-
Campbell, Stuart authoredCampbell, Stuart authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
DetectorDiagnostic.cpp 30.48 KiB
//--------------------------------------------------------------------------
// Includes
//--------------------------------------------------------------------------
#include "MantidAlgorithms/DetectorDiagnostic.h"
#include "MantidKernel/MultiThreaded.h"
#include "MantidKernel/EnabledWhenProperty.h"
#include "MantidKernel/Exception.h"
#include "MantidKernel/VisibleWhenProperty.h"
#include "MantidDataObjects/EventWorkspaceHelpers.h"
#include "MantidDataObjects/MaskWorkspace.h"
#include <boost/math/special_functions/fpclassify.hpp>
#include <gsl/gsl_statistics.h>
#include <cfloat>
#include "MantidKernel/BoundedValidator.h"
namespace Mantid {
namespace Algorithms {
// Register the class into the algorithm factory
DECLARE_ALGORITHM(DetectorDiagnostic)
using API::MatrixWorkspace_sptr;
using API::IAlgorithm_sptr;
using Geometry::IDetector_const_sptr;
using std::string;
using namespace Mantid::DataObjects;
using namespace Mantid::API;
using namespace Mantid::Kernel;
//--------------------------------------------------------------------------
// Functions to make this a proper workflow algorithm
//--------------------------------------------------------------------------
const std::string DetectorDiagnostic::category() const {
return "Diagnostics;Workflow\\Diagnostics";
}
const std::string DetectorDiagnostic::name() const {
return "DetectorDiagnostic";
}
int DetectorDiagnostic::version() const { return 1; }
void DetectorDiagnostic::init() {
this->declareProperty(
new WorkspaceProperty<>("InputWorkspace", "", Direction::Input),
"Name of the integrated detector vanadium (white beam) workspace.");
this->declareProperty(new WorkspaceProperty<>("HardMaskWorkspace", "",
Direction::Input,
PropertyMode::Optional),
"A hard mask to apply to the inputworkspace");
this->declareProperty(
new WorkspaceProperty<>("OutputWorkspace", "", Direction::Output),
"A MaskWorkspace containing the masked spectra as zeroes and ones.");
auto mustBePosInt = boost::make_shared<BoundedValidator<int>>();
mustBePosInt->setLower(0);
this->declareProperty(
"StartWorkspaceIndex", 0, mustBePosInt,
"The index number of the first spectrum to include in the calculation\n"
"(default 0)");
this->declareProperty(
"EndWorkspaceIndex", EMPTY_INT(), mustBePosInt,
"The index number of the last spectrum to include in the calculation\n"
"(default the last histogram)");
this->declareProperty(
"RangeLower", EMPTY_DBL(),
"No bin with a boundary at an x value less than this will be used\n"
"in the summation that decides if a detector is 'bad' (default: the\n"
"start of each histogram)");
this->declareProperty(
"RangeUpper", EMPTY_DBL(),
"No bin with a boundary at an x value higher than this value will\n"
"be used in the summation that decides if a detector is 'bad'\n"
"(default: the end of each histogram)");
string findDetOutLimGrp("Find Detectors Outside Limits");
this->declareProperty(
"LowThreshold", 0.0,
"Spectra whose total number of counts are equal to or below this value\n"
"will be marked bad (default 0)");
this->setPropertyGroup("LowThreshold", findDetOutLimGrp);
this->declareProperty(
"HighThreshold", EMPTY_DBL(),
"Spectra whose total number of counts are equal to or above this value\n"
"will be marked bad (default off)");
this->setPropertyGroup("HighThreshold", findDetOutLimGrp);
string medianDetTestGrp("Median Detector Test");
auto mustBePositiveDbl = boost::make_shared<BoundedValidator<double>>();
mustBePositiveDbl->setLower(0);
this->declareProperty(
"LevelsUp", 0, mustBePosInt,
"Levels above pixel that will be used to compute the median.\n"
"If no level is specified, or 0, the median is over the whole "
"instrument.");
this->setPropertyGroup("LevelsUp", medianDetTestGrp);
this->declareProperty("SignificanceTest", 0.0, mustBePositiveDbl,
"Error criterion as a multiple of error bar i.e. to "
"fail the test, the magnitude of the\n"
"difference with respect to the median value must also "
"exceed this number of error bars");
this->setPropertyGroup("SignificanceTest", medianDetTestGrp);
this->declareProperty("LowThresholdFraction", 0.1,
"Lower acceptable bound as fraction of median value");
this->setPropertyGroup("LowThresholdFraction", medianDetTestGrp);
this->declareProperty("HighThresholdFraction", 1.5,
"Upper acceptable bound as fraction of median value");
this->setPropertyGroup("HighThresholdFraction", medianDetTestGrp);
this->declareProperty(
"LowOutlier", 0.01,
"Lower bound defining outliers as fraction of median value");
this->setPropertyGroup("LowOutlier", medianDetTestGrp);
this->declareProperty(
"HighOutlier", 100.,
"Upper bound defining outliers as fraction of median value");
this->setPropertyGroup("HighOutlier", medianDetTestGrp);
this->declareProperty(
"CorrectForSolidAngle", false,
"Flag to correct for solid angle efficiency. False by default.");
this->setPropertyGroup("CorrectForSolidAngle", medianDetTestGrp);
this->declareProperty("ExcludeZeroesFromMedian", false,
"If false (default) zeroes will be included in "
"the median calculation, otherwise they will not be "
"included but they will be left unmasked");
this->setPropertyGroup("ExcludeZeroesFromMedian", medianDetTestGrp);
string detEffVarGrp("Detector Efficiency Variation");
this->declareProperty(
new WorkspaceProperty<>("DetVanCompare", "", Direction::Input,
PropertyMode::Optional),
"Name of a matching second detector vanadium run from the same\n"
"instrument. It must be treated in the same manner as the input detector "
"vanadium.");
this->setPropertyGroup("DetVanCompare", detEffVarGrp);
this->declareProperty(
"DetVanRatioVariation", 1.1, mustBePositiveDbl,
"Identify spectra whose total number of counts has changed by more\n"
"than this factor of the median change between the two input workspaces");
this->setPropertyGroup("DetVanRatioVariation", detEffVarGrp);
this->setPropertySettings(
"DetVanRatioVariation",
new EnabledWhenProperty("DetVanCompare", IS_NOT_DEFAULT));
string countsCheck("Check Sample Counts");
this->declareProperty(
new WorkspaceProperty<>("SampleTotalCountsWorkspace", "",
Direction::Input, PropertyMode::Optional),
"A sample workspace integrated over the full axis range.");
this->setPropertyGroup("SampleTotalCountsWorkspace", countsCheck);
string backgroundCheck("Check Sample Background");
this->declareProperty(
new WorkspaceProperty<>("SampleBackgroundWorkspace", "", Direction::Input,
PropertyMode::Optional),
"A sample workspace integrated over the background region.");
this->setPropertyGroup("SampleBackgroundWorkspace", backgroundCheck);
this->declareProperty(
"SampleBkgLowAcceptanceFactor", 0.0, mustBePositiveDbl,
"Low threshold for the background check MedianDetectorTest.");
this->setPropertyGroup("SampleBkgLowAcceptanceFactor", backgroundCheck);
this->declareProperty(
"SampleBkgHighAcceptanceFactor", 5.0, mustBePositiveDbl,
"High threshold for the background check MedianDetectorTest.");
this->setPropertyGroup("SampleBkgHighAcceptanceFactor", backgroundCheck);
this->declareProperty("SampleBkgSignificanceTest", 3.3, mustBePositiveDbl,
"Error criterion as a multiple of error bar i.e. to "
"fail the test, the magnitude of the\n"
"difference with respect to the median value must also "
"exceed this number of error bars");
this->setPropertyGroup("SampleBkgSignificanceTest", backgroundCheck);
this->declareProperty("SampleCorrectForSolidAngle", false,
"Flag to correct for solid angle efficiency for "
"background check MedianDetectorTest. False by "
"default.");
this->setPropertyGroup("SampleCorrectForSolidAngle", backgroundCheck);
string psdBleedMaskGrp("Create PSD Bleed Mask");
this->declareProperty(
new WorkspaceProperty<>("SampleWorkspace", "", Direction::Input,
PropertyMode::Optional),
"A sample workspace. This is used in the PSD Bleed calculation.");
this->setPropertyGroup("SampleWorkspace", psdBleedMaskGrp);
this->declareProperty(
"MaxTubeFramerate", 0.0, mustBePositiveDbl,
"The maximum rate allowed for a tube in counts/us/frame.");
this->setPropertyGroup("MaxTubeFramerate", psdBleedMaskGrp);
this->declareProperty("NIgnoredCentralPixels", 80, mustBePosInt,
"The number of pixels about the centre to ignore.");
this->setPropertyGroup("NIgnoredCentralPixels", psdBleedMaskGrp);
this->setPropertySettings(
"NIgnoredCentralPixels",
new EnabledWhenProperty("MaxTubeFramerate", IS_NOT_DEFAULT));
this->declareProperty("NumberOfFailures", 0, Direction::Output);
}
void DetectorDiagnostic::exec() {
// get the generic information that everybody uses
MatrixWorkspace_sptr inputWS = this->getProperty("InputWorkspace");
m_minIndex = this->getProperty("StartWorkspaceIndex");
m_maxIndex = this->getProperty("EndWorkspaceIndex");
m_rangeLower = this->getProperty("RangeLower");
m_rangeUpper = this->getProperty("RangeUpper");
// integrate the data once to pass to ChildAlgorithms
m_fracDone = 0.;
// Get the other workspaces
MatrixWorkspace_sptr input2WS = this->getProperty("DetVanCompare");
MatrixWorkspace_sptr totalCountsWS =
this->getProperty("SampleTotalCountsWorkspace");
MatrixWorkspace_sptr bkgWS = this->getProperty("SampleBackgroundWorkspace");
MatrixWorkspace_sptr sampleWS = this->getProperty("SampleWorkspace");
// calculate the number of tests for progress bar
m_progStepWidth = 0;
{
int numTests(1); // if detector vanadium present, do it!
if (input2WS)
numTests += 1;
if (totalCountsWS)
numTests += 1;
if (bkgWS)
numTests += 1;
if (sampleWS)
numTests += 1;
g_log.information() << "Number of tests requested: " << numTests
<< std::endl;
m_progStepWidth = (1. - m_fracDone) / static_cast<double>(numTests);
}
int numFailed(0);
MatrixWorkspace_sptr maskWS;
// Apply hard mask if present
MatrixWorkspace_sptr hardMaskWS = this->getProperty("HardMaskWorkspace");
if (hardMaskWS) {
IAlgorithm_sptr md = this->createChildAlgorithm("MaskDetectors");
md->setProperty("Workspace", inputWS);
md->setProperty("MaskedWorkspace", hardMaskWS);
md->executeAsChildAlg();
}
// Perform FindDetectorsOutsideLimits and MedianDetectorTest on the
// detector vanadium
maskWS = this->doDetVanTest(inputWS, numFailed);
// DetectorEfficiencyVariation (only if two workspaces are specified)
if (input2WS) {
// apply mask to what we are going to input
this->applyMask(input2WS, maskWS);
maskWS = this->doDetVanTest(input2WS, numFailed);
// get the relevant inputs
double variation = this->getProperty("DetVanRatioVariation");
// run the ChildAlgorithm
IAlgorithm_sptr alg =
this->createChildAlgorithm("DetectorEfficiencyVariation", m_fracDone,
m_fracDone + m_progStepWidth);
m_fracDone += m_progStepWidth;
alg->setProperty("WhiteBeamBase", inputWS);
alg->setProperty("WhiteBeamCompare", input2WS);
alg->setProperty("StartWorkspaceIndex", m_minIndex);
alg->setProperty("EndWorkspaceIndex", m_maxIndex);
alg->setProperty("RangeLower", m_rangeLower);
alg->setProperty("RangeUpper", m_rangeUpper);
alg->setProperty("Variation", variation);
alg->executeAsChildAlg();
MatrixWorkspace_sptr localMaskWS = alg->getProperty("OutputWorkspace");
applyMask(inputWS, localMaskWS);
applyMask(input2WS, localMaskWS);
int localFails = alg->getProperty("NumberOfFailures");
numFailed += localFails;
}
// Zero total counts check for sample counts
if (totalCountsWS) {
// apply mask to what we are going to input
applyMask(totalCountsWS, maskWS);
IAlgorithm_sptr zeroChk = this->createChildAlgorithm(
"FindDetectorsOutsideLimits", m_fracDone, m_fracDone + m_progStepWidth);
m_fracDone += m_progStepWidth;
zeroChk->setProperty("InputWorkspace", totalCountsWS);
zeroChk->setProperty("StartWorkspaceIndex", m_minIndex);
zeroChk->setProperty("EndWorkspaceIndex", m_maxIndex);
zeroChk->setProperty("LowThreshold", 1.0e-10);
zeroChk->setProperty("HighThreshold", 1.0e100);
zeroChk->executeAsChildAlg();
MatrixWorkspace_sptr localMaskWS = zeroChk->getProperty("OutputWorkspace");
applyMask(inputWS, localMaskWS);
int localFails = zeroChk->getProperty("NumberOfFailures");
numFailed += localFails;
}
// Background check
if (bkgWS) {
// apply mask to what we are going to input
this->applyMask(bkgWS, maskWS);
double significanceTest = this->getProperty("SampleBkgSignificanceTest");
double lowThreshold = this->getProperty("SampleBkgLowAcceptanceFactor");
double highThreshold = this->getProperty("SampleBkgHighAcceptanceFactor");
bool correctSA = this->getProperty("SampleCorrectForSolidAngle");
// run the ChildAlgorithm
IAlgorithm_sptr alg = this->createChildAlgorithm(
"MedianDetectorTest", m_fracDone, m_fracDone + m_progStepWidth);
m_fracDone += m_progStepWidth;
alg->setProperty("InputWorkspace", bkgWS);
alg->setProperty("StartWorkspaceIndex", m_minIndex);
alg->setProperty("EndWorkspaceIndex", m_maxIndex);
alg->setProperty("SignificanceTest", significanceTest);
alg->setProperty("LowThreshold", lowThreshold);
alg->setProperty("HighThreshold", highThreshold);
alg->setProperty("LowOutlier", 0.0);
alg->setProperty("HighOutlier", 1.0e100);
alg->setProperty("ExcludeZeroesFromMedian", true);
alg->setProperty("CorrectForSolidAngle", correctSA);
alg->executeAsChildAlg();
MatrixWorkspace_sptr localMaskWS = alg->getProperty("OutputWorkspace");
applyMask(inputWS, localMaskWS);
int localFails = alg->getProperty("NumberOfFailures");
numFailed += localFails;
}
// CreatePSDBleedMask (if selected)
if (sampleWS) {
// get the relevant inputs
double maxTubeFrameRate = this->getProperty("MaxTubeFramerate");
int numIgnore = this->getProperty("NIgnoredCentralPixels");
// run the ChildAlgorithm
IAlgorithm_sptr alg = this->createChildAlgorithm(
"CreatePSDBleedMask", m_fracDone, m_fracDone + m_progStepWidth);
m_fracDone += m_progStepWidth;
alg->setProperty("InputWorkspace", sampleWS);
alg->setProperty("MaxTubeFramerate", maxTubeFrameRate);
alg->setProperty("NIgnoredCentralPixels", numIgnore);
alg->executeAsChildAlg();
MatrixWorkspace_sptr localMaskWS = alg->getProperty("OutputWorkspace");
applyMask(inputWS, localMaskWS);
int localFails = alg->getProperty("NumberOfFailures");
numFailed += localFails;
}
g_log.information() << numFailed << " spectra are being masked\n";
setProperty("NumberOfFailures", numFailed);
// Extract the mask from the vanadium workspace
std::vector<int> detList;
IAlgorithm_sptr extract = this->createChildAlgorithm("ExtractMask");
extract->setProperty("InputWorkspace", inputWS);
extract->setProperty("OutputWorkspace", "final_mask");
extract->setProperty("DetectorList", detList);
extract->executeAsChildAlg();
maskWS = extract->getProperty("OutputWorkspace");
this->setProperty("OutputWorkspace", maskWS);
}
/**
* Function to apply a given mask to a workspace.
* @param inputWS : the workspace to mask
* @param maskWS : the workspace containing the masking information
*/
void DetectorDiagnostic::applyMask(API::MatrixWorkspace_sptr inputWS,
API::MatrixWorkspace_sptr maskWS) {
IAlgorithm_sptr maskAlg =
createChildAlgorithm("MaskDetectors"); // should set progress bar
maskAlg->setProperty("Workspace", inputWS);
maskAlg->setProperty("MaskedWorkspace", maskWS);
maskAlg->setProperty("StartWorkspaceIndex", m_minIndex);
maskAlg->setProperty("EndWorkspaceIndex", m_maxIndex);
maskAlg->executeAsChildAlg();
}
/**
* Function that encapulates the standard detector vanadium tests.
* @param inputWS : the detector vanadium workspace to test
* @param nFails : placeholder for the number of failures
* @return : the resulting mask from the checks
*/
API::MatrixWorkspace_sptr
DetectorDiagnostic::doDetVanTest(API::MatrixWorkspace_sptr inputWS,
int &nFails) {
MatrixWorkspace_sptr localMask;
// FindDetectorsOutsideLimits
// get the relevant inputs
double lowThreshold = this->getProperty("LowThreshold");
double highThreshold = this->getProperty("HighThreshold");
// run the ChildAlgorithm
IAlgorithm_sptr fdol = this->createChildAlgorithm(
"FindDetectorsOutsideLimits", m_fracDone, m_fracDone + m_progStepWidth);
m_fracDone += m_progStepWidth;
fdol->setProperty("InputWorkspace", inputWS);
fdol->setProperty("OutputWorkspace", localMask);
fdol->setProperty("StartWorkspaceIndex", m_minIndex);
fdol->setProperty("EndWorkspaceIndex", m_maxIndex);
fdol->setProperty("RangeLower", m_rangeLower);
fdol->setProperty("RangeUpper", m_rangeUpper);
fdol->setProperty("LowThreshold", lowThreshold);
fdol->setProperty("HighThreshold", highThreshold);
fdol->executeAsChildAlg();
localMask = fdol->getProperty("OutputWorkspace");
int localFails = fdol->getProperty("NumberOfFailures");
nFails += localFails;
// get the relevant inputs for the MedianDetectorTests
int parents = this->getProperty("LevelsUp");
double significanceTest = this->getProperty("SignificanceTest");
double lowThresholdFrac = this->getProperty("LowThresholdFraction");
double highThresholdFrac = this->getProperty("HighThresholdFraction");
double lowOutlier = this->getProperty("LowOutlier");
double highOutlier = this->getProperty("HighOutlier");
bool excludeZeroes = this->getProperty("ExcludeZeroesFromMedian");
bool correctforSA = this->getProperty("CorrectForSolidAngle");
// MedianDetectorTest
// apply mask to what we are going to input
this->applyMask(inputWS, localMask);
// run the ChildAlgorithm
IAlgorithm_sptr mdt = this->createChildAlgorithm(
"MedianDetectorTest", m_fracDone, m_fracDone + m_progStepWidth);
m_fracDone += m_progStepWidth;
mdt->setProperty("InputWorkspace", inputWS);
mdt->setProperty("StartWorkspaceIndex", m_minIndex);
mdt->setProperty("EndWorkspaceIndex", m_maxIndex);
mdt->setProperty("RangeLower", m_rangeLower);
mdt->setProperty("RangeUpper", m_rangeUpper);
mdt->setProperty("LevelsUp", parents);
mdt->setProperty("SignificanceTest", significanceTest);
mdt->setProperty("LowThreshold", lowThresholdFrac);
mdt->setProperty("HighThreshold", highThresholdFrac);
mdt->setProperty("LowOutlier", lowOutlier);
mdt->setProperty("HighOutlier", highOutlier);
mdt->setProperty("ExcludeZeroesFromMedian", excludeZeroes);
mdt->setProperty("CorrectForSolidAngle", correctforSA);
mdt->executeAsChildAlg();
localMask = mdt->getProperty("OutputWorkspace");
localFails = mdt->getProperty("NumberOfFailures");
nFails += localFails;
this->applyMask(inputWS, localMask);
return localMask;
}
//--------------------------------------------------------------------------
// Public member functions
//--------------------------------------------------------------------------
DetectorDiagnostic::DetectorDiagnostic()
: API::Algorithm(), m_fracDone(0.0), m_TotalTime(RTTotal), m_parents(0),
m_progStepWidth(0.0), m_minIndex(0), m_maxIndex(EMPTY_INT()),
m_rangeLower(EMPTY_DBL()), m_rangeUpper(EMPTY_DBL()) {}
//--------------------------------------------------------------------------
// Protected member functions
//--------------------------------------------------------------------------
/**
* Integrate each spectra to get the number of counts
* @param inputWS :: The workspace to integrate
* @param indexMin :: The lower bound of the spectra to integrate
* @param indexMax :: The upper bound of the spectra to integrate
* @param lower :: The lower bound
* @param upper :: The upper bound
* @param outputWorkspace2D :: set to true to output a workspace 2D even if the
* input is an EventWorkspace
* @returns A workspace containing the integrated counts
*/
MatrixWorkspace_sptr DetectorDiagnostic::integrateSpectra(
MatrixWorkspace_sptr inputWS, const int indexMin, const int indexMax,
const double lower, const double upper, const bool outputWorkspace2D) {
g_log.debug() << "Integrating input spectra.\n";
// If the input spectra only has one bin, assume it has been integrated
// already
// but we need to pass it to the algorithm so that a copy of the input
// workspace is
// actually created to use for further calculations
// get percentage completed estimates for now, t0 and when we've finished t1
double t0 = m_fracDone, t1 = advanceProgress(RTGetTotalCounts);
IAlgorithm_sptr childAlg = createChildAlgorithm("Integration", t0, t1);
childAlg->setProperty("InputWorkspace", inputWS);
childAlg->setProperty("StartWorkspaceIndex", indexMin);
childAlg->setProperty("EndWorkspaceIndex", indexMax);
// pass inputed values straight to this integration trusting the checking done
// there
childAlg->setProperty("RangeLower", lower);
childAlg->setProperty("RangeUpper", upper);
childAlg->setPropertyValue("IncludePartialBins", "1");
childAlg->executeAsChildAlg();
// Convert to 2D if desired, and if the input was an EventWorkspace.
MatrixWorkspace_sptr outputW = childAlg->getProperty("OutputWorkspace");
MatrixWorkspace_sptr finalOutputW = outputW;
if (outputWorkspace2D &&
boost::dynamic_pointer_cast<EventWorkspace>(outputW)) {
g_log.debug() << "Converting output Event Workspace into a Workspace2D."
<< std::endl;
childAlg = createChildAlgorithm("ConvertToMatrixWorkspace", t0, t1);
childAlg->setProperty("InputWorkspace", outputW);
childAlg->executeAsChildAlg();
finalOutputW = childAlg->getProperty("OutputWorkspace");
}
return finalOutputW;
}
/**
* Create a masking workspace to return.
*
* @param inputWS The workspace to initialize from. The instrument is copied
*from this.
*/
DataObjects::MaskWorkspace_sptr
DetectorDiagnostic::generateEmptyMask(API::MatrixWorkspace_const_sptr inputWS) {
// Create a new workspace for the results, copy from the input to ensure that
// we copy over the instrument and current masking
DataObjects::MaskWorkspace_sptr maskWS(new DataObjects::MaskWorkspace());
maskWS->initialize(inputWS->getNumberHistograms(), 1, 1);
WorkspaceFactory::Instance().initializeFromParent(inputWS, maskWS, false);
maskWS->setTitle(inputWS->getTitle());
return maskWS;
}
std::vector<std::vector<size_t>>
DetectorDiagnostic::makeInstrumentMap(API::MatrixWorkspace_sptr countsWS) {
std::vector<std::vector<size_t>> mymap;
std::vector<size_t> single;
for (size_t i = 0; i < countsWS->getNumberHistograms(); i++) {
single.push_back(i);
}
mymap.push_back(single);
return mymap;
}
/** This function will check how to group spectra when calculating median
*
*
*/
std::vector<std::vector<size_t>>
DetectorDiagnostic::makeMap(API::MatrixWorkspace_sptr countsWS) {
std::multimap<Mantid::Geometry::ComponentID, size_t> mymap;
Geometry::Instrument_const_sptr instrument = countsWS->getInstrument();
if (m_parents == 0) {
return makeInstrumentMap(countsWS);
}
if (!instrument) {
g_log.warning("Workspace has no instrument. LevelsUP is ignored");
return makeInstrumentMap(countsWS);
}
// check if not grouped. If grouped, it will throw
if (countsWS->hasGroupedDetectors()) {
throw std::runtime_error("Median detector test: not able to create "
"detector to spectra map. Try with LevelUp=0.");
}
for (size_t i = 0; i < countsWS->getNumberHistograms(); i++) {
detid_t d = (*((countsWS->getSpectrum(i))->getDetectorIDs().begin()));
std::vector<boost::shared_ptr<const Mantid::Geometry::IComponent>> anc =
instrument->getDetector(d)->getAncestors();
// std::vector<boost::shared_ptr<const IComponent> >
// anc=(*(countsWS->getSpectrum(i)->getDetectorIDs().begin()))->getAncestors();
if (anc.size() < static_cast<size_t>(m_parents)) {
g_log.warning("Too many levels up. Will ignore LevelsUp");
m_parents = 0;
return makeInstrumentMap(countsWS);
}
mymap.insert(std::pair<Mantid::Geometry::ComponentID, size_t>(
anc[m_parents - 1]->getComponentID(), i));
}
std::vector<std::vector<size_t>> speclist;
std::vector<size_t> speclistsingle;
std::multimap<Mantid::Geometry::ComponentID, size_t>::iterator m_it, s_it;
for (m_it = mymap.begin(); m_it != mymap.end(); m_it = s_it) {
Mantid::Geometry::ComponentID theKey = (*m_it).first;
std::pair<std::multimap<Mantid::Geometry::ComponentID, size_t>::iterator,
std::multimap<Mantid::Geometry::ComponentID, size_t>::iterator>
keyRange = mymap.equal_range(theKey);
// Iterate over all map elements with key == theKey
speclistsingle.clear();
for (s_it = keyRange.first; s_it != keyRange.second; ++s_it) {
speclistsingle.push_back((*s_it).second);
}
speclist.push_back(speclistsingle);
}
return speclist;
}
/**
* Finds the median of values in single bin histograms rejecting spectra from
* masked
* detectors and the results of divide by zero (infinite and NaN).
* The median is an average that is less affected by small numbers of very large
* values.
* @param input :: A histogram workspace with one entry in each bin
* @param excludeZeroes :: If true then zeroes will not be included in the
* median calculation
* @param indexmap :: indexmap
* @return The median value of the histograms in the workspace that was passed
* to it
* @throw out_of_range if a value is negative
*/
std::vector<double>
DetectorDiagnostic::calculateMedian(const API::MatrixWorkspace_sptr input,
bool excludeZeroes,
std::vector<std::vector<size_t>> indexmap) {
std::vector<double> medianvec;
g_log.debug("Calculating the median count rate of the spectra");
for (size_t j = 0; j < indexmap.size(); ++j) {
std::vector<double> medianInput;
std::vector<size_t> hists = indexmap.at(j);
const int nhists = static_cast<int>(hists.size());
// The maximum possible length is that of workspace length
medianInput.reserve(nhists);
bool checkForMask = false;
Geometry::Instrument_const_sptr instrument = input->getInstrument();
if (instrument != NULL) {
checkForMask = ((instrument->getSource() != NULL) &&
(instrument->getSample() != NULL));
}
PARALLEL_FOR1(input)
for (int i = 0; i < static_cast<int>(hists.size()); ++i) {
PARALLEL_START_INTERUPT_REGION
if (checkForMask) {
const std::set<detid_t> &detids =
input->getSpectrum(hists[i])->getDetectorIDs();
if (instrument->isDetectorMasked(detids))
continue;
if (instrument->isMonitor(detids))
continue;
}
const double yValue = input->readY(hists[i])[0];
if (yValue < 0.0) {
throw std::out_of_range("Negative number of counts found, could be "
"corrupted raw counts or solid angle data");
}
if (boost::math::isnan(yValue) || boost::math::isinf(yValue) ||
(excludeZeroes && yValue < DBL_EPSILON)) // NaNs/Infs
{
continue;
}
// Now we have a good value
PARALLEL_CRITICAL(DetectorDiagnostic_median_d) {
medianInput.push_back(yValue);
}
PARALLEL_END_INTERUPT_REGION
}
PARALLEL_CHECK_INTERUPT_REGION
if (medianInput.empty()) {
g_log.information(
"some group has no valid histograms. Will use 0 for median.");
medianInput.push_back(0.);
}
// We need a sorted array to calculate the median
std::sort(medianInput.begin(), medianInput.end());
double median = gsl_stats_median_from_sorted_data(&medianInput[0], 1,
medianInput.size());
if (median < 0 || median > DBL_MAX / 10.0) {
throw std::out_of_range("The calculated value for the median was either "
"negative or unreliably large");
}
medianvec.push_back(median);
}
return medianvec;
}
/**
* Convert to a distribution
* @param workspace :: The input workspace to convert to a count rate
* @return distribution workspace with equiv. data
*/
API::MatrixWorkspace_sptr
DetectorDiagnostic::convertToRate(API::MatrixWorkspace_sptr workspace) {
if (workspace->isDistribution()) {
g_log.information()
<< "Workspace already contains a count rate, nothing to do.\n";
return workspace;
}
g_log.information("Calculating time averaged count rates");
// get percentage completed estimates for now, t0 and when we've finished t1
double t0 = m_fracDone, t1 = advanceProgress(RTGetRate);
IAlgorithm_sptr childAlg =
createChildAlgorithm("ConvertToDistribution", t0, t1);
childAlg->setProperty<MatrixWorkspace_sptr>("Workspace", workspace);
// Now execute the Child Algorithm but allow any exception to bubble up
childAlg->execute();
return childAlg->getProperty("Workspace");
}
/** Update the percentage complete estimate assuming that the algorithm
* has completed a task with the given estimated run time
* @param toAdd :: the estimated additional run time passed since the last
* update,
* where m_TotalTime holds the total algorithm run time
* @return estimated fraction of algorithm runtime that has passed so far
*/
double DetectorDiagnostic::advanceProgress(double toAdd) {
m_fracDone += toAdd / m_TotalTime;
// it could go negative as sometimes the percentage is re-estimated backwards,
// this is worrying about if a small negative value will cause a problem some
// where
m_fracDone = std::abs(m_fracDone);
interruption_point();
return m_fracDone;
}
/** Update the percentage complete estimate assuming that the algorithm aborted
* a task with the given
* estimated run time
* @param aborted :: the amount of algorithm run time that was saved by aborting
* a
* part of the algorithm, where m_TotalTime holds the total algorithm run time
*/
void DetectorDiagnostic::failProgress(RunTime aborted) {
advanceProgress(-aborted);
m_TotalTime -= aborted;
}
}
}