-
Pete Peterson authored
Merge pull request #18724 from mantidproject/18684_Histo_Rollout_PoldiDomainFunc_to_WSCreationHelper Histogram Rollout - PoldiSpectrumDomainFunction to WorkspaceCreationHelper
Pete Peterson authoredMerge pull request #18724 from mantidproject/18684_Histo_Rollout_PoldiDomainFunc_to_WSCreationHelper Histogram Rollout - PoldiSpectrumDomainFunction to WorkspaceCreationHelper
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
WorkspaceCreationHelper.cpp 52.13 KiB
/*********************************************************************************
* PLEASE READ THIS!!!!!!!
*
* This collection of functions MAY NOT be used in any test from a package
*below
* DataObjects (e.g. Kernel, Geometry, API).
* Conversely, this file MAY NOT be modified to use anything from a package
*higher
* than DataObjects (e.g. any algorithm), even if going via the factory.
*********************************************************************************/
#include "MantidTestHelpers/WorkspaceCreationHelper.h"
#include "MantidTestHelpers/ComponentCreationHelper.h"
#include "MantidTestHelpers/InstrumentCreationHelper.h"
#include "MantidHistogramData/LinearGenerator.h"
#include "MantidAPI/Run.h"
#include "MantidAPI/IAlgorithm.h"
#include "MantidAPI/Algorithm.h"
#include "MantidAPI/DetectorInfo.h"
#include "MantidAPI/Sample.h"
#include "MantidAPI/SpectraAxis.h"
#include "MantidAPI/SpectrumInfo.h"
#include "MantidAPI/NumericAxis.h"
#include "MantidAPI/WorkspaceGroup.h"
#include "MantidDataObjects/PeaksWorkspace.h"
#include "MantidDataObjects/WorkspaceCreation.h"
#include "MantidGeometry/Instrument/Detector.h"
#include "MantidGeometry/Instrument/Goniometer.h"
#include "MantidGeometry/Instrument/ParameterMap.h"
#include "MantidGeometry/Instrument/ReferenceFrame.h"
#include "MantidGeometry/Instrument/Component.h"
#include "MantidGeometry/Objects/ShapeFactory.h"
#include "MantidGeometry/Crystal/OrientedLattice.h"
#include "MantidKernel/MersenneTwister.h"
#include "MantidKernel/TimeSeriesProperty.h"
#include "MantidKernel/UnitFactory.h"
#include "MantidKernel/VectorHelper.h"
#include "MantidKernel/make_unique.h"
#include <cmath>
#include <sstream>
namespace WorkspaceCreationHelper {
using namespace Mantid;
using namespace Mantid::DataObjects;
using namespace Mantid::Kernel;
using namespace Mantid::API;
using namespace Mantid::Geometry;
using namespace Mantid::HistogramData;
using Mantid::MantidVec;
using Mantid::MantidVecPtr;
MockAlgorithm::MockAlgorithm(size_t nSteps) {
m_Progress = Mantid::Kernel::make_unique<API::Progress>(this, 0, 1, nSteps);
}
EPPTableRow::EPPTableRow(const double peakCentre_, const double sigma_,
const double height_, const FitStatus fitStatus_)
: peakCentre(peakCentre_), peakCentreError(0), sigma(sigma_), sigmaError(0),
height(height_), heightError(0), chiSq(0), fitStatus(fitStatus_) {}
/**
* @param name :: The name of the workspace
* @param ws :: The workspace object
*/
void storeWS(const std::string &name, Mantid::API::Workspace_sptr ws) {
Mantid::API::AnalysisDataService::Instance().add(name, ws);
}
/**
* Deletes a workspace
* @param name :: The name of the workspace
*/
void removeWS(const std::string &name) {
Mantid::API::AnalysisDataService::Instance().remove(name);
}
/**
* Creates bin or point based histograms based on the data passed
* in for Y and E values and the bool specified.
*
* @param isHistogram :: Specifies whether the returned histogram
* should use points or bin edges for the x axis. True gives bin edges.
* @param yAxis :: Takes an rvalue (move) of the y axis for the new histogram
* @param eAxis :: Takes an rvalue (move) of the e axis for the new histogram
*
* @return :: Returns a histogram with the user specified X axis type
* and the data the user passed in.
*/
template <typename YType, typename EType>
Histogram createHisto(bool isHistogram, YType &&yAxis, EType &&eAxis) {
// We don't need to check if y.size() == e.size() as the histogram
// type does this at construction
const size_t yValsSize = yAxis.size();
if (isHistogram) {
BinEdges xAxis(yValsSize + 1, LinearGenerator(1, 1));
Histogram histo{std::move(xAxis), std::move(yAxis), std::move(eAxis)};
return histo;
} else {
Points xAxis(yValsSize, LinearGenerator(1, 1));
Histogram pointsHisto{std::move(xAxis), std::move(yAxis), std::move(eAxis)};
return pointsHisto;
}
}
Workspace2D_sptr create1DWorkspaceRand(int size, bool isHisto) {
MersenneTwister randomGen(DateAndTime::getCurrentTime().nanoseconds(), 0,
std::numeric_limits<int>::max());
auto randFunc = [&randomGen] { return randomGen.nextValue(); };
Counts counts(size, randFunc);
CountStandardDeviations errorVals(size, randFunc);
auto generatedHisto = createHisto(isHisto, counts, errorVals);
auto retVal = boost::make_shared<Workspace2D>();
retVal->initialize(1, std::move(generatedHisto));
return retVal;
}
Workspace2D_sptr create1DWorkspaceConstant(int size, double value, double error,
bool isHisto) {
Counts yVals(size, value);
CountStandardDeviations errVals(size, error);
auto generatedHisto = createHisto(isHisto, yVals, errVals);
auto retVal = boost::make_shared<Workspace2D>();
retVal->initialize(1, std::move(generatedHisto));
return retVal;
}
Workspace2D_sptr create1DWorkspaceConstantWithXerror(int size, double value,
double error,
double xError,
bool isHisto) {
auto ws = create1DWorkspaceConstant(size, value, error, isHisto);
auto dx1 = Kernel::make_cow<HistogramData::HistogramDx>(size, xError);
ws->setSharedDx(0, dx1);
return ws;
}
Workspace2D_sptr create1DWorkspaceFib(int size, bool isHisto) {
BinEdges xVals(size + 1, LinearGenerator(1, 1));
Counts yVals(size, FibSeries<double>());
CountStandardDeviations errVals(size);
auto generatedHisto = createHisto(isHisto, yVals, errVals);
auto retVal = boost::make_shared<Workspace2D>();
retVal->initialize(1, std::move(generatedHisto));
return retVal;
}
Workspace2D_sptr create2DWorkspace(int nhist, int numBoundaries) {
return create2DWorkspaceBinned(nhist, numBoundaries);
}
/** Create a Workspace2D where the Y value at each bin is
* == to the workspace index
* @param nhist :: # histograms
* @param numBoundaries :: # of bins
* @return Workspace2D
*/
Workspace2D_sptr create2DWorkspaceWhereYIsWorkspaceIndex(int nhist,
int numBoundaries) {
Workspace2D_sptr out = create2DWorkspaceBinned(nhist, numBoundaries);
for (int workspaceIndex = 0; workspaceIndex < nhist; workspaceIndex++) {
std::vector<double> yValues(numBoundaries,
static_cast<double>(workspaceIndex));
out->mutableY(workspaceIndex) = std::move(yValues);
}
return out;
}
Workspace2D_sptr create2DWorkspaceThetaVsTOF(int nHist, int nBins) {
Workspace2D_sptr outputWS = create2DWorkspaceBinned(nHist, nBins);
auto const newAxis = new NumericAxis(nHist);
outputWS->replaceAxis(1, newAxis);
newAxis->unit() = boost::make_shared<Units::Degrees>();
for (int i = 0; i < nHist; ++i) {
newAxis->setValue(i, i + 1);
}
return outputWS;
}
Workspace2D_sptr
create2DWorkspaceWithValues(int64_t nHist, int64_t nBins, bool isHist,
const std::set<int64_t> &maskedWorkspaceIndices,
double xVal, double yVal, double eVal) {
auto x1 = Kernel::make_cow<HistogramData::HistogramX>(
isHist ? nBins + 1 : nBins, LinearGenerator(xVal, 1.0));
Counts y1(nBins, yVal);
CountStandardDeviations e1(nBins, eVal);
auto retVal = boost::make_shared<Workspace2D>();
retVal->initialize(nHist, isHist ? nBins + 1 : nBins, nBins);
for (int i = 0; i < nHist; i++) {
retVal->setX(i, x1);
retVal->setCounts(i, y1);
retVal->setCountStandardDeviations(i, e1);
retVal->getSpectrum(i).setDetectorID(i);
retVal->getSpectrum(i).setSpectrumNo(i);
}
retVal = maskSpectra(retVal, maskedWorkspaceIndices);
return retVal;
}
Workspace2D_sptr create2DWorkspaceWithValuesAndXerror(
int64_t nHist, int64_t nBins, bool isHist, double xVal, double yVal,
double eVal, double dxVal,
const std::set<int64_t> &maskedWorkspaceIndices) {
auto ws = create2DWorkspaceWithValues(
nHist, nBins, isHist, maskedWorkspaceIndices, xVal, yVal, eVal);
PointStandardDeviations dx1(nBins, dxVal);
for (int i = 0; i < nHist; i++) {
ws->setPointStandardDeviations(i, dx1);
}
return ws;
}
Workspace2D_sptr
create2DWorkspace123(int64_t nHist, int64_t nBins, bool isHist,
const std::set<int64_t> &maskedWorkspaceIndices) {
return create2DWorkspaceWithValues(nHist, nBins, isHist,
maskedWorkspaceIndices, 1.0, 2.0, 3.0);
}
Workspace2D_sptr
create2DWorkspace154(int64_t nHist, int64_t nBins, bool isHist,
const std::set<int64_t> &maskedWorkspaceIndices) {
return create2DWorkspaceWithValues(nHist, nBins, isHist,
maskedWorkspaceIndices, 1.0, 5.0, 4.0);
}
Workspace2D_sptr maskSpectra(Workspace2D_sptr workspace,
const std::set<int64_t> &maskedWorkspaceIndices) {
const int nhist = static_cast<int>(workspace->getNumberHistograms());
if (workspace->getInstrument()->nelements() == 0) {
// We need detectors to be able to mask them.
auto instrument = boost::make_shared<Instrument>();
workspace->setInstrument(instrument);
std::string xmlShape = "<sphere id=\"shape\"> ";
xmlShape += "<centre x=\"0.0\" y=\"0.0\" z=\"0.0\" /> ";
xmlShape += "<radius val=\"0.05\" /> ";
xmlShape += "</sphere>";
xmlShape += "<algebra val=\"shape\" /> ";
ShapeFactory sFactory;
boost::shared_ptr<Object> shape = sFactory.createShape(xmlShape);
for (int i = 0; i < nhist; ++i) {
Detector *det = new Detector("det", detid_t(i), shape, nullptr);
det->setPos(i, i + 1, 1);
instrument->add(det);
instrument->markAsDetector(det);
}
workspace->setInstrument(instrument);
}
auto &spectrumInfo = workspace->mutableSpectrumInfo();
for (const auto index : maskedWorkspaceIndices)
spectrumInfo.setMasked(index, true);
return workspace;
}
/**
* Create a group with nEntries. It is added to the ADS with the given stem
*/
WorkspaceGroup_sptr createWorkspaceGroup(int nEntries, int nHist, int nBins,
const std::string &stem) {
auto group = boost::make_shared<WorkspaceGroup>();
AnalysisDataService::Instance().add(stem, group);
for (int i = 0; i < nEntries; ++i) {
Workspace2D_sptr ws = create2DWorkspace(nHist, nBins);
std::ostringstream os;
os << stem << "_" << i;
AnalysisDataService::Instance().add(os.str(), ws);
group->add(os.str());
}
return group;
}
/** Create a 2D workspace with this many histograms and bins.
* Filled with Y = 2.0 and E = M_SQRT2w
*/
Workspace2D_sptr create2DWorkspaceBinned(int nhist, int numVals, double x0,
double deltax) {
BinEdges x(numVals + 1, LinearGenerator(x0, deltax));
Counts y(numVals, 2);
CountStandardDeviations e(numVals, M_SQRT2);
auto retVal = boost::make_shared<Workspace2D>();
retVal->initialize(nhist, numVals + 1, numVals);
for (int i = 0; i < nhist; i++) {
retVal->setBinEdges(i, x);
retVal->setCounts(i, y);
retVal->setCountStandardDeviations(i, e);
}
return retVal;
}
/** Create a 2D workspace with this many histograms and bins. The bins are
* assumed to be non-uniform and given by the input array
* Filled with Y = 2.0 and E = M_SQRT2w
*/
Workspace2D_sptr create2DWorkspaceBinned(int nhist, const int numBoundaries,
const double xBoundaries[]) {
BinEdges x(xBoundaries, xBoundaries + numBoundaries);
const int numBins = numBoundaries - 1;
Counts y(numBins, 2);
CountStandardDeviations e(numBins, M_SQRT2);
auto retVal = boost::make_shared<Workspace2D>();
retVal->initialize(nhist, numBins + 1, numBins);
for (int i = 0; i < nhist; i++) {
retVal->setBinEdges(i, x);
retVal->setCounts(i, y);
retVal->setCountStandardDeviations(i, e);
}
return retVal;
}
/**
* Add random noise to the signal
* @param ws :: The workspace to add the noise to
* @param noise :: The mean noise level
* @param lower :: The lower bound of the flucation (default=-0.5)
* @param upper:: The upper bound of the flucation (default=-0.5)
*/
void addNoise(Mantid::API::MatrixWorkspace_sptr ws, double noise,
const double lower, const double upper) {
const size_t seed(12345);
MersenneTwister randGen(seed, lower, upper);
for (size_t iSpec = 0; iSpec < ws->getNumberHistograms(); iSpec++) {
auto &mutableY = ws->mutableY(iSpec);
auto &mutableE = ws->mutableE(iSpec);
for (size_t i = 0; i < mutableY.size(); i++) {
mutableY[i] += noise * randGen.nextValue();
mutableE[i] += noise;
}
}
}
//================================================================================================================
/**
* Create a test workspace with a fully defined instrument
* Each spectra will have a cylindrical detector defined 2*cylinder_radius away
* from the centre of the
* previous.
* Data filled with: Y: 2.0, E: M_SQRT2, X: nbins of width 1 starting at 0
*/
Workspace2D_sptr
create2DWorkspaceWithFullInstrument(int nhist, int nbins, bool includeMonitors,
bool startYNegative, bool isHistogram,
const std::string &instrumentName) {
if (includeMonitors && nhist < 2) {
throw std::invalid_argument("Attempting to 2 include monitors for a "
"workspace with fewer than 2 histograms");
}
Workspace2D_sptr space;
if (isHistogram)
space = create2DWorkspaceBinned(
nhist, nbins); // A 1:1 spectra is created by default
else
space = create2DWorkspace123(nhist, nbins, false);
space->setTitle(
"Test histogram"); // actually adds a property call run_title to the logs
space->getAxis(0)->setUnit("TOF");
space->setYUnit("Counts");
InstrumentCreationHelper::addFullInstrumentToWorkspace(
*space, includeMonitors, startYNegative, instrumentName);
return space;
}
//================================================================================================================
/** Create an Workspace2D with an instrument that contains
*RectangularDetector's.
* Bins will be 0.0, 1.0, to numBins, filled with signal=2.0, M_SQRT2
*
* @param numBanks :: number of rectangular banks
* @param numPixels :: each bank will be numPixels*numPixels
* @param numBins :: each spectrum will have this # of bins
* @return The EventWorkspace
*/
Mantid::DataObjects::Workspace2D_sptr
create2DWorkspaceWithRectangularInstrument(int numBanks, int numPixels,
int numBins) {
Instrument_sptr inst =
ComponentCreationHelper::createTestInstrumentRectangular(numBanks,
numPixels);
Workspace2D_sptr ws =
create2DWorkspaceBinned(numBanks * numPixels * numPixels, numBins);
ws->setInstrument(inst);
ws->getAxis(0)->setUnit("dSpacing");
for (size_t wi = 0; wi < ws->getNumberHistograms(); wi++) {
ws->getSpectrum(wi).setDetectorID(detid_t(numPixels * numPixels + wi));
ws->getSpectrum(wi).setSpectrumNo(specnum_t(wi));
}
return ws;
}
//================================================================================================================
/** Create an Eventworkspace with an instrument that contains
*RectangularDetector's.
* X axis = 100 histogrammed bins from 0.0 in steps of 1.0.
* 200 events per pixel.
*
* @param numBanks :: number of rectangular banks
* @param numPixels :: each bank will be numPixels*numPixels
* @param clearEvents :: if true, erase the events from list
* @return The EventWorkspace
*/
Mantid::DataObjects::EventWorkspace_sptr
createEventWorkspaceWithFullInstrument(int numBanks, int numPixels,
bool clearEvents) {
Instrument_sptr inst =
ComponentCreationHelper::createTestInstrumentRectangular(numBanks,
numPixels);
EventWorkspace_sptr ws =
createEventWorkspace2(numBanks * numPixels * numPixels, 100);
ws->setInstrument(inst);
// Set the X axes
const auto &xVals = ws->x(0);
const size_t xSize = xVals.size();
auto ax0 = new NumericAxis(xSize);
ax0->setUnit("dSpacing");
for (size_t i = 0; i < xSize; i++) {
ax0->setValue(i, xVals[i]);
}
ws->replaceAxis(0, ax0);
// re-assign detector IDs to the rectangular detector
int detID = numPixels * numPixels;
for (int wi = 0; wi < static_cast<int>(ws->getNumberHistograms()); wi++) {
ws->getSpectrum(wi).clearDetectorIDs();
if (clearEvents)
ws->getSpectrum(wi).clear(true);
ws->getSpectrum(wi).setDetectorID(detID);
detID++;
}
return ws;
}
Mantid::DataObjects::EventWorkspace_sptr
createEventWorkspaceWithNonUniformInstrument(int numBanks, bool clearEvents) {
// Number of detectors in a bank as created by createTestInstrumentCylindrical
const int DETECTORS_PER_BANK(9);
V3D srcPos(0., 0., -10.), samplePos;
Instrument_sptr inst =
ComponentCreationHelper::createTestInstrumentCylindrical(
numBanks, srcPos, samplePos, 0.0025, 0.005);
EventWorkspace_sptr ws =
createEventWorkspace2(numBanks * DETECTORS_PER_BANK, 100);
ws->setInstrument(inst);
std::vector<detid_t> detectorIds = inst->getDetectorIDs();
// Should be equal if DETECTORS_PER_BANK is correct
assert(detectorIds.size() == ws->getNumberHistograms());
// Re-assign detector IDs
for (size_t wi = 0; wi < ws->getNumberHistograms(); wi++) {
ws->getSpectrum(wi).clearDetectorIDs();
if (clearEvents)
ws->getSpectrum(wi).clear(true);
ws->getSpectrum(wi).setDetectorID(detectorIds[wi]);
}
return ws;
}
/**
* Create a very small 2D workspace for a virtual reflectometry instrument.
* @return workspace with instrument attached.
* @param startX : X Tof start value for the workspace.
*/
MatrixWorkspace_sptr
create2DWorkspaceWithReflectometryInstrument(double startX) {
Instrument_sptr instrument = boost::make_shared<Instrument>();
instrument->setReferenceFrame(
boost::make_shared<ReferenceFrame>(Y /*up*/, X /*along*/, Left, "0,0,0"));
ObjComponent *source = new ObjComponent("source");
source->setPos(V3D(0, 0, 0));
instrument->add(source);
instrument->markAsSource(source);
Detector *monitor = new Detector("Monitor", 1, nullptr);
monitor->setPos(14, 0, 0);
instrument->add(monitor);
instrument->markAsMonitor(monitor);
ObjComponent *sample = new ObjComponent("some-surface-holder");
sample->setPos(V3D(15, 0, 0));
instrument->add(sample);
instrument->markAsSamplePos(sample);
// Where 0.01 is half detector width etc.
Detector *det = new Detector(
"point-detector", 2,
ComponentCreationHelper::createCuboid(0.01, 0.02, 0.03), nullptr);
det->setPos(20, (20 - sample->getPos().X()), 0);
instrument->add(det);
instrument->markAsDetector(det);
const int nSpectra = 2;
const int nBins = 100;
const double deltaX = 2000; // TOF
auto workspace = create2DWorkspaceBinned(nSpectra, nBins, startX, deltaX);
workspace->setTitle(
"Test histogram"); // actually adds a property call run_title to the logs
workspace->getAxis(0)->setUnit("TOF");
workspace->setYUnit("Counts");
workspace->setInstrument(instrument);
workspace->getSpectrum(0).setDetectorID(det->getID());
workspace->getSpectrum(1).setDetectorID(monitor->getID());
return workspace;
}
/**
* Create a very small 2D workspace for a virtual reflectometry instrument with
* multiple detectors
* @return workspace with instrument attached.
* @param startX : X Tof start value for the workspace.
*/
MatrixWorkspace_sptr
create2DWorkspaceWithReflectometryInstrumentMultiDetector(double startX) {
Instrument_sptr instrument = boost::make_shared<Instrument>();
instrument->setReferenceFrame(
boost::make_shared<ReferenceFrame>(Y /*up*/, X /*along*/, Left, "0,0,0"));
ObjComponent *source = new ObjComponent("source");
source->setPos(V3D(0, 0, 0));
instrument->add(source);
instrument->markAsSource(source);
ObjComponent *sample = new ObjComponent("some-surface-holder");
sample->setPos(V3D(15, 0, 0));
instrument->add(sample);
instrument->markAsSamplePos(sample);
Detector *monitor = new Detector("Monitor", 1, nullptr);
monitor->setPos(14, 0, 0);
instrument->add(monitor);
instrument->markAsMonitor(monitor);
Detector *det1 = new Detector(
"point-detector", 2,
ComponentCreationHelper::createCuboid(0.01, 0.02, 0.03), nullptr);
det1->setPos(20, (20 - sample->getPos().X()), 0);
instrument->add(det1);
instrument->markAsDetector(det1);
Detector *det2 = new Detector(
"point-detector", 3,
ComponentCreationHelper::createCuboid(0.01, 0.02, 0.03), nullptr);
det2->setPos(20, (20 - sample->getPos().X()), 0);
instrument->add(det2);
instrument->markAsDetector(det2);
Detector *det3 = new Detector(
"point-detector", 4,
ComponentCreationHelper::createCuboid(0.01, 0.02, 0.03), nullptr);
det3->setPos(20, (20 - sample->getPos().X()), 0);
instrument->add(det3);
instrument->markAsDetector(det3);
const int nSpectra = 4;
const int nBins = 20;
const double deltaX = 5000; // TOF
auto workspace = create2DWorkspaceBinned(nSpectra, nBins, startX, deltaX);
workspace->setTitle("Test histogram");
workspace->getAxis(0)->setUnit("TOF");
workspace->setYUnit("Counts");
workspace->setInstrument(instrument);
workspace->getSpectrum(0).setDetectorID(monitor->getID());
workspace->getSpectrum(1).setDetectorID(det1->getID());
workspace->getSpectrum(2).setDetectorID(det2->getID());
workspace->getSpectrum(3).setDetectorID(det3->getID());
return workspace;
}
void createInstrumentForWorkspaceWithDistances(
MatrixWorkspace_sptr workspace, const V3D &samplePosition,
const V3D &sourcePosition, const std::vector<V3D> &detectorPositions) {
Instrument_sptr instrument = boost::make_shared<Instrument>();
instrument->setReferenceFrame(
boost::make_shared<ReferenceFrame>(Y, X, Left, "0,0,0"));
ObjComponent *source = new ObjComponent("source");
source->setPos(sourcePosition);
instrument->add(source);
instrument->markAsSource(source);
ObjComponent *sample = new ObjComponent("sample");
sample->setPos(samplePosition);
instrument->add(sample);
instrument->markAsSamplePos(sample);
for (int i = 0; i < static_cast<int>(detectorPositions.size()); ++i) {
std::stringstream buffer;
buffer << "detector_" << i;
Detector *det = new Detector(buffer.str(), i, nullptr);
det->setPos(detectorPositions[i]);
instrument->add(det);
instrument->markAsDetector(det);
// Link it to the workspace
workspace->getSpectrum(i).clearDetectorIDs();
workspace->getSpectrum(i).addDetectorID(det->getID());
}
workspace->setInstrument(instrument);
}
//================================================================================================================
WorkspaceSingleValue_sptr createWorkspaceSingleValue(double value) {
return boost::make_shared<WorkspaceSingleValue>(value, sqrt(value));
}
WorkspaceSingleValue_sptr createWorkspaceSingleValueWithError(double value,
double error) {
return boost::make_shared<WorkspaceSingleValue>(value, error);
}
/** Perform some finalization on event workspace stuff */
void eventWorkspace_Finalize(EventWorkspace_sptr ew) {
// get a proton charge
ew->mutableRun().integrateProtonCharge();
}
/** Create event workspace with:
* 500 pixels
* 1000 histogrammed bins.
*/
EventWorkspace_sptr createEventWorkspace() {
return createEventWorkspace(500, 1001, 100, 1000);
}
/** Create event workspace with:
* numPixels pixels
* numBins histogrammed bins from 0.0 in steps of 1.0
* 200 events; two in each bin, at time 0.5, 1.5, etc.
* PulseTime = 0 second x2, 1 second x2, 2 seconds x2, etc. after 2010-01-01
*/
EventWorkspace_sptr createEventWorkspace2(int numPixels, int numBins) {
return createEventWorkspace(numPixels, numBins, 100, 0.0, 1.0, 2);
}
/** Create event workspace
*/
EventWorkspace_sptr createEventWorkspace(int numPixels, int numBins,
int numEvents, double x0,
double binDelta, int eventPattern,
int start_at_pixelID) {
return createEventWorkspaceWithStartTime(
numPixels, numBins, numEvents, x0, binDelta, eventPattern,
start_at_pixelID, DateAndTime("2010-01-01T00:00:00"));
}
/**
* Create event workspace with defined start date time
*/
EventWorkspace_sptr
createEventWorkspaceWithStartTime(int numPixels, int numBins, int numEvents,
double x0, double binDelta, int eventPattern,
int start_at_pixelID, DateAndTime run_start) {
// add one to the number of bins as this is histogram
numBins++;
auto retVal = boost::make_shared<EventWorkspace>();
retVal->initialize(numPixels, 1, 1);
// Make fake events
if (eventPattern) // 0 == no events
{
size_t workspaceIndex = 0;
for (int pix = start_at_pixelID + 0; pix < start_at_pixelID + numPixels;
pix++) {
EventList &el = retVal->getSpectrum(workspaceIndex);
el.setSpectrumNo(pix);
el.setDetectorID(pix);
for (int i = 0; i < numEvents; i++) {
if (eventPattern == 1) // 0, 1 diagonal pattern
el += TofEvent((pix + i + 0.5) * binDelta, run_start + double(i));
else if (eventPattern == 2) // solid 2
{
el += TofEvent((i + 0.5) * binDelta, run_start + double(i));
el += TofEvent((i + 0.5) * binDelta, run_start + double(i));
} else if (eventPattern == 3) // solid 1
{
el += TofEvent((i + 0.5) * binDelta, run_start + double(i));
} else if (eventPattern == 4) // Number of events per bin = pixelId (aka
// workspace index in most cases)
{
for (int q = 0; q < pix; q++)
el += TofEvent((i + 0.5) * binDelta, run_start + double(i));
}
}
workspaceIndex++;
}
}
retVal->setAllX(BinEdges(numBins, LinearGenerator(x0, binDelta)));
return retVal;
}
// =====================================================================================
/** Create event workspace, with several detector IDs in one event list.
*/
EventWorkspace_sptr
createGroupedEventWorkspace(std::vector<std::vector<int>> groups, int numBins,
double binDelta, double xOffset) {
auto retVal = boost::make_shared<EventWorkspace>();
retVal->initialize(groups.size(), 2, 1);
for (size_t g = 0; g < groups.size(); g++) {
retVal->getSpectrum(g).clearDetectorIDs();
std::vector<int> dets = groups[g];
for (auto det : dets) {
for (int i = 0; i < numBins; i++)
retVal->getSpectrum(g) += TofEvent((i + 0.5) * binDelta, 1);
retVal->getSpectrum(g).addDetectorID(det);
}
}
if (xOffset == 0.) {
retVal->setAllX(BinEdges(numBins, LinearGenerator(0.0, binDelta)));
} else {
for (size_t g = 0; g < groups.size(); g++) {
// Create the x-axis for histogramming.
const double x0 = xOffset * static_cast<double>(g);
retVal->setX(
g, make_cow<HistogramX>(numBins, LinearGenerator(x0, binDelta)));
}
}
return retVal;
}
// =====================================================================================
/** Create an event workspace with randomized TOF and pulsetimes
*
* @param numbins :: # of bins to set. This is also = # of events per EventList
* @param numpixels :: number of pixels
* @param bin_delta :: a constant offset to shift the bin bounds by
* @return EventWorkspace
*/
EventWorkspace_sptr createRandomEventWorkspace(size_t numbins, size_t numpixels,
double bin_delta) {
auto retVal = boost::make_shared<EventWorkspace>();
retVal->initialize(numpixels, numbins, numbins - 1);
// and X-axis for references:
auto pAxis0 = new NumericAxis(numbins);
// Create the original X axis to histogram on.
// Create the x-axis for histogramming.
HistogramData::BinEdges axis(numbins, LinearGenerator(0.0, bin_delta));
for (int i = 0; i < static_cast<int>(numbins); ++i) {
pAxis0->setValue(i, axis[i]);
}
pAxis0->setUnit("TOF");
MersenneTwister randomGen(DateAndTime::getCurrentTime().nanoseconds(), 0,
std::numeric_limits<int>::max());
// Make up some data for each pixels
for (size_t i = 0; i < numpixels; i++) {
// Create one event for each bin
EventList &events = retVal->getSpectrum(static_cast<detid_t>(i));
for (std::size_t ie = 0; ie < numbins; ie++) {
// Create a list of events, randomize
events += TofEvent(static_cast<double>(randomGen.nextValue()),
static_cast<int64_t>(randomGen.nextValue()));
}
events.addDetectorID(detid_t(i));
}
retVal->setAllX(axis);
retVal->replaceAxis(0, pAxis0);
return retVal;
}
// =====================================================================================
/** Create Workspace2d, with numHist spectra, each with 9 detectors,
* with IDs 1-9, 10-18, 19-27
*/
MatrixWorkspace_sptr createGroupedWorkspace2D(size_t numHist, int numBins,
double binDelta) {
Workspace2D_sptr retVal = create2DWorkspaceBinned(static_cast<int>(numHist),
numBins, 0.0, binDelta);
retVal->setInstrument(
ComponentCreationHelper::createTestInstrumentCylindrical(
static_cast<int>(numHist)));
for (int g = 0; g < static_cast<int>(numHist); g++) {
auto &spec = retVal->getSpectrum(g);
for (int i = 1; i <= 9; i++)
spec.addDetectorID(g * 9 + i);
spec.setSpectrumNo(g + 1); // Match detector ID and spec NO
}
return boost::dynamic_pointer_cast<MatrixWorkspace>(retVal);
}
// =====================================================================================
// RootOfNumHist == square root of hystohram number;
MatrixWorkspace_sptr
createGroupedWorkspace2DWithRingsAndBoxes(size_t RootOfNumHist, int numBins,
double binDelta) {
size_t numHist = RootOfNumHist * RootOfNumHist;
Workspace2D_sptr retVal = create2DWorkspaceBinned(static_cast<int>(numHist),
numBins, 0.0, binDelta);
retVal->setInstrument(
ComponentCreationHelper::createTestInstrumentCylindrical(
static_cast<int>(numHist)));
for (int g = 0; g < static_cast<int>(numHist); g++) {
auto &spec = retVal->getSpectrum(g);
for (int i = 1; i <= 9; i++)
spec.addDetectorID(g * 9 + i);
spec.setSpectrumNo(g + 1); // Match detector ID and spec NO
}
return boost::dynamic_pointer_cast<MatrixWorkspace>(retVal);
}
// not strictly creating a workspace, but really helpful to see what one
// contains
void displayDataY(const MatrixWorkspace_sptr ws) {
const size_t numHists = ws->getNumberHistograms();
for (size_t i = 0; i < numHists; ++i) {
std::cout << "Histogram " << i << " = ";
const auto &y = ws->y(i);
for (size_t j = 0; j < ws->blocksize(); ++j) {
std::cout << y[j] << " ";
}
std::cout << '\n';
}
}
void displayData(const MatrixWorkspace_sptr ws) { displayDataX(ws); }
// not strictly creating a workspace, but really helpful to see what one
// contains
void displayDataX(const MatrixWorkspace_sptr ws) {
const size_t numHists = ws->getNumberHistograms();
for (size_t i = 0; i < numHists; ++i) {
std::cout << "Histogram " << i << " = ";
const auto &x = ws->x(i);
for (size_t j = 0; j < ws->blocksize(); ++j) {
std::cout << x[j] << " ";
}
std::cout << '\n';
}
}
// not strictly creating a workspace, but really helpful to see what one
// contains
void displayDataE(const MatrixWorkspace_sptr ws) {
const size_t numHists = ws->getNumberHistograms();
for (size_t i = 0; i < numHists; ++i) {
std::cout << "Histogram " << i << " = ";
const auto &e = ws->e(i);
for (size_t j = 0; j < ws->blocksize(); ++j) {
std::cout << e[j] << " ";
}
std::cout << '\n';
}
}
// =====================================================================================
/** Utility function to add a TimeSeriesProperty with a name and value
*
* @param runInfo :: Run to add to
* @param name :: property name
* @param val :: value
*/
void addTSPEntry(Run &runInfo, std::string name, double val) {
TimeSeriesProperty<double> *tsp;
tsp = new TimeSeriesProperty<double>(name);
tsp->addValue("2011-05-24T00:00:00", val);
runInfo.addProperty(tsp);
}
// =====================================================================================
/** Sets the OrientedLattice in the crystal as an crystal with given lattice
*lengths, angles of 90 deg
*
* @param ws :: workspace to set
* @param a :: lattice length
* @param b :: lattice length
* @param c :: lattice length
*/
void setOrientedLattice(Mantid::API::MatrixWorkspace_sptr ws, double a,
double b, double c) {
auto latt =
Mantid::Kernel::make_unique<OrientedLattice>(a, b, c, 90., 90., 90.);
ws->mutableSample().setOrientedLattice(latt.release());
}
// =====================================================================================
/** Create a default universal goniometer and set its angles
*
* @param ws :: workspace to set
* @param phi :: +Y rotation angle (deg)
* @param chi :: +X rotation angle (deg)
* @param omega :: +Y rotation angle (deg)
*/
void setGoniometer(Mantid::API::MatrixWorkspace_sptr ws, double phi, double chi,
double omega) {
addTSPEntry(ws->mutableRun(), "phi", phi);
addTSPEntry(ws->mutableRun(), "chi", chi);
addTSPEntry(ws->mutableRun(), "omega", omega);
Mantid::Geometry::Goniometer gm;
gm.makeUniversalGoniometer();
ws->mutableRun().setGoniometer(gm, true);
}
//
Mantid::API::MatrixWorkspace_sptr
createProcessedWorkspaceWithCylComplexInstrument(size_t numPixels,
size_t numBins,
bool has_oriented_lattice) {
size_t rHist = static_cast<size_t>(std::sqrt(static_cast<double>(numPixels)));
while (rHist * rHist < numPixels)
rHist++;
Mantid::API::MatrixWorkspace_sptr ws =
createGroupedWorkspace2DWithRingsAndBoxes(rHist, 10, 0.1);
auto pAxis0 = new NumericAxis(numBins);
for (size_t i = 0; i < numBins; i++) {
double dE = -1.0 + static_cast<double>(i) * 0.8;
pAxis0->setValue(i, dE);
}
pAxis0->setUnit("DeltaE");
ws->replaceAxis(0, pAxis0);
if (has_oriented_lattice) {
auto latt =
Mantid::Kernel::make_unique<OrientedLattice>(1, 1, 1, 90., 90., 90.);
ws->mutableSample().setOrientedLattice(latt.release());
addTSPEntry(ws->mutableRun(), "phi", 0);
addTSPEntry(ws->mutableRun(), "chi", 0);
addTSPEntry(ws->mutableRun(), "omega", 0);
Mantid::Geometry::Goniometer gm;
gm.makeUniversalGoniometer();
ws->mutableRun().setGoniometer(gm, true);
}
return ws;
}
/// Create a workspace with all components needed for inelastic analysis and 3
/// detectors in specific places
/// @param L2 -- the sample to detector flight path
/// @param polar -- the detector polar angle
/// @param azimutal -- the detector azimuthal
/// @param numBins -- the number of histogram bins for the workspace
/// @param Emin -- minimal energy transfer
/// @param Emax -- maxinal energy transfer
/// @param Ei -- input beam energy
Mantid::API::MatrixWorkspace_sptr
createProcessedInelasticWS(const std::vector<double> &L2,
const std::vector<double> &polar,
const std::vector<double> &azimutal, size_t numBins,
double Emin, double Emax, double Ei) {
// not used but interface needs it
std::set<int64_t> maskedWorkspaceIndices;
size_t numPixels = L2.size();
Mantid::API::MatrixWorkspace_sptr ws =
create2DWorkspaceWithValues(uint64_t(numPixels), uint64_t(numBins), true,
maskedWorkspaceIndices, 0, 1, 0.1);
// detectors at L2, sample at 0 and source at -L2_min
ws->setInstrument(
ComponentCreationHelper::createCylInstrumentWithDetInGivenPositions(
L2, polar, azimutal));
for (int g = 0; g < static_cast<int>(numPixels); g++) {
auto &spec = ws->getSpectrum(g);
// we just made (in createCylInstrumentWithDetInGivenPosisions) det ID-s to
// start from 1
spec.setDetectorID(g + 1);
// and this is absolutely different nummer, corresponding to det ID just by
// chance ? -- some uncertainties remain
spec.setSpectrumNo(g + 1);
// spec->setSpectrumNo(g+1);
// spec->addDetectorID(g*9);
// spec->setSpectrumNo(g+1); // Match detector ID and spec NO
}
const double dE = (Emax - Emin) / static_cast<double>(numBins);
for (size_t j = 0; j < numPixels; j++) {
std::vector<double> E_transfer;
E_transfer.reserve(numBins);
for (size_t i = 0; i <= numBins; i++) {
E_transfer.push_back(Emin + static_cast<double>(i) * dE);
}
ws->mutableX(j) = E_transfer;
}
// set axis, correspondent to the X-values
auto pAxis0 = new NumericAxis(numBins);
const auto &E_transfer = ws->x(0);
for (size_t i = 0; i < numBins; i++) {
double E = 0.5 * (E_transfer[i] + E_transfer[i + 1]);
pAxis0->setValue(i, E);
}
pAxis0->setUnit("DeltaE");
ws->replaceAxis(0, pAxis0);
// define oriented lattice which requested for processed ws
auto latt =
Mantid::Kernel::make_unique<OrientedLattice>(1, 1, 1, 90., 90., 90.);
ws->mutableSample().setOrientedLattice(latt.release());
ws->mutableRun().addProperty(
new PropertyWithValue<std::string>("deltaE-mode", "Direct"), true);
ws->mutableRun().addProperty(new PropertyWithValue<double>("Ei", Ei), true);
// these properties have to be different -> specific for processed ws, as time
// now should be reconciled
addTSPEntry(ws->mutableRun(), "phi", 0);
addTSPEntry(ws->mutableRun(), "chi", 0);
addTSPEntry(ws->mutableRun(), "omega", 0);
Mantid::Geometry::Goniometer gm;
gm.makeUniversalGoniometer();
ws->mutableRun().setGoniometer(gm, true);
return ws;
}
/*
* Create an EventWorkspace from a source EventWorkspace.
* The new workspace should be exactly the same as the source workspace but
* without any events
*/
Mantid::DataObjects::EventWorkspace_sptr
createEventWorkspace3(Mantid::DataObjects::EventWorkspace_const_sptr sourceWS,
std::string wsname, API::Algorithm *alg) {
UNUSED_ARG(wsname);
// 1. Initialize:use dummy numbers for arguments, for event workspace it
// doesn't matter
Mantid::DataObjects::EventWorkspace_sptr outputWS =
Mantid::DataObjects::EventWorkspace_sptr(
new DataObjects::EventWorkspace());
outputWS->initialize(sourceWS->getInstrument()->getDetectorIDs(true).size(),
1, 1);
// 2. Set the units
outputWS->getAxis(0)->unit() = UnitFactory::Instance().create("TOF");
outputWS->setYUnit("Counts");
outputWS->setTitle("Empty_Title");
// 3. Add the run_start property:
int runnumber = sourceWS->getRunNumber();
outputWS->mutableRun().addProperty("run_number", runnumber);
std::string runstartstr = sourceWS->run().getProperty("run_start")->value();
outputWS->mutableRun().addProperty("run_start", runstartstr);
// 4. Instrument
Mantid::API::Algorithm_sptr loadInst =
alg->createChildAlgorithm("LoadInstrument");
// Now execute the Child Algorithm. Catch and log any error, but don't stop.
loadInst->setPropertyValue("InstrumentName",
sourceWS->getInstrument()->getName());
loadInst->setProperty<MatrixWorkspace_sptr>("Workspace", outputWS);
loadInst->setProperty("RewriteSpectraMap",
Mantid::Kernel::OptionalBool(true));
loadInst->executeAsChildAlg();
// Populate the instrument parameters in this workspace - this works around a
// bug
outputWS->populateInstrumentParameters();
// 6. Build spectrum and event list
// a) We want to pad out empty pixels.
detid2det_map detector_map;
outputWS->getInstrument()->getDetectors(detector_map);
// b) determine maximum pixel id
detid2det_map::iterator it;
detid_t detid_max = 0; // seems like a safe lower bound
for (it = detector_map.begin(); it != detector_map.end(); ++it)
if (it->first > detid_max)
detid_max = it->first;
// c) Pad all the pixels and Set to zero
size_t workspaceIndex = 0;
const auto &detectorInfo = outputWS->detectorInfo();
for (it = detector_map.begin(); it != detector_map.end(); ++it) {
if (!detectorInfo.isMonitor(detectorInfo.indexOf(it->first))) {
auto &spec = outputWS->getSpectrum(workspaceIndex);
spec.addDetectorID(it->first);
// Start the spectrum number at 1
spec.setSpectrumNo(specnum_t(workspaceIndex + 1));
workspaceIndex += 1;
}
}
return outputWS;
}
RebinnedOutput_sptr createRebinnedOutputWorkspace() {
RebinnedOutput_sptr outputWS =
Mantid::DataObjects::RebinnedOutput_sptr(new RebinnedOutput());
// outputWS->setName("rebinTest");
Mantid::API::AnalysisDataService::Instance().add("rebinTest", outputWS);
// Set Q ('y') axis binning
std::vector<double> qbins{0.0, 1.0, 4.0};
std::vector<double> qaxis;
const int numY =
static_cast<int>(VectorHelper::createAxisFromRebinParams(qbins, qaxis));
// Initialize the workspace
const int numHist = numY - 1;
const int numX = 7;
outputWS->initialize(numHist, numX, numX - 1);
// Set the normal units
outputWS->getAxis(0)->unit() = UnitFactory::Instance().create("DeltaE");
outputWS->setYUnit("Counts");
outputWS->setTitle("Empty_Title");
// Create the i-axis for histogramming.
HistogramData::BinEdges x1{-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0};
// Create a numeric axis to replace the default vertical one
Axis *const verticalAxis = new NumericAxis(numY);
outputWS->replaceAxis(1, verticalAxis);
// Now set the axis values
for (int i = 0; i < numHist; ++i) {
outputWS->setBinEdges(i, x1);
verticalAxis->setValue(i, qaxis[i]);
}
// One more to set on the 'y' axis
verticalAxis->setValue(numHist, qaxis[numHist]);
// Set the 'y' axis units
verticalAxis->unit() = UnitFactory::Instance().create("MomentumTransfer");
verticalAxis->title() = "|Q|";
// Set the X axis title (for conversion to MD)
outputWS->getAxis(0)->title() = "Energy transfer";
// Now, setup the data
// Q bin #1
// Populates destination starting at index 1 with the following data
// e.g. y(0)[1] = 2.0, y(0)[2] = 3.0 ..etc. as the starting index is 1
// if you change the values in the line below please update this comment!
populateWsWithInitList(outputWS->mutableY(0), 1, {2.0, 3.0, 3.0, 2.0});
populateWsWithInitList(outputWS->mutableE(0), 1, {2.0, 3.0, 3.0, 2.0});
populateWsWithInitList(outputWS->dataF(0), 1, {2.0, 3.0, 3.0, 1.0});
// Q bin #2
populateWsWithInitList(outputWS->mutableY(1), 1, {1.0, 3.0, 3.0, 2.0, 2.0});
populateWsWithInitList(outputWS->mutableE(1), 1, {1.0, 3.0, 3.0, 2.0, 2.0});
populateWsWithInitList(outputWS->dataF(1), 1, {1.0, 3.0, 3.0, 1.0, 2.0});
// Q bin #3
populateWsWithInitList(outputWS->mutableY(2), 1, {1.0, 2.0, 3.0, 1.0});
populateWsWithInitList(outputWS->mutableE(2), 1, {1.0, 2.0, 3.0, 1.0});
populateWsWithInitList(outputWS->dataF(2), 1, {1.0, 2.0, 2.0, 1.0});
// Q bin #4
populateWsWithInitList(outputWS->mutableY(3), 0, {1.0, 2.0, 3.0, 2.0, 1.0});
populateWsWithInitList(outputWS->mutableE(3), 0, {1.0, 2.0, 3.0, 2.0, 1.0});
populateWsWithInitList(outputWS->dataF(3), 0, {1.0, 2.0, 3.0, 2.0, 1.0, 1.0});
// Set representation
outputWS->finalize();
// Make errors squared rooted
for (int i = 0; i < numHist; ++i) {
auto &mutableE = outputWS->mutableE(i);
for (int j = 0; j < numX - 1; ++j) {
mutableE[j] = std::sqrt(mutableE[j]);
}
}
return outputWS;
}
/**
* Populates the destination array (usually a mutable histogram)
* starting at the index specified with the doubles provided in an
* initializer list. Note the caller is responsible for ensuring
* the destination has capacity for startingIndex + size(initializer list)
* number of values
*
* @param destination :: The array to populate with data
* @param startingIndex :: The index to start populating data at
* @param values :: The initializer list to populate the array with
* starting at the index specified
*/
template <typename T>
void populateWsWithInitList(T &destination, size_t startingIndex,
const std::initializer_list<double> &values) {
size_t index = 0;
for (const double val : values) {
destination[startingIndex + index] = val;
index++;
}
}
Mantid::DataObjects::PeaksWorkspace_sptr
createPeaksWorkspace(const int numPeaks, const bool createOrientedLattice) {
auto peaksWS = boost::make_shared<PeaksWorkspace>();
Instrument_sptr inst =
ComponentCreationHelper::createTestInstrumentRectangular2(1, 10);
peaksWS->setInstrument(inst);
for (int i = 0; i < numPeaks; ++i) {
Peak peak(inst, i, i + 0.5);
peaksWS->addPeak(peak);
}
if (createOrientedLattice) {
Mantid::Geometry::OrientedLattice lattice;
peaksWS->mutableSample().setOrientedLattice(&lattice);
}
return peaksWS;
}
/** helper method to create preprocessed detector's table workspace */
boost::shared_ptr<DataObjects::TableWorkspace>
createTableWorkspace(const API::MatrixWorkspace_const_sptr &inputWS) {
const size_t nHist = inputWS->getNumberHistograms();
// set the target workspace
auto targWS = boost::make_shared<TableWorkspace>(nHist);
// detectors positions
if (!targWS->addColumn("V3D", "DetDirections"))
throw(std::runtime_error("Can not add column DetDirectrions"));
// sample-detector distance;
if (!targWS->addColumn("double", "L2"))
throw(std::runtime_error("Can not add column L2"));
// Diffraction angle
if (!targWS->addColumn("double", "TwoTheta"))
throw(std::runtime_error("Can not add column TwoTheta"));
if (!targWS->addColumn("double", "Azimuthal"))
throw(std::runtime_error("Can not add column Azimuthal"));
// the detector ID;
if (!targWS->addColumn("int", "DetectorID"))
throw(std::runtime_error("Can not add column DetectorID"));
// stores spectra index which corresponds to a valid detector index;
if (!targWS->addColumn("size_t", "detIDMap"))
throw(std::runtime_error("Can not add column detIDMap"));
// stores detector index which corresponds to the workspace index;
if (!targWS->addColumn("size_t", "spec2detMap"))
throw(std::runtime_error("Can not add column spec2detMap"));
// will see about that
// sin^2(Theta)
// std::vector<double> SinThetaSq;
//,"If the detectors were actually processed from real instrument or generated
// for some fake one ");
return targWS;
}
/** method does preliminary calculations of the detectors positions to convert
results into k-dE space ;
and places the resutls into static cash to be used in subsequent calls to this
algorithm */
void processDetectorsPositions(const API::MatrixWorkspace_const_sptr &inputWS,
DataObjects::TableWorkspace_sptr &targWS,
double Ei) {
Geometry::Instrument_const_sptr instrument = inputWS->getInstrument();
//
Geometry::IComponent_const_sptr source = instrument->getSource();
Geometry::IComponent_const_sptr sample = instrument->getSample();
if ((!source) || (!sample)) {
throw Kernel::Exception::InstrumentDefinitionError(
"Instrubment not sufficiently defined: failed to get source and/or "
"sample");
}
// L1
try {
double L1 = source->getDistance(*sample);
targWS->logs()->addProperty<double>("L1", L1, true);
} catch (Kernel::Exception::NotFoundError &) {
throw Kernel::Exception::InstrumentDefinitionError(
"Unable to calculate source-sample distance for workspace",
inputWS->getTitle());
}
// Instrument name
std::string InstrName = instrument->getName();
targWS->logs()->addProperty<std::string>("InstrumentName", InstrName, true);
targWS->logs()->addProperty<bool>("FakeDetectors", false, true);
targWS->logs()->addProperty<double>("Ei", Ei, true); //"Incident energy for
// Direct or Analysis
// energy for indirect
// instrument");
// get access to the workspace memory
auto &sp2detMap = targWS->getColVector<size_t>("spec2detMap");
auto &detId = targWS->getColVector<int32_t>("DetectorID");
auto &detIDMap = targWS->getColVector<size_t>("detIDMap");
auto &L2 = targWS->getColVector<double>("L2");
auto &TwoTheta = targWS->getColVector<double>("TwoTheta");
auto &Azimuthal = targWS->getColVector<double>("Azimuthal");
auto &detDir = targWS->getColVector<Kernel::V3D>("DetDirections");
//// progress messave appearence
size_t nHist = targWS->rowCount();
//// Loop over the spectra
uint32_t liveDetectorsCount(0);
const auto &spectrumInfo = inputWS->spectrumInfo();
for (size_t i = 0; i < nHist; i++) {
sp2detMap[i] = std::numeric_limits<size_t>::quiet_NaN();
detId[i] = std::numeric_limits<int32_t>::quiet_NaN();
detIDMap[i] = std::numeric_limits<size_t>::quiet_NaN();
L2[i] = std::numeric_limits<double>::quiet_NaN();
TwoTheta[i] = std::numeric_limits<double>::quiet_NaN();
Azimuthal[i] = std::numeric_limits<double>::quiet_NaN();
if (!spectrumInfo.hasDetectors(i) || spectrumInfo.isMonitor(i))
continue;
// calculate the requested values;
sp2detMap[i] = liveDetectorsCount;
detId[liveDetectorsCount] = int32_t(spectrumInfo.detector(i).getID());
detIDMap[liveDetectorsCount] = i;
L2[liveDetectorsCount] = spectrumInfo.l2(i);
double polar = spectrumInfo.twoTheta(i);
double azim = spectrumInfo.detector(i).getPhi();
TwoTheta[liveDetectorsCount] = polar;
Azimuthal[liveDetectorsCount] = azim;
double sPhi = sin(polar);
double ez = cos(polar);
double ex = sPhi * cos(azim);
double ey = sPhi * sin(azim);
detDir[liveDetectorsCount].setX(ex);
detDir[liveDetectorsCount].setY(ey);
detDir[liveDetectorsCount].setZ(ez);
// double sinTheta=sin(0.5*polar);
// this->SinThetaSq[liveDetectorsCount] = sinTheta*sinTheta;
liveDetectorsCount++;
}
targWS->logs()->addProperty<uint32_t>(
"ActualDetectorsNum", liveDetectorsCount,
true); //,"The actual number of detectors receivinv signal");
}
boost::shared_ptr<Mantid::DataObjects::TableWorkspace>
buildPreprocessedDetectorsWorkspace(Mantid::API::MatrixWorkspace_sptr ws) {
Mantid::DataObjects::TableWorkspace_sptr DetPos = createTableWorkspace(ws);
double Ei = ws->run().getPropertyValueAsType<double>("Ei");
processDetectorsPositions(ws, DetPos, Ei);
return DetPos;
}
void create2DAngles(std::vector<double> &L2, std::vector<double> &polar,
std::vector<double> &azim, size_t nPolar, size_t nAzim,
double polStart, double polEnd, double azimStart,
double azimEnd) {
size_t nDet = nPolar * nAzim;
L2.resize(nDet, 10);
polar.resize(nDet);
azim.resize(nDet);
double dPolar = (polEnd - polStart) / static_cast<double>(nDet - 1);
double dAzim = (azimEnd - azimEnd) / static_cast<double>(nDet - 1);
for (size_t i = 0; i < nPolar; i++) {
for (size_t j = 0; j < nAzim; j++) {
polar[i * nPolar + j] = polStart + dPolar * static_cast<double>(i);
azim[i * nPolar + j] = azimStart + dAzim * static_cast<double>(j);
}
}
}
ITableWorkspace_sptr
createEPPTableWorkspace(const std::vector<EPPTableRow> &rows) {
ITableWorkspace_sptr ws = boost::make_shared<TableWorkspace>(rows.size());
auto wsIndexColumn = ws->addColumn("int", "WorkspaceIndex");
auto centreColumn = ws->addColumn("double", "PeakCentre");
auto centreErrorColumn = ws->addColumn("double", "PeakCentreError");
auto sigmaColumn = ws->addColumn("double", "Sigma");
auto sigmaErrorColumn = ws->addColumn("double", "SigmaError");
auto heightColumn = ws->addColumn("double", "Height");
auto heightErrorColumn = ws->addColumn("double", "HeightError");
auto chiSqColumn = ws->addColumn("double", "chiSq");
auto statusColumn = ws->addColumn("str", "FitStatus");
for (size_t i = 0; i != rows.size(); ++i) {
const auto &row = rows[i];
wsIndexColumn->cell<int>(i) = static_cast<int>(i);
centreColumn->cell<double>(i) = row.peakCentre;
centreErrorColumn->cell<double>(i) = row.peakCentreError;
sigmaColumn->cell<double>(i) = row.sigma;
sigmaErrorColumn->cell<double>(i) = row.sigmaError;
heightColumn->cell<double>(i) = row.height;
heightErrorColumn->cell<double>(i) = row.heightError;
chiSqColumn->cell<double>(i) = row.chiSq;
statusColumn->cell<std::string>(i) =
row.fitStatus == EPPTableRow::FitStatus::SUCCESS ? "success" : "failed";
}
return ws;
}
} // namespace WorkspaceCreationHelper