
2.0
*
sigma
*
sigma
))
# Multiply by beam profile
flux
*=
mon_y
[
i
]
# Account for transmission
if
not
is_empty_run
:
flux
*=
math
.
exp
(
-
wl_i
/
2.0
)
# Transmission detector
for
j
in
range
(
n_pixels
,
2
*
n_pixels
):
det_pos
=
out_ws
.
getInstrument
().
getDetector
(
j
).
getPos
()
r
=
math
.
sqrt
(
det_pos
.
Y
()
*
det_pos
.
Y
()
+
det_pos
.
X
()
*
det_pos
.
X
())
sigma
=
0.01
scale
=
math
.
exp
(
-
r
*
r
/
(
2.0
*
sigma
*
sigma
))
data_y
=
out_ws
.
dataY
(
j
)
data_y
[
i
]
+=
int
(
scale
*
flux
)
data_e
=
out_ws
.
dataE
(
j
)
data_e
[
i
]
=
math
.
sqrt
(
data_e
[
i
]
*
data_e
[
i
]
+
scale
*
scale
*
flux
*
flux
)
# If we have an empty run, there's no need to fill the main detector
if
is_empty_run
:
continue
# Compute I(q) and store the results
q_i
=
q
*
wl
/
wl_i
i_q
=
self
.
_sphere_model
(
q_i
,
scale
=
flux
)
for
j
in
range
(
n_pixels
):
det_pos
=
out_ws
.
getInstrument
().
getDetector
(
j
).
getPos
()
r
=
math
.
sqrt
(
det_pos
.
Y
()
*
det_pos
.
Y
()
+
det_pos
.
X
()
*
det_pos
.
X
())
sigma
=
0.01
scale
=
math
.
exp
(
-
r
*
r
/
(
2.0
*
sigma
*
sigma
))
data_y
=
out_ws
.
dataY
(
j
)
data_y
[
i
]
+=
int
(
i_q
*
scale
)
data_e
=
out_ws
.
dataE
(
j
)
data_e
[
i
]
=
math
.
sqrt
(
data_e
[
i
]
*
data_e
[
i
]
+
i_q
*
i_q
*
scale
*
scale
)
self
.
setProperty
(
"
OutputWorkspace
"
,
out_ws
)
self
.
setProperty
(
"
MonitorWorkspace
"
,
mon_ws
)
#############################################################################################
AlgorithmFactory
.
subscribe
(
USANSSimulation
())
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment