Skip to content
Snippets Groups Projects
Commit e4e3cd6d authored by Doucet, Mathieu's avatar Doucet, Mathieu
Browse files

Re #9159 Fixed issue with tube orientation

parent 92a867b6
No related branches found
No related tags found
No related merge requests found
"""*WIKI*
Simulate a USANS workspace.
A matrix workspace is created for a given analyzer angle. A list of wavelength peaks coming out
of the monochromator can be specified. The width of those peaks can also be specified.
Both the main detector and the transmission detector are filled with compatible signals
according to a dummy transmission curve.
The amplitude of the signal in the main detector is given by a sphere model.
A monitor workspace is created with a fake beam profile.
*WIKI*"""
from mantid.simpleapi import *
from mantid.api import *
from mantid.kernel import *
import math
import numpy
class USANSSimulation(PythonAlgorithm):
def category(self):
return "SANS"
def name(self):
return "USANSSimulation"
def PyInit(self):
self.declareProperty("TwoTheta", 0.01, "Scattering angle in degrees")
self.declareProperty(FloatArrayProperty("WavelengthPeaks", values=[0.72, 0.9, 1.2, 1.8, 3.6],
direction=Direction.Input), "Wavelength peaks out of the monochromator")
self.declareProperty("CountTime", 1000.0, "Fake count time")
# Model parameters
self.declareProperty("EmptyRun", False, "If True, the run is considered an empty run")
self.declareProperty("SphereRadius", 60.0, "Radius for the sphere model (Angstrom)")
self.declareProperty("Background", 0.0, "Background")
self.declareProperty("SigmaPeak", 0.01, "Width of the wavelength peaks")
self.declareProperty(MatrixWorkspaceProperty("OutputWorkspace", "", Direction.Output), "Output workspace")
self.declareProperty(MatrixWorkspaceProperty("MonitorWorkspace", "", Direction.Output), "Output monitor workspace")
def PyExec(self):
workspace = self.getPropertyValue("OutputWorkspace")
out_ws = CreateSimulationWorkspace(Instrument="USANS",
BinParams="0,50,32000",
UnitX="TOF",
OutputWorkspace=workspace)
out_ws.setYUnitLabel("1/cm")
data_x = out_ws.dataX(0)
mon_ws_name = self.getPropertyValue("MonitorWorkspace")
mon_ws = CreateWorkspace(dataX=data_x, dataY=numpy.zeros(len(data_x)-1),
UnitX="TOF", OutputWorkspace=mon_ws_name)
mon_y = mon_ws.dataY(0)
mon_e = mon_ws.dataE(0)
# Number of pixels for the main detector
n_pixels = out_ws.getNumberHistograms()/2
# Clean up the workspace
for j in range(n_pixels):
data_y = out_ws.dataY(j)
for i in range(len(data_y)):
data_y[i] = 0.0
# Fill monitor workspace with fake beam profile
count_time = self.getProperty("CountTime").value
for i in range(len(data_x)-1):
wl_i = 0.0039560/30.0*(data_x[i]+data_x[i+1])/2.0
mon_y[i] = count_time*math.exp(-wl_i)
mon_e[i] = math.sqrt(mon_y[i])
# Add analyzer theta value and monochromator angle theta_b in logs
two_theta = self.getProperty("TwoTheta").value
is_empty_run = self.getProperty("EmptyRun").value
if is_empty_run:
two_theta = 0.0
theta_b = 70.0
theta = theta_b + two_theta
out_ws.getRun().addProperty("AnalyzerTheta", theta, 'degree', True)
out_ws.getRun().addProperty("TwoTheta", two_theta, 'degree', True)
out_ws.getRun().addProperty("MonochromatorTheta", theta_b, 'degree', True)
out_ws.getRun().addProperty("run_title", "Simulated USANS", True)
out_ws.getRun().addProperty("run_number", "1234", True)
# List of wavelength peaks, and width of the peaks
wl_peaks = self.getProperty("WavelengthPeaks").value
sigma = self.getProperty("SigmaPeak").value
for wl in wl_peaks:
q = 6.28*math.sin(two_theta)/wl
Logger.get("USANS").notice( "wl = %g; Q = %g" % (wl, q))
for i in range(len(data_x)-1):
wl_i = 0.0039560/30.0*(data_x[i]+data_x[i+1])/2.0
# Scale the I(q) by a Gaussian to simulate the wavelength peaks selected by the monochromator
flux = 1.0e6/(sigma*math.sqrt(2.0*math.pi))*math.exp(-(wl_i-wl)*(wl_i-wl)/(2.0*sigma*sigma))
# Multiply by beam profile
flux *= mon_y[i]
# Account for transmission
if not is_empty_run:
flux *= math.exp(-wl_i/2.0)
# Transmission detector
for j in range(n_pixels, 2*n_pixels):
det_pos = out_ws.getInstrument().getDetector(j).getPos()
r = math.sqrt(det_pos.Y()*det_pos.Y()+det_pos.X()*det_pos.X())
sigma = 0.01
scale = math.exp(-r*r/(2.0*sigma*sigma))
data_y = out_ws.dataY(j)
data_y[i] += int(scale*flux)
data_e = out_ws.dataE(j)
data_e[i] = math.sqrt(data_e[i]*data_e[i]+scale*scale*flux*flux)
# If we have an empty run, there's no need to fill the main detector
if is_empty_run:
continue
# Compute I(q) and store the results
q_i = q*wl/wl_i
i_q = self._sphere_model(q_i, scale=flux)
for j in range(n_pixels):
det_pos = out_ws.getInstrument().getDetector(j).getPos()
r = math.sqrt(det_pos.Y()*det_pos.Y()+det_pos.X()*det_pos.X())
sigma = 0.01
scale = math.exp(-r*r/(2.0*sigma*sigma))
data_y = out_ws.dataY(j)
data_y[i] += int(i_q*scale)
data_e = out_ws.dataE(j)
data_e[i] = math.sqrt(data_e[i]*data_e[i]+i_q*i_q*scale*scale)
self.setProperty("OutputWorkspace", out_ws)
self.setProperty("MonitorWorkspace", mon_ws)
#############################################################################################
AlgorithmFactory.subscribe(USANSSimulation())
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment