Skip to content
Snippets Groups Projects
Commit 6062b215 authored by Martyn Gigg's avatar Martyn Gigg
Browse files

Merge remote-tracking branch 'origin/fix_filterevents_issues'

parents f3ccad7f 43632b37
No related merge requests found
......@@ -82,12 +82,20 @@ private:
/// Process user input properties
void processAlgorithmProperties();
/// process splitters given by a SplittersWorkspace
void processSplittersWorkspace();
///
void processTableSplittersWorkspace();
/// process splitters given by a MatrixWorkspace
void processMatrixSplitterWorkspace();
void createOutputWorkspaces();
/// create output workspaces in the case of using TableWorlspace for splitters
void createOutputWorkspacesTableSplitterCase();
/// create output workspaces in the case of using MatrixWorkspace for
/// splitters
void createOutputWorkspacesMatrixCase();
/// Set up detector calibration parameters
void setupDetectorTOFCalibration();
......@@ -115,17 +123,24 @@ private:
/// Examine workspace
void examineEventWS();
/// Convert SplittersWorkspace to vector of time and vector of target
/// (itarget)
void convertSplittersWorkspaceToVectors();
DataObjects::EventWorkspace_sptr m_eventWS;
DataObjects::SplittersWorkspace_sptr m_splittersWorkspace;
DataObjects::TableWorkspace_sptr m_splitterTableWorkspace;
API::MatrixWorkspace_const_sptr m_matrixSplitterWS;
DataObjects::TableWorkspace_sptr m_detCorrectWorkspace;
/// Flag to use matrix splitters or table splitters
bool m_useTableSplitters;
bool m_useSplittersWorkspace;
bool m_useArbTableSplitters;
std::set<int> m_workGroupIndexes;
std::set<int> m_targetWorkspaceIndexSet;
int m_maxTargetIndex;
Kernel::TimeSplitterType m_splitters;
std::map<int, DataObjects::EventWorkspace_sptr> m_outputWS;
std::map<int, DataObjects::EventWorkspace_sptr> m_outputWorkspacesMap;
std::vector<std::string> m_wsNames;
std::vector<double> m_detTofOffsets;
......@@ -138,20 +153,41 @@ private:
double m_progress;
/// DOC! TODO
std::vector<std::string> getTimeSeriesLogNames();
Kernel::TimeSplitterType generateSplitters(int wsindex);
void generateSplitterTSP(
std::vector<Kernel::TimeSeriesProperty<int> *> &split_tsp_vec);
void generateSplitterTSPalpha(
std::vector<Kernel::TimeSeriesProperty<int> *> &split_tsp_vec);
///
void mapSplitterTSPtoWorkspaces(
const std::vector<Kernel::TimeSeriesProperty<int> *> &split_tsp_vec);
void splitLog(DataObjects::EventWorkspace_sptr eventws, std::string logname,
Kernel::TimeSplitterType &splitters);
/// Base of output workspace's name
std::string m_outputWSNameBase;
/// TableWorkspace splitters: from target map to vector workspace group-index
/// These 2 maps are complimentary to each other
std::map<std::string, int> m_targetIndexMap;
std::map<int, std::string> m_wsGroupIndexTargetMap;
/// MatrixWorkspace splitters:
std::map<int, uint32_t> m_yIndexMap;
std::map<uint32_t, int> m_wsGroupdYMap;
/// Flag to group workspace
bool m_toGroupWS;
/// Vector for splitting time
/// FIXME - shall we convert this to DateAndTime???. Need to do speed test!
std::vector<int64_t> m_vecSplitterTime;
/// Vector for splitting grouip
std::vector<int> m_vecSplitterGroup;
......@@ -175,6 +211,8 @@ private:
bool m_isSplittersRelativeTime;
// Starting time for starting time of event filters
Kernel::DateAndTime m_filterStartTime;
// EventWorkspace (aka. run)'s starting time
Kernel::DateAndTime m_runStartTime;
};
} // namespace Algorithms
......
This diff is collapsed.
This diff is collapsed.
......@@ -157,6 +157,12 @@ public:
void splitByTime(std::vector<SplittingInterval> &splitter,
std::vector<Property *> outputs,
bool isPeriodic) const override;
/// New split method
void splitByTimeVector(std::vector<DateAndTime> &splitter_time_vec,
std::vector<int> &target_vec,
std::vector<TimeSeriesProperty *> outputs);
/// Fill a TimeSplitterType that will filter the events by matching
void makeFilterByValue(std::vector<SplittingInterval> &split, double min,
double max, double TimeTolerance = 0.0,
......
......@@ -521,6 +521,152 @@ void TimeSeriesProperty<TYPE>::splitByTime(
}
}
/// Split this TimeSeriresProperty by a vector of time with N entries,
/// and by the target workspace index defined by target_vec
/// Requirements:
/// 1. vector outputs must be defined before this method is called;
template <typename TYPE>
void TimeSeriesProperty<TYPE>::splitByTimeVector(
std::vector<DateAndTime> &splitter_time_vec, std::vector<int> &target_vec,
std::vector<TimeSeriesProperty *> outputs) {
// check inputs
if (splitter_time_vec.size() != target_vec.size() + 1)
throw std::runtime_error("Input time vector's size does not match taget "
"workspace index vector's size.");
// return if the output vector TimeSeriesProperties is not defined
if (outputs.empty())
return;
// sort if necessary
sortIfNecessary();
// work on m_values, m_size, and m_time
std::vector<Kernel::DateAndTime> tsp_time_vec = this->timesAsVector();
// go over both filter time vector and time series property time vector
size_t index_splitter = 0;
size_t index_tsp_time = 0;
DateAndTime tsp_time = tsp_time_vec[index_tsp_time];
DateAndTime split_start_time = splitter_time_vec[index_splitter];
DateAndTime split_stop_time = splitter_time_vec[index_splitter + 1];
// move splitter index such that the first entry of TSP is before the stop
// time of a splitter
bool continue_search = true;
bool no_entry_in_range = false;
std::vector<DateAndTime>::iterator splitter_iter;
splitter_iter = std::lower_bound(splitter_time_vec.begin(),
splitter_time_vec.end(), tsp_time);
if (splitter_iter == splitter_time_vec.begin()) {
// do nothing as the first TimeSeriesProperty entry's time is before any
// splitters
;
} else if (splitter_iter == splitter_time_vec.end()) {
// already search to the last splitter which is still earlier than first TSP
// entry
no_entry_in_range = true;
} else {
// calculate the splitter's index (now we check the stop time)
index_splitter = splitter_iter - splitter_time_vec.begin() - 1;
split_start_time = splitter_time_vec[index_splitter];
split_stop_time = splitter_time_vec[index_splitter + 1];
}
g_log.debug() << "TSP entry: " << index_tsp_time
<< ", Splitter index = " << index_splitter << "\n";
// move along the entries to find the entry inside the current splitter
if (!no_entry_in_range) {
std::vector<DateAndTime>::iterator tsp_time_iter;
tsp_time_iter = std::lower_bound(tsp_time_vec.begin(), tsp_time_vec.end(),
split_start_time);
if (tsp_time_iter == tsp_time_vec.end()) {
// the first splitter's start time is LATER than the last TSP entry, then
// there won't be any
// TSP entry to be split into any target splitter.
no_entry_in_range = true;
} else {
// first splitter start time is between tsp_time_iter and the one before
// it.
// so the index for tsp_time_iter is the first TSP entry in the splitter
index_tsp_time = tsp_time_iter - tsp_time_vec.begin();
tsp_time = *tsp_time_iter; // tsp_time_vec[index_splitter];
}
}
g_log.debug() << "TSP entry: " << index_tsp_time
<< ", Splitter index = " << index_splitter << "\n";
// now it is the time to put TSP's entries to corresponding
continue_search = !no_entry_in_range;
while (continue_search) {
// get the first entry index
if (index_tsp_time > 0)
--index_tsp_time;
int target = target_vec[index_splitter];
g_log.debug() << "Target = " << target
<< " with splitter index = " << index_splitter << "\n"
<< "\t"
<< "Time index = " << index_tsp_time << "\n\n";
bool continue_add = true;
while (continue_add) {
// add current entry
g_log.debug() << "Add entry " << index_tsp_time << " to target " << target
<< "\n";
if (outputs[target]->size() == 0 ||
outputs[target]->lastTime() < tsp_time) {
// avoid to add duplicate entry
outputs[target]->addValue(m_values[index_tsp_time].time(),
m_values[index_tsp_time].value());
}
// advance to next entry
++index_tsp_time;
g_log.debug() << "\tEntry time " << tsp_time_vec[index_tsp_time]
<< ", stop time " << split_stop_time << "\n";
if (index_tsp_time == tsp_time_vec.size()) {
// last entry. quit all loops
continue_add = false;
continue_search = false;
} else if (tsp_time_vec[index_tsp_time] > split_stop_time) {
// next entry is out of this splitter: add the next one and quit
if (outputs[target]->lastTime() < m_values[index_tsp_time].time()) {
// avoid the duplicate cases occured in fast frequency issue
outputs[target]->addValue(m_values[index_tsp_time].time(),
m_values[index_tsp_time].value());
}
// FIXME - in future, need to find out WHETHER there is way to skip the
// rest without going through the whole sequence
continue_add = false;
// reset time entry as the next splitter will add
// --index_tsp_time;
} else {
// advance to next time
tsp_time = tsp_time_vec[index_tsp_time];
}
} // END-WHILE continue add
// make splitters to advance to next
++index_splitter;
if (index_splitter == splitter_time_vec.size() - 1) {
// already last splitters
continue_search = false;
} else {
split_start_time = split_stop_time;
split_stop_time = splitter_time_vec[index_splitter + 1];
}
} // END-OF-WHILE
return;
}
// The makeFilterByValue & expandFilterToRange methods generate a bunch of
// warnings when the template type is the wider integer types
// (when it's being assigned back to a double such as in a call to minValue or
......
......@@ -711,6 +711,259 @@ public:
delete outputs[0];
}
//----------------------------------------------------------------------------
/**
* otuput 0 has entries: 3
* otuput 1 has entries: 5
* otuput 2 has entries: 2
* otuput 3 has entries: 7
* @brief test_splitByTimeVector
*/
void test_splitByTimeVector() {
// create the splitters
std::vector<DateAndTime> split_time_vec;
split_time_vec.push_back(DateAndTime("2007-11-30T16:17:10"));
split_time_vec.push_back(DateAndTime("2007-11-30T16:17:40"));
split_time_vec.push_back(DateAndTime("2007-11-30T16:17:55"));
split_time_vec.push_back(DateAndTime("2007-11-30T16:17:56"));
split_time_vec.push_back(DateAndTime("2007-11-30T16:18:09"));
split_time_vec.push_back(DateAndTime("2007-11-30T16:18:45"));
split_time_vec.push_back(DateAndTime("2007-11-30T16:22:50"));
std::vector<int> split_target_vec;
split_target_vec.push_back(1);
split_target_vec.push_back(0);
split_target_vec.push_back(2);
split_target_vec.push_back(0);
split_target_vec.push_back(1);
split_target_vec.push_back(3);
TimeSeriesProperty<int> log("test log");
log.addValue(DateAndTime("2007-11-30T16:17:00"), 1);
log.addValue(DateAndTime("2007-11-30T16:17:30"), 2);
log.addValue(DateAndTime("2007-11-30T16:18:00"), 3);
log.addValue(DateAndTime("2007-11-30T16:18:30"), 4);
log.addValue(DateAndTime("2007-11-30T16:19:00"), 5);
log.addValue(DateAndTime("2007-11-30T16:19:30"), 6);
log.addValue(DateAndTime("2007-11-30T16:20:00"), 7);
log.addValue(DateAndTime("2007-11-30T16:20:30"), 8);
log.addValue(DateAndTime("2007-11-30T16:21:00"), 9);
log.addValue(DateAndTime("2007-11-30T16:21:30"), 10);
std::vector<TimeSeriesProperty<int> *> outputs;
for (int itarget = 0; itarget < 4; ++itarget) {
TimeSeriesProperty<int> *tsp = new TimeSeriesProperty<int>("target");
outputs.push_back(tsp);
}
log.splitByTimeVector(split_time_vec, split_target_vec, outputs);
// Exam the split entries
TimeSeriesProperty<int> *out_0 = outputs[0];
// FIXME - Check whether out_0 is correct!
TS_ASSERT_EQUALS(out_0->size(), 3);
TS_ASSERT_EQUALS(out_0->nthValue(0), 2);
TS_ASSERT_EQUALS(out_0->nthValue(1), 3);
TS_ASSERT_EQUALS(out_0->nthValue(2), 4);
TimeSeriesProperty<int> *out_1 = outputs[1];
TS_ASSERT_EQUALS(out_1->size(), 5);
TS_ASSERT_EQUALS(out_1->nthValue(0), 1);
TS_ASSERT_EQUALS(out_1->nthValue(1), 2);
TS_ASSERT_EQUALS(out_1->nthValue(2), 3);
TS_ASSERT_EQUALS(out_1->nthValue(3), 4);
TS_ASSERT_EQUALS(out_1->nthValue(4), 5);
TimeSeriesProperty<int> *out_2 = outputs[2];
TS_ASSERT_EQUALS(out_2->size(), 2);
TS_ASSERT_EQUALS(out_2->nthValue(0), 2);
TS_ASSERT_EQUALS(out_2->nthValue(1), 3);
TimeSeriesProperty<int> *out_3 = outputs[3];
TS_ASSERT_EQUALS(out_3->size(), 7);
// out[3] should have entries: 4, 5, 6, 7, 8, 9, 10
for (int j = 0; j < out_3->size(); ++j) {
TS_ASSERT_EQUALS(out_3->nthValue(j), j + 4);
}
return;
}
//----------------------------------------------------------------------------
/** last splitter is before first entry
* @brief test_splitByTimeVectorEarlySplitter
*/
void test_splitByTimeVectorEarlySplitter() {
// create the splitters
std::vector<DateAndTime> split_time_vec;
split_time_vec.push_back(DateAndTime("2007-11-30T16:00:10"));
split_time_vec.push_back(DateAndTime("2007-11-30T16:00:40"));
split_time_vec.push_back(DateAndTime("2007-11-30T16:07:55"));
split_time_vec.push_back(DateAndTime("2007-11-30T16:07:56"));
split_time_vec.push_back(DateAndTime("2007-11-30T16:08:09"));
split_time_vec.push_back(DateAndTime("2007-11-30T16:08:45"));
split_time_vec.push_back(DateAndTime("2007-11-30T16:12:50"));
std::vector<int> split_target_vec;
split_target_vec.push_back(1);
split_target_vec.push_back(0);
split_target_vec.push_back(2);
split_target_vec.push_back(0);
split_target_vec.push_back(1);
split_target_vec.push_back(3);
TimeSeriesProperty<int> log("test log");
log.addValue(DateAndTime("2007-11-30T16:17:00"), 1);
log.addValue(DateAndTime("2007-11-30T16:17:30"), 2);
log.addValue(DateAndTime("2007-11-30T16:18:00"), 3);
log.addValue(DateAndTime("2007-11-30T16:18:30"), 4);
log.addValue(DateAndTime("2007-11-30T16:19:00"), 5);
log.addValue(DateAndTime("2007-11-30T16:19:30"), 6);
log.addValue(DateAndTime("2007-11-30T16:20:00"), 7);
log.addValue(DateAndTime("2007-11-30T16:20:30"), 8);
log.addValue(DateAndTime("2007-11-30T16:21:00"), 9);
log.addValue(DateAndTime("2007-11-30T16:21:30"), 10);
// Initialze the 4 splitters
std::vector<TimeSeriesProperty<int> *> outputs;
for (int itarget = 0; itarget < 4; ++itarget) {
TimeSeriesProperty<int> *tsp = new TimeSeriesProperty<int>("target");
outputs.push_back(tsp);
}
log.splitByTimeVector(split_time_vec, split_target_vec, outputs);
// check
for (int i = 0; i < 4; ++i) {
TimeSeriesProperty<int> *out_i = outputs[i];
TS_ASSERT_EQUALS(out_i->size(), 0);
}
return;
}
//----------------------------------------------------------------------------
/** first splitter is after last entry
* @brief test_splitByTimeVectorLaterSplitter
*/
void test_splitByTimeVectorLaterSplitter() {
// create the splitters
std::vector<DateAndTime> split_time_vec;
split_time_vec.push_back(DateAndTime("2007-12-30T16:00:10"));
split_time_vec.push_back(DateAndTime("2007-12-30T16:00:40"));
split_time_vec.push_back(DateAndTime("2007-12-30T16:07:55"));
split_time_vec.push_back(DateAndTime("2007-12-30T16:07:56"));
split_time_vec.push_back(DateAndTime("2007-12-30T16:08:09"));
split_time_vec.push_back(DateAndTime("2007-12-30T16:08:45"));
split_time_vec.push_back(DateAndTime("2007-12-30T16:12:50"));
std::vector<int> split_target_vec;
split_target_vec.push_back(1);
split_target_vec.push_back(0);
split_target_vec.push_back(2);
split_target_vec.push_back(0);
split_target_vec.push_back(1);
split_target_vec.push_back(3);
// create test log
TimeSeriesProperty<int> log("test log");
log.addValue(DateAndTime("2007-11-30T16:17:00"), 1);
log.addValue(DateAndTime("2007-11-30T16:17:30"), 2);
log.addValue(DateAndTime("2007-11-30T16:18:00"), 3);
log.addValue(DateAndTime("2007-11-30T16:18:30"), 4);
log.addValue(DateAndTime("2007-11-30T16:19:00"), 5);
log.addValue(DateAndTime("2007-11-30T16:19:30"), 6);
log.addValue(DateAndTime("2007-11-30T16:20:00"), 7);
log.addValue(DateAndTime("2007-11-30T16:20:30"), 8);
log.addValue(DateAndTime("2007-11-30T16:21:00"), 9);
log.addValue(DateAndTime("2007-11-30T16:21:30"), 10);
// Initialze the 4 splitters
std::vector<TimeSeriesProperty<int> *> outputs;
for (int itarget = 0; itarget < 4; ++itarget) {
TimeSeriesProperty<int> *tsp = new TimeSeriesProperty<int>("target");
outputs.push_back(tsp);
}
log.splitByTimeVector(split_time_vec, split_target_vec, outputs);
// check
for (int i = 0; i < 4; ++i) {
TimeSeriesProperty<int> *out_i = outputs[i];
TS_ASSERT_EQUALS(out_i->size(), 0);
}
}
//----------------------------------------------------------------------------
/** high-frequency splitters splits a slow change log
* @brief test_splitByTimeVectorFastLogSplitter
*/
void test_splitByTimeVectorFastLogSplitter() {
// create test log
TimeSeriesProperty<int> log("test log");
log.addValue(DateAndTime("2007-11-30T16:17:00"), 1);
log.addValue(DateAndTime("2007-11-30T16:17:30"), 2);
log.addValue(DateAndTime("2007-11-30T16:18:00"), 3);
log.addValue(DateAndTime("2007-11-30T16:18:30"), 4);
log.addValue(DateAndTime("2007-11-30T16:19:00"), 5);
log.addValue(DateAndTime("2007-11-30T16:19:30"), 6);
log.addValue(DateAndTime("2007-11-30T16:20:00"), 7);
log.addValue(DateAndTime("2007-11-30T16:20:30"), 8);
log.addValue(DateAndTime("2007-11-30T16:21:00"), 9);
log.addValue(DateAndTime("2007-11-30T16:21:30"), 10);
// create a high frequency splitter
DateAndTime split_time("2007-11-30T16:17:00");
int64_t dt = 100 * 1000;
std::vector<DateAndTime> vec_split_times;
std::vector<int> vec_split_target;
for (int i = 0; i < 10; ++i) {
for (int j = 0; j < 10; ++j) {
vec_split_times.push_back(split_time);
split_time += dt;
vec_split_target.push_back(j);
}
}
// push back last split-time (split stop)
vec_split_times.push_back(split_time);
// Initialze the 10 splitters
std::vector<TimeSeriesProperty<int> *> outputs;
for (int itarget = 0; itarget < 10; ++itarget) {
TimeSeriesProperty<int> *tsp = new TimeSeriesProperty<int>("target");
outputs.push_back(tsp);
}
/*
size_t num_splits = vec_split_target.size();
for (size_t i = 0; i < num_splits; ++i) {
std::cout << "s[" << i << "] start = " << vec_split_times[i]
<< ", stop = " << vec_split_times[i + 1]
<< ": target = " << vec_split_target[i] << "\n";
}
*/
// split time series property
log.splitByTimeVector(vec_split_times, vec_split_target, outputs);
// TODO/FIXME/ - continue to debug from here!
/*
TimeSeriesProperty<int> *out0 = outputs[0];
for (int i = 0; i < out0->size(); ++i) {
std::cout << i << "-th: " << out0->nthTime(i) << ", " << out0->nthValue(i)
<< "\n";
}
*/
// test
for (size_t i = 0; i < 10; ++i) {
TS_ASSERT_EQUALS(outputs[i]->size(), 2);
}
}
//----------------------------------------------------------------------------
void test_statistics() {
TimeSeriesProperty<double> *log =
......
......@@ -94,6 +94,25 @@ Comparing with other event filtering algorithms
Wiki page :ref:`EventFiltering` has a detailed introduction on event
filtering in MantidPlot.
Developer's Note
----------------
Splitters given by TableWorkspace
#################################
- The *start/stop* time is converted to **m_vecSplitterTime**.
- The *splitting target* (in string) is mapped to a set of continuous integers that are stored in **m_vecSplitterGroup**.
- The mapping will be recorded in **m_targetIndexMap** and **m_wsGroupIndexTargetMap**.
- Class variable **m_maxTargetIndex** is set up to record the highest target group/index,i.e., the max value of m_vecSplitterGroup
Undefined splitting target
##########################
Indexed as **0** in **m_vecSplitterGroup**.
Usage
-----
......@@ -131,6 +150,53 @@ Output:
workspace tempsplitws_5 has 5133 events
workspace tempsplitws_unfiltered has 50603 events
**Example - Filtering event by a user-generated TableWorkspace**
.. testcode:: FilterEventNoCorrection
ws = Load(Filename='CNCS_7860_event.nxs')
# create TableWorkspace
split_table_ws = CreateEmptyTableWorkspace()
split_table_ws.addColumn('float', 'start')
split_table_ws.addColumn('float', 'stop')
split_table_ws.addColumn('str', 'target')
split_table_ws.addRow([0., 100., 'a'])
split_table_ws.addRow([200., 300., 'b'])
split_table_ws.addRow([400., 600., 'c'])
split_table_ws.addRow([600., 650., 'b'])
# filter evnets
FilterEvents(InputWorkspace=ws, SplitterWorkspace=split_table_ws,
OutputWorkspaceBaseName='tempsplitws3', GroupWorkspaces=True,
FilterByPulseTime = False, OutputWorkspaceIndexedFrom1 = False,
CorrectionToSample = "None", SpectrumWithoutDetector = "Skip", SplitSampleLogs = False,
OutputTOFCorrectionWorkspace='mock')
# Print result
wsgroup = mtd["tempsplitws3"]
wsnames = wsgroup.getNames()
for name in sorted(wsnames):
tmpws = mtd[name]
print "workspace %s has %d events" % (name, tmpws.getNumberEvents())
split_log = tmpws.run().getProperty('splitter')
print 'event splitter log: entry 0 and entry 1 are {0} and {1}.'.format(split_log.times[0], split_log.times[1])
Output:
.. testoutput:: FilterEventNoCorrection
workspace tempsplitws3_a has 77580 events
event splitter log: entry 0 and entry 1 are 2010-03-25T16:08:37 and 2010-03-25T16:10:17 .
workspace tempsplitws3_b has 0 events
event splitter log: entry 0 and entry 1 are 2010-03-25T16:08:37 and 2010-03-25T16:11:57 .
workspace tempsplitws3_c has 0 events
event splitter log: entry 0 and entry 1 are 2010-03-25T16:08:37 and 2010-03-25T16:15:17 .
workspace tempsplitws3_unfiltered has 34686 events
event splitter log: entry 0 and entry 1 are 2010-03-25T16:08:37 and 2010-03-25T16:10:17 .
**Example - Filtering event by pulse time**
......
......@@ -25,7 +25,10 @@ Improved
- :ref:`RawFileInfo <algm-RawFileInfo-v1>` now provides sample information.
- :ref:`SetInstrumentParameter <algm-SetInstrumentParameter-v1>` now supports also boolean parameters, and better validates the inputs.
- Two new properties were added to :ref:`algm-Integration`: *RangeLowerList* and *RangeUpperList* can be used to give histogram-specific integration ranges.
- :ref:`FilterEvents <algm-FilterEvents-v1>` now accepts a general TableWorkspace as the splitters workspace. The TableWorkspace must have at least 3 columns. The first 3 columns are for relative starting time, relative stopping time and target workspace tag for splitters, respectively.
- :ref:`FilterEvents <algm-FilterEvents-v1>` now generates a sample log named *splitter* of each output workspace (i.e., splitted workspace) to represent the event filter that is applied to it.
- :ref:`FilterEvents <algm-FilterEvents-v1>` now splits all the sample logs if the input splitters are given by MatrixWorkspace or a general TableWorkspace.
- Two new properties were added to :ref:`algm-Integration` *RangeLowerList* and *RangeUpperList* can be used to give histogram-specific integration ranges.
- :ref:`algm-FindEPP` does not output the two extra workspaces from the :ref:`algm-Fit` anymore.
Bug Fixes
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment