-
Owen Arnold authored
No reason to change the name of the property. Would be far more convient for existing clients if the name of this property remained the same.
Owen Arnold authoredNo reason to change the name of the property. Would be far more convient for existing clients if the name of this property remained the same.
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
LoadISISNexus2.cpp 49.67 KiB
//----------------------------------------------------------------------
// Includes
//----------------------------------------------------------------------
#include "MantidDataHandling/LoadISISNexus2.h"
#include "MantidDataHandling/LoadEventNexus.h"
#include "MantidDataHandling/LoadRawHelper.h"
#include "MantidKernel/ArrayProperty.h"
#include "MantidKernel/BoundedValidator.h"
#include "MantidKernel/ConfigService.h"
#include "MantidKernel/ListValidator.h"
//#include "MantidKernel/LogParser.h"
#include "MantidKernel/LogFilter.h"
#include "MantidKernel/TimeSeriesProperty.h"
#include "MantidKernel/UnitFactory.h"
#include "MantidAPI/FileProperty.h"
#include "MantidAPI/RegisterFileLoader.h"
#include "MantidGeometry/Instrument/Detector.h"
#include <nexus/NeXusFile.hpp>
#include <nexus/NeXusException.hpp>
#include <Poco/Path.h>
#include <Poco/DateTimeFormatter.h>
#include <Poco/DateTimeParser.h>
#include <Poco/DateTimeFormat.h>
#include <boost/lexical_cast.hpp>
#include <cmath>
#include <climits>
#include <vector>
#include <sstream>
#include <cctype>
#include <functional>
#include <algorithm>
namespace Mantid {
namespace DataHandling {
DECLARE_NEXUS_FILELOADER_ALGORITHM(LoadISISNexus2)
using namespace Kernel;
using namespace API;
using namespace NeXus;
using std::size_t;
/// Empty default constructor
LoadISISNexus2::LoadISISNexus2()
: m_filename(), m_instrument_name(), m_samplename(), m_detBlockInfo(),
m_monBlockInfo(), m_loadBlockInfo(), m_have_detector(false),
m_load_selected_spectra(false), m_specInd2specNum_map(), m_spec2det_map(),
m_entrynumber(0), m_tof_data(), m_proton_charge(0.), m_spec(),
m_spec_end(NULL), m_monitors(), m_logCreator(), m_progress(),
m_cppFile() {}
/**
* Return the confidence criteria for this algorithm can load the file
* @param descriptor A descriptor for the file
* @returns An integer specifying the confidence level. 0 indicates it will not
* be used
*/
int LoadISISNexus2::confidence(Kernel::NexusDescriptor &descriptor) const {
if (descriptor.pathOfTypeExists("/raw_data_1", "NXentry"))
return 80;
return 0;
}
/// Initialization method.
void LoadISISNexus2::init() {
std::vector<std::string> exts;
exts.push_back(".nxs");
exts.push_back(".n*");
declareProperty(new FileProperty("Filename", "", FileProperty::Load, exts),
"The name of the Nexus file to load");
declareProperty(new WorkspaceProperty<Workspace>("OutputWorkspace", "",
Direction::Output));
auto mustBePositive = boost::make_shared<BoundedValidator<int64_t>>();
mustBePositive->setLower(0);
declareProperty("SpectrumMin", (int64_t)0, mustBePositive);
declareProperty("SpectrumMax", (int64_t)EMPTY_INT(), mustBePositive);
declareProperty(new ArrayProperty<int64_t>("SpectrumList"));
declareProperty("EntryNumber", (int64_t)0, mustBePositive,
"0 indicates that every entry is loaded, into a separate "
"workspace within a group. "
"A positive number identifies one entry to be loaded, into "
"one worskspace");
std::vector<std::string> monitorOptions;
monitorOptions.push_back("Include");
monitorOptions.push_back("Exclude");
monitorOptions.push_back("Separate");
std::map<std::string, std::string> monitorOptionsAliases;
monitorOptionsAliases["1"] = "Separate";
monitorOptionsAliases["0"] = "Exclude";
declareProperty(
"LoadMonitors", "Include",
boost::make_shared<Kernel::StringListValidator>(monitorOptions,
monitorOptionsAliases),
"Option to control the loading of monitors.\n"
"Allowed options are Include,Exclude, Separate.\n"
"Include:The default is Include option would load monitors with the "
"workspace if monitors spectra are within the range of loaded "
"detectors.\n"
"If the time binning for the monitors is different from the\n"
"binning of the detectors this option is equivalent to the Separate "
"option\n"
"Exclude:Exclude option excludes monitors from the output workspace.\n"
"Separate:Separate option loads monitors into a separate workspace "
"called: OutputWorkspace_monitors.\n"
"Defined aliases:\n"
"1: Equivalent to Separate.\n"
"0: Equivalent to Exclude.\n");
}
/** Executes the algorithm. Reading in the file and creating and populating
* the output workspace
*
* @throw Exception::FileError If the Nexus file cannot be found/opened
* @throw std::invalid_argument If the optional properties are set to invalid
*values
*/
void LoadISISNexus2::exec() {
//**********************************************************************
// process load monitor options request
bool bincludeMonitors, bseparateMonitors, bexcludeMonitors;
LoadRawHelper::ProcessLoadMonitorOptions(bincludeMonitors, bseparateMonitors,
bexcludeMonitors, this);
//**********************************************************************
m_filename = getPropertyValue("Filename");
// Create the root Nexus class
NXRoot root(m_filename);
// "Open" the same file but with the C++ interface
m_cppFile.reset(new ::NeXus::File(root.m_fileID));
// Open the raw data group 'raw_data_1'
NXEntry entry = root.openEntry("raw_data_1");
// Read in the instrument name from the Nexus file
m_instrument_name = entry.getString("name");
// Test if we have a detector block
size_t ndets(0);
try {
NXClass det_class = entry.openNXGroup("detector_1");
NXInt spectrum_index = det_class.openNXInt("spectrum_index");
spectrum_index.load();
ndets = spectrum_index.dim0();
// We assume that this spectrum list increases monotonically
m_spec = spectrum_index.sharedBuffer();
m_spec_end = m_spec.get() + ndets;
m_have_detector = true;
} catch (std::runtime_error &) {
ndets = 0;
}
NXInt nsp1 = entry.openNXInt("isis_vms_compat/NSP1");
nsp1.load();
NXInt udet = entry.openNXInt("isis_vms_compat/UDET");
udet.load();
NXInt spec = entry.openNXInt("isis_vms_compat/SPEC");
spec.load();
size_t nmons(0);
// Pull out the monitor blocks, if any exist
for (std::vector<NXClassInfo>::const_iterator it = entry.groups().begin();
it != entry.groups().end(); ++it) {
if (it->nxclass == "NXmonitor") // Count monitors
{
NXInt index =
entry.openNXInt(std::string(it->nxname) + "/spectrum_index");
index.load();
int64_t ind = *index();
// Spectrum index of 0 means no spectrum associated with that monitor,
// so only count those with index > 0
if (ind > 0) {
m_monitors[ind] = it->nxname;
++nmons;
}
}
}
if (ndets == 0 && nmons == 0) {
if (bexcludeMonitors) {
g_log.warning() << "Nothing to do. No detectors found and no monitor "
"loading requested";
return;
} else {
g_log.error()
<< "Invalid NeXus structure, cannot find detector or monitor blocks.";
throw std::runtime_error("Inconsistent NeXus file structure.");
}
}
std::map<int64_t, std::string> ExcluedMonitorsSpectra;
bseparateMonitors = findSpectraDetRangeInFile(
entry, m_spec, ndets, nsp1[0], m_monitors, bexcludeMonitors,
bseparateMonitors, ExcluedMonitorsSpectra);
size_t x_length = m_loadBlockInfo.numberOfChannels + 1;
// Check input is consistent with the file, throwing if not, exclude spectra
// selected at findSpectraDetRangeInFile;
checkOptionalProperties(ExcluedMonitorsSpectra);
// Fill up m_spectraBlocks
size_t total_specs =
prepareSpectraBlocks(m_monitors, m_specInd2specNum_map, m_loadBlockInfo);
m_progress = boost::shared_ptr<API::Progress>(new Progress(
this, 0.0, 1.0, total_specs * m_detBlockInfo.numberOfPeriods));
DataObjects::Workspace2D_sptr local_workspace =
boost::dynamic_pointer_cast<DataObjects::Workspace2D>(
WorkspaceFactory::Instance().create(
"Workspace2D", total_specs, x_length,
m_loadBlockInfo.numberOfChannels));
// Set the units on the workspace to TOF & Counts
local_workspace->getAxis(0)->unit() = UnitFactory::Instance().create("TOF");
local_workspace->setYUnit("Counts");
//
// Load instrument and other data once then copy it later
//
m_progress->report("Loading instrument and run details");
// load run details
loadRunDetails(local_workspace, entry);
// Test if IDF exists in Nexus otherwise load default instrument
bool foundInstrument = LoadEventNexus::runLoadIDFFromNexus(
m_filename, local_workspace, "raw_data_1", this);
if (m_load_selected_spectra)
m_spec2det_map = SpectrumDetectorMapping(spec(), udet(), udet.dim0());
else if (bseparateMonitors) {
m_spec2det_map = SpectrumDetectorMapping(spec(), udet(), udet.dim0());
local_workspace->updateSpectraUsing(m_spec2det_map);
} else {
local_workspace->updateSpectraUsing(
SpectrumDetectorMapping(spec(), udet(), udet.dim0()));
}
if (!foundInstrument) {
runLoadInstrument(local_workspace);
}
// Load logs and sample information
m_cppFile->openPath(entry.path());
local_workspace->loadSampleAndLogInfoNexus(m_cppFile.get());
// Load logs and sample information further information... See maintenance
// ticket #8697
loadSampleData(local_workspace, entry);
m_progress->report("Loading logs");
loadLogs(local_workspace, entry);
// Load first period outside loop
m_progress->report("Loading data");
if (ndets > 0) {
// Get the X data
NXFloat timeBins = entry.openNXFloat("detector_1/time_of_flight");
timeBins.load();
m_tof_data.reset(new MantidVec(timeBins(), timeBins() + x_length));
}
int64_t firstentry = (m_entrynumber > 0) ? m_entrynumber : 1;
loadPeriodData(firstentry, entry, local_workspace, m_load_selected_spectra);
// Clone the workspace at this point to provide a base object for future
// workspace generation.
DataObjects::Workspace2D_sptr period_free_workspace =
boost::dynamic_pointer_cast<DataObjects::Workspace2D>(
WorkspaceFactory::Instance().create(local_workspace));
createPeriodLogs(firstentry, local_workspace);
WorkspaceGroup_sptr wksp_group(new WorkspaceGroup);
if (m_loadBlockInfo.numberOfPeriods > 1 && m_entrynumber == 0) {
wksp_group->setTitle(local_workspace->getTitle());
// This forms the name of the group
const std::string base_name = getPropertyValue("OutputWorkspace") + "_";
const std::string prop_name = "OutputWorkspace_";
for (int p = 1; p <= m_loadBlockInfo.numberOfPeriods; ++p) {
std::ostringstream os;
os << p;
m_progress->report("Loading period " + os.str());
if (p > 1) {
local_workspace = boost::dynamic_pointer_cast<DataObjects::Workspace2D>(
WorkspaceFactory::Instance().create(period_free_workspace));
loadPeriodData(p, entry, local_workspace, m_load_selected_spectra);
createPeriodLogs(p, local_workspace);
// Check consistency of logs data for multi-period workspaces and raise
// warnings where necessary.
validateMultiPeriodLogs(local_workspace);
}
declareProperty(new WorkspaceProperty<Workspace>(
prop_name + os.str(), base_name + os.str(), Direction::Output));
wksp_group->addWorkspace(local_workspace);
setProperty(prop_name + os.str(),
boost::static_pointer_cast<Workspace>(local_workspace));
}
// The group is the root property value
setProperty("OutputWorkspace",
boost::dynamic_pointer_cast<Workspace>(wksp_group));
} else {
setProperty("OutputWorkspace",
boost::dynamic_pointer_cast<Workspace>(local_workspace));
}
//***************************************************************************************************
// Workspace or group of workspaces without monitors is loaded. Now we are
// loading monitors separately.
if (bseparateMonitors) {
std::string wsName = getPropertyValue("OutputWorkspace");
if (m_monBlockInfo.numberOfSpectra > 0) {
x_length = m_monBlockInfo.numberOfChannels + 1;
// reset the size of the period free workspace to the monitor size
period_free_workspace =
boost::dynamic_pointer_cast<DataObjects::Workspace2D>(
WorkspaceFactory::Instance().create(
period_free_workspace, m_monBlockInfo.numberOfSpectra,
x_length, m_monBlockInfo.numberOfChannels));
auto monitor_workspace =
boost::dynamic_pointer_cast<DataObjects::Workspace2D>(
WorkspaceFactory::Instance().create(period_free_workspace));
m_spectraBlocks.clear();
m_specInd2specNum_map.clear();
std::vector<int64_t> dummyS1;
// at the moment here we clear this map to enable possibility to load
// monitors from the spectra block (wiring table bug).
// if monitor's spectra present in the detectors block due to this bug
// should be read from monitors, this map should be dealt with properly.
ExcluedMonitorsSpectra.clear();
buildSpectraInd2SpectraNumMap(true, m_monBlockInfo.spectraID_min,
m_monBlockInfo.spectraID_max, dummyS1,
ExcluedMonitorsSpectra);
// lo
prepareSpectraBlocks(m_monitors, m_specInd2specNum_map, m_monBlockInfo);
int64_t firstentry = (m_entrynumber > 0) ? m_entrynumber : 1;
loadPeriodData(firstentry, entry, monitor_workspace, true);
local_workspace->setMonitorWorkspace(monitor_workspace);
ISISRunLogs monLogCreator(monitor_workspace->run(),
m_detBlockInfo.numberOfPeriods);
monLogCreator.addPeriodLogs(1, monitor_workspace->mutableRun());
const std::string monitorPropBase = "MonitorWorkspace";
const std::string monitorWsNameBase = wsName + "_monitors";
if (m_detBlockInfo.numberOfPeriods > 1 && m_entrynumber == 0) {
WorkspaceGroup_sptr monitor_group(new WorkspaceGroup);
monitor_group->setTitle(monitor_workspace->getTitle());
for (int p = 1; p <= m_detBlockInfo.numberOfPeriods; ++p) {
std::ostringstream os;
os << "_" << p;
m_progress->report("Loading period " + os.str());
if (p > 1) {
monitor_workspace =
boost::dynamic_pointer_cast<DataObjects::Workspace2D>(
WorkspaceFactory::Instance().create(period_free_workspace));
loadPeriodData(p, entry, monitor_workspace,
m_load_selected_spectra);
monLogCreator.addPeriodLogs(p, monitor_workspace->mutableRun());
// Check consistency of logs data for multi-period workspaces and
// raise
// warnings where necessary.
validateMultiPeriodLogs(monitor_workspace);
auto data_ws = boost::static_pointer_cast<API::MatrixWorkspace>(
wksp_group->getItem(p - 1));
data_ws->setMonitorWorkspace(monitor_workspace);
}
declareProperty(new WorkspaceProperty<Workspace>(
monitorPropBase + os.str(), monitorWsNameBase + os.str(),
Direction::Output));
monitor_group->addWorkspace(monitor_workspace);
setProperty(monitorPropBase + os.str(),
boost::static_pointer_cast<Workspace>(monitor_workspace));
}
// The group is the root property value
declareProperty(new WorkspaceProperty<Workspace>(
monitorPropBase, monitorWsNameBase, Direction::Output));
setProperty(monitorPropBase,
boost::dynamic_pointer_cast<Workspace>(monitor_group));
} else {
declareProperty(new WorkspaceProperty<Workspace>(
monitorPropBase, monitorWsNameBase, Direction::Output));
setProperty(monitorPropBase,
boost::static_pointer_cast<Workspace>(monitor_workspace));
}
} else {
g_log.information() << " no monitors to load for workspace: " << wsName
<< std::endl;
}
}
// Clear off the member variable containers
m_tof_data.reset();
m_spec.reset();
m_monitors.clear();
m_specInd2specNum_map.clear();
}
// Function object for remove_if STL algorithm
namespace {
// Check the numbers supplied are not in the range and erase the ones that are
struct range_check {
range_check(int64_t min, int64_t max) : m_min(min), m_max(max) {}
bool operator()(int64_t x) { return (x >= m_min && x <= m_max); }
private:
int64_t m_min;
int64_t m_max;
};
}
/**
Check for a set of synthetic logs associated with multi-period log data. Raise
warnings where necessary.
*/
void LoadISISNexus2::validateMultiPeriodLogs(
Mantid::API::MatrixWorkspace_sptr ws) {
const Run &run = ws->run();
if (!run.hasProperty("current_period")) {
g_log.warning("Workspace has no current_period log.");
}
if (!run.hasProperty("nperiods")) {
g_log.warning("Workspace has no nperiods log");
}
if (!run.hasProperty("proton_charge_by_period")) {
g_log.warning("Workspace has not proton_charge_by_period log");
}
}
/**
* Check the validity of the optional properties of the algorithm and identify if
* partial data should be loaded.
* @param SpectraExcluded :: set of spectra ID-s to exclude from spectra list to
* load
*/
void LoadISISNexus2::checkOptionalProperties(
const std::map<int64_t, std::string> &SpectraExcluded) {
// optional properties specify that only some spectra have to be loaded
bool range_supplied(false);
if (!SpectraExcluded.empty()) {
range_supplied = true;
m_load_selected_spectra = true;
}
int64_t spec_min(0);
int64_t spec_max(EMPTY_INT());
//
spec_min = getProperty("SpectrumMin");
spec_max = getProperty("SpectrumMax");
// default spectra ID-s would not work if spectraID_min!=1
if (m_loadBlockInfo.spectraID_min != 1) {
range_supplied = true;
m_load_selected_spectra = true;
}
if (spec_min == 0)
spec_min = m_loadBlockInfo.spectraID_min;
else {
range_supplied = true;
m_load_selected_spectra = true;
}
if (spec_max == EMPTY_INT())
spec_max = m_loadBlockInfo.spectraID_max;
else {
range_supplied = true;
m_load_selected_spectra = true;
}
// Sanity check for min/max
if (spec_min > spec_max) {
throw std::invalid_argument("Inconsistent range properties. SpectrumMin is "
"larger than SpectrumMax.");
}
if (spec_max > m_loadBlockInfo.spectraID_max) {
std::string err =
"Inconsistent range property. SpectrumMax is larger than number of "
"spectra: " +
boost::lexical_cast<std::string>(m_loadBlockInfo.spectraID_max);
throw std::invalid_argument(err);
}
// Check the entry number
m_entrynumber = getProperty("EntryNumber");
if (static_cast<int>(m_entrynumber) > m_loadBlockInfo.numberOfPeriods ||
m_entrynumber < 0) {
std::string err =
"Invalid entry number entered. File contains " +
boost::lexical_cast<std::string>(m_loadBlockInfo.numberOfPeriods) +
" period. ";
throw std::invalid_argument(err);
}
if (m_loadBlockInfo.numberOfPeriods == 1) {
m_entrynumber = 1;
}
// Check the list property
std::vector<int64_t> spec_list = getProperty("SpectrumList");
if (!spec_list.empty()) {
m_load_selected_spectra = true;
// Sort the list so that we can check it's range
std::sort(spec_list.begin(), spec_list.end());
if (spec_list.back() > m_loadBlockInfo.spectraID_max) {
std::string err =
"A spectra number in the spectra list exceeds maximal spectra ID: " +
boost::lexical_cast<std::string>(m_loadBlockInfo.spectraID_max) +
" in the file ";
throw std::invalid_argument(err);
}
if (spec_list.front() < m_loadBlockInfo.spectraID_min) {
std::string err =
"A spectra number in the spectra list smaller then minimal spectra "
"ID: " +
boost::lexical_cast<std::string>(m_loadBlockInfo.spectraID_min) +
" in the file";
throw std::invalid_argument(err);
}
range_check in_range(spec_min, spec_max);
if (range_supplied) {
spec_list.erase(remove_if(spec_list.begin(), spec_list.end(), in_range),
spec_list.end());
// combine spectra numbers from ranges and the list
if (spec_list.size() > 0) {
for (int64_t i = spec_min; i < spec_max + 1; i++) {
specid_t spec_num = static_cast<specid_t>(i);
// remove excluded spectra now rather then inserting it here and
// removing later
if (SpectraExcluded.find(spec_num) == SpectraExcluded.end())
spec_list.push_back(spec_num);
}
// Sort the list so that lower spectra indexes correspond to smaller
// spectra ID-s
std::sort(spec_list.begin(), spec_list.end());
// supplied range converted into the list, so no more supplied range
range_supplied = false;
}
}
}
//
if (m_load_selected_spectra) {
buildSpectraInd2SpectraNumMap(range_supplied, spec_min, spec_max, spec_list,
SpectraExcluded);
} else // may be just range supplied and the range have to start from 1 to use
// defaults in spectra num to spectra ID map!
{
m_loadBlockInfo.spectraID_max = spec_max;
m_loadBlockInfo.numberOfSpectra =
m_loadBlockInfo.spectraID_max - m_loadBlockInfo.spectraID_min + 1;
}
}
/**
build the list of spectra to load and include into spectra-detectors map
@param range_supplied -- if true specifies that the range of values provided
below have to be processed rather then spectra list
@param range_min -- min value for spectra-ID to load
@param range_max -- max value for spectra-ID to load
@param spec_list -- list of spectra numbers to load
@param SpectraExcluded -- set of the spectra ID-s to exclude from loading
**/
void LoadISISNexus2::buildSpectraInd2SpectraNumMap(
bool range_supplied, int64_t range_min, int64_t range_max,
const std::vector<int64_t> &spec_list,
const std::map<int64_t, std::string> &SpectraExcluded) {
int64_t ic(0);
if (spec_list.size() > 0) {
ic = 0;
auto start_point = spec_list.begin();
for (auto it = start_point; it != spec_list.end(); it++) {
specid_t spec_num = static_cast<specid_t>(*it);
if (SpectraExcluded.find(spec_num) == SpectraExcluded.end()) {
m_specInd2specNum_map.insert(
std::pair<int64_t, specid_t>(ic, spec_num));
ic++;
}
}
} else {
if (range_supplied) {
ic = 0;
for (int64_t i = range_min; i < range_max + 1; i++) {
specid_t spec_num = static_cast<specid_t>(i);
if (SpectraExcluded.find(spec_num) == SpectraExcluded.end()) {
m_specInd2specNum_map.insert(
std::pair<int64_t, specid_t>(ic, spec_num));
ic++;
}
}
}
}
}
namespace {
/// Compare two spectra blocks for ordering
bool compareSpectraBlocks(const LoadISISNexus2::SpectraBlock &block1,
const LoadISISNexus2::SpectraBlock &block2) {
bool res = block1.last < block2.first;
if (!res) {
assert(block2.last < block1.first);
}
return res;
}
}
/**
* Analyze the spectra ranges and prepare a list contiguous blocks. Each monitor
* must be
* in a separate block.
* @return :: Number of spectra to load.
*/
size_t LoadISISNexus2::prepareSpectraBlocks(
std::map<int64_t, std::string> &monitors,
const std::map<int64_t, specid_t> &specInd2specNum_map,
const DataBlock &LoadBlock) {
std::vector<int64_t> includedMonitors;
// fill in the data block descriptor vector
if (!specInd2specNum_map.empty()) {
auto itSpec = specInd2specNum_map.begin();
int64_t hist = itSpec->second;
SpectraBlock block(hist, hist, false, "");
itSpec++;
for (; itSpec != specInd2specNum_map.end(); ++itSpec) {
// try to put all consecutive numbers in same block
auto it_mon = monitors.find(hist);
bool isMonitor = it_mon != monitors.end();
if (isMonitor || itSpec->second != hist + 1) {
if (isMonitor) {
includedMonitors.push_back(hist);
block.monName = it_mon->second;
}
block.last = hist;
block.isMonitor = isMonitor;
m_spectraBlocks.push_back(block);
block = SpectraBlock(itSpec->second, itSpec->second, false, "");
}
hist = itSpec->second;
}
// push the last block
hist = specInd2specNum_map.rbegin()->second;
block.last = hist;
auto it_mon = monitors.find(hist);
if (it_mon != monitors.end()) {
includedMonitors.push_back(hist);
block.isMonitor = true;
block.monName = it_mon->second;
}
m_spectraBlocks.push_back(block);
return specInd2specNum_map.size();
}
// here we are only if ranges are not supplied
//
// put in the spectra range, possibly breaking it into parts by monitors
int64_t first = LoadBlock.spectraID_min;
for (int64_t hist = first; hist < LoadBlock.spectraID_max; ++hist) {
auto it_mon = monitors.find(hist);
if (it_mon != monitors.end()) {
if (hist != first) {
m_spectraBlocks.push_back(SpectraBlock(first, hist - 1, false, ""));
}
m_spectraBlocks.push_back(SpectraBlock(hist, hist, true, it_mon->second));
includedMonitors.push_back(hist);
first = hist + 1;
}
}
int64_t spec_max = LoadBlock.spectraID_max;
auto it_mon = monitors.find(first);
if (first == spec_max && it_mon != monitors.end()) {
m_spectraBlocks.push_back(
SpectraBlock(first, spec_max, true, it_mon->second));
includedMonitors.push_back(spec_max);
} else {
m_spectraBlocks.push_back(SpectraBlock(first, spec_max, false, ""));
}
// sort and check for overlapping
if (m_spectraBlocks.size() > 1) {
std::sort(m_spectraBlocks.begin(), m_spectraBlocks.end(),
compareSpectraBlocks);
}
// remove monitors that have been used
if (monitors.size() != includedMonitors.size()) {
if (!includedMonitors.empty()) {
for (auto it = monitors.begin(); it != monitors.end();) {
if (std::find(includedMonitors.begin(), includedMonitors.end(),
it->first) != includedMonitors.end()) {
auto it1 = it;
++it;
monitors.erase(it1);
} else {
++it;
}
}
}
}
// count the number of spectra
size_t nSpec = 0;
for (auto it = m_spectraBlocks.begin(); it != m_spectraBlocks.end(); ++it) {
nSpec += it->last - it->first + 1;
}
return nSpec;
}
/**
* Load a given period into the workspace
* @param period :: The period number to load (starting from 1)
* @param entry :: The opened root entry node for accessing the monitor and data
* nodes
* @param local_workspace :: The workspace to place the data in
* @param update_spectra2det_mapping :: reset spectra-detector map to the one
* calculated earlier. (Warning! -- this map has to be calculated correctly!)
*/
void LoadISISNexus2::loadPeriodData(
int64_t period, NXEntry &entry,
DataObjects::Workspace2D_sptr &local_workspace,
bool update_spectra2det_mapping) {
int64_t hist_index = 0;
int64_t period_index(period - 1);
// int64_t first_monitor_spectrum = 0;
for (auto block = m_spectraBlocks.begin(); block != m_spectraBlocks.end();
++block) {
if (block->isMonitor) {
NXData monitor = entry.openNXData(block->monName);
NXInt mondata = monitor.openIntData();
m_progress->report("Loading monitor");
mondata.load(1, static_cast<int>(period - 1)); // TODO this is just wrong
MantidVec &Y = local_workspace->dataY(hist_index);
Y.assign(mondata(), mondata() + m_monBlockInfo.numberOfChannels);
MantidVec &E = local_workspace->dataE(hist_index);
std::transform(Y.begin(), Y.end(), E.begin(), dblSqrt);
if (update_spectra2det_mapping) {
// local_workspace->getAxis(1)->setValue(hist_index,
// static_cast<specid_t>(it->first));
auto spec = local_workspace->getSpectrum(hist_index);
specid_t specID = m_specInd2specNum_map.at(hist_index);
spec->setDetectorIDs(
m_spec2det_map.getDetectorIDsForSpectrumNo(specID));
spec->setSpectrumNo(specID);
}
NXFloat timeBins = monitor.openNXFloat("time_of_flight");
timeBins.load();
local_workspace->dataX(hist_index)
.assign(timeBins(), timeBins() + timeBins.dim0());
hist_index++;
} else if (m_have_detector) {
NXData nxdata = entry.openNXData("detector_1");
NXDataSetTyped<int> data = nxdata.openIntData();
data.open();
// Start with the list members that are lower than the required spectrum
const int *const spec_begin = m_spec.get();
// When reading in blocks we need to be careful that the range is exactly
// divisible by the block-size
// and if not have an extra read of the left overs
const int64_t blocksize = 8;
const int64_t rangesize = block->last - block->first + 1;
const int64_t fullblocks = rangesize / blocksize;
int64_t spectra_no = block->first;
// For this to work correctly, we assume that the spectrum list increases
// monotonically
int64_t filestart =
std::lower_bound(spec_begin, m_spec_end, spectra_no) - spec_begin;
if (fullblocks > 0) {
for (int64_t i = 0; i < fullblocks; ++i) {
loadBlock(data, blocksize, period_index, filestart, hist_index,
spectra_no, local_workspace);
filestart += blocksize;
}
}
int64_t finalblock = rangesize - (fullblocks * blocksize);
if (finalblock > 0) {
loadBlock(data, finalblock, period_index, filestart, hist_index,
spectra_no, local_workspace);
}
}
}
try {
const std::string title = entry.getString("title");
local_workspace->setTitle(title);
// write the title into the log file (run object)
local_workspace->mutableRun().addProperty("run_title", title, true);
} catch (std::runtime_error &) {
g_log.debug() << "No title was found in the input file, "
<< getPropertyValue("Filename") << std::endl;
}
}
/**
* Creates period log data in the workspace
* @param period :: period number
* @param local_workspace :: workspace to add period log data to.
*/
void LoadISISNexus2::createPeriodLogs(
int64_t period, DataObjects::Workspace2D_sptr &local_workspace) {
m_logCreator->addPeriodLogs(static_cast<int>(period),
local_workspace->mutableRun());
}
/**
* Perform a call to nxgetslab, via the NexusClasses wrapped methods for a given
* block-size
* @param data :: The NXDataSet object
* @param blocksize :: The block-size to use
* @param period :: The period number
* @param start :: The index within the file to start reading from (zero based)
* @param hist :: The workspace index to start reading into
* @param spec_num :: The spectrum number that matches the hist variable
* @param local_workspace :: The workspace to fill the data with
*/
void LoadISISNexus2::loadBlock(NXDataSetTyped<int> &data, int64_t blocksize,
int64_t period, int64_t start, int64_t &hist,
int64_t &spec_num,
DataObjects::Workspace2D_sptr &local_workspace) {
data.load(static_cast<int>(blocksize), static_cast<int>(period),
static_cast<int>(start)); // TODO this is just wrong
int *data_start = data();
int *data_end = data_start + m_loadBlockInfo.numberOfChannels;
int64_t final(hist + blocksize);
while (hist < final) {
m_progress->report("Loading data");
MantidVec &Y = local_workspace->dataY(hist);
Y.assign(data_start, data_end);
data_start += m_detBlockInfo.numberOfChannels;
data_end += m_detBlockInfo.numberOfChannels;
MantidVec &E = local_workspace->dataE(hist);
std::transform(Y.begin(), Y.end(), E.begin(), dblSqrt);
// Populate the workspace. Loop starts from 1, hence i-1
local_workspace->setX(hist, m_tof_data);
if (m_load_selected_spectra) {
// local_workspace->getAxis(1)->setValue(hist,
// static_cast<specid_t>(spec_num));
auto spec = local_workspace->getSpectrum(hist);
specid_t specID = m_specInd2specNum_map.at(hist);
// set detectors corresponding to spectra Number
spec->setDetectorIDs(m_spec2det_map.getDetectorIDsForSpectrumNo(specID));
// set correct spectra Number
spec->setSpectrumNo(specID);
}
++hist;
++spec_num;
}
}
/// Run the Child Algorithm LoadInstrument (or LoadInstrumentFromNexus)
void LoadISISNexus2::runLoadInstrument(
DataObjects::Workspace2D_sptr &localWorkspace) {
IAlgorithm_sptr loadInst = createChildAlgorithm("LoadInstrument");
// Now execute the Child Algorithm. Catch and log any error, but don't stop.
bool executionSuccessful(true);
try {
loadInst->setPropertyValue("InstrumentName", m_instrument_name);
loadInst->setProperty<MatrixWorkspace_sptr>("Workspace", localWorkspace);
loadInst->setProperty("RewriteSpectraMap",
Mantid::Kernel::OptionalBool(false));
loadInst->execute();
} catch (std::invalid_argument &) {
g_log.information("Invalid argument to LoadInstrument Child Algorithm");
executionSuccessful = false;
} catch (std::runtime_error &) {
g_log.information(
"Unable to successfully run LoadInstrument Child Algorithm");
executionSuccessful = false;
}
if (executionSuccessful) {
// If requested update the instrument to positions in the data file
const Geometry::ParameterMap &pmap = localWorkspace->instrumentParameters();
if (pmap.contains(localWorkspace->getInstrument()->getComponentID(),
"det-pos-source")) {
boost::shared_ptr<Geometry::Parameter> updateDets = pmap.get(
localWorkspace->getInstrument()->getComponentID(), "det-pos-source");
std::string value = updateDets->value<std::string>();
if (value.substr(0, 8) == "datafile") {
IAlgorithm_sptr updateInst =
createChildAlgorithm("UpdateInstrumentFromFile");
updateInst->setProperty<MatrixWorkspace_sptr>("Workspace",
localWorkspace);
updateInst->setPropertyValue("Filename", m_filename);
if (value == "datafile-ignore-phi") {
updateInst->setProperty("IgnorePhi", true);
g_log.information("Detector positions in IDF updated with positions "
"in the data file except for the phi values");
} else {
g_log.information("Detector positions in IDF updated with positions "
"in the data file");
}
// We want this to throw if it fails to warn the user that the
// information is not correct.
updateInst->execute();
}
}
}
}
/**
* Load data about the run
* @param local_workspace :: The workspace to load the run information in to
* @param entry :: The Nexus entry
*/
void LoadISISNexus2::loadRunDetails(
DataObjects::Workspace2D_sptr &local_workspace, NXEntry &entry) {
API::Run &runDetails = local_workspace->mutableRun();
// Charge is stored as a float
m_proton_charge = static_cast<double>(entry.getFloat("proton_charge"));
runDetails.setProtonCharge(m_proton_charge);
std::string run_num =
boost::lexical_cast<std::string>(entry.getInt("run_number"));
runDetails.addProperty("run_number", run_num);
//
// Some details are only stored in the VMS comparability block so we'll pull
// everything from there
// for consistency
NXClass vms_compat = entry.openNXGroup("isis_vms_compat");
// Run header
NXChar char_data = vms_compat.openNXChar("HDR");
char_data.load();
// Space-separate the fields
char *nxsHdr = char_data();
char header[86] = {};
const size_t byte = sizeof(char);
const char fieldSep(' ');
size_t fieldWidths[7] = {3, 5, 20, 24, 12, 8, 8};
char *srcStart = nxsHdr;
char *destStart = header;
for (size_t i = 0; i < 7; ++i) {
size_t width = fieldWidths[i];
memcpy(destStart, srcStart, width * byte);
if (i < 6) // no space after last field
{
srcStart += width;
destStart += width;
memset(destStart, fieldSep, byte); // insert separator
destStart += 1;
}
}
runDetails.addProperty("run_header", std::string(header, header + 86));
// Data details on run not the workspace
runDetails.addProperty("nspectra",
static_cast<int>(m_loadBlockInfo.numberOfSpectra));
runDetails.addProperty("nchannels",
static_cast<int>(m_loadBlockInfo.numberOfChannels));
runDetails.addProperty("nperiods",
static_cast<int>(m_loadBlockInfo.numberOfPeriods));
// RPB struct info
NXInt rpb_int = vms_compat.openNXInt("IRPB");
rpb_int.load();
runDetails.addProperty("dur", rpb_int[0]); // actual run duration
runDetails.addProperty("durunits",
rpb_int[1]); // scaler for above (1=seconds)
runDetails.addProperty("dur_freq",
rpb_int[2]); // testinterval for above (seconds)
runDetails.addProperty("dmp", rpb_int[3]); // dump interval
runDetails.addProperty("dmp_units", rpb_int[4]); // scaler for above
runDetails.addProperty("dmp_freq", rpb_int[5]); // interval for above
runDetails.addProperty("freq",
rpb_int[6]); // 2**k where source frequency = 50 / 2**k
// Now double data
NXFloat rpb_dbl = vms_compat.openNXFloat("RRPB");
rpb_dbl.load();
runDetails.addProperty(
"gd_prtn_chrg",
static_cast<double>(rpb_dbl[7])); // good proton charge (uA.hour)
runDetails.addProperty(
"tot_prtn_chrg",
static_cast<double>(rpb_dbl[8])); // total proton charge (uA.hour)
runDetails.addProperty("goodfrm", rpb_int[9]); // good frames
runDetails.addProperty("rawfrm", rpb_int[10]); // raw frames
runDetails.addProperty(
"dur_wanted",
rpb_int[11]); // requested run duration (units as for "duration" above)
runDetails.addProperty("dur_secs",
rpb_int[12]); // actual run duration in seconds
runDetails.addProperty("mon_sum1", rpb_int[13]); // monitor sum 1
runDetails.addProperty("mon_sum2", rpb_int[14]); // monitor sum 2
runDetails.addProperty("mon_sum3", rpb_int[15]); // monitor sum 3
// End date and time is stored separately in ISO format in the
// "raw_data1/endtime" class
char_data = entry.openNXChar("end_time");
char_data.load();
std::string end_time_iso = std::string(char_data(), 19);
runDetails.addProperty("run_end", end_time_iso);
char_data = entry.openNXChar("start_time");
char_data.load();
std::string start_time_iso = std::string(char_data(), 19);
runDetails.addProperty("run_start", start_time_iso);
runDetails.addProperty("rb_proposal", rpb_int[21]); // RB (proposal) number
vms_compat.close();
}
/**
* Parse an ISO formatted date-time string into separate date and time strings
* @param datetime_iso :: The string containing the ISO formatted date-time
* @param date :: An output parameter containing the date from the original
* string or ??-??-???? if the format is unknown
* @param time :: An output parameter containing the time from the original
* string or ??-??-?? if the format is unknown
*/
void LoadISISNexus2::parseISODateTime(const std::string &datetime_iso,
std::string &date,
std::string &time) const {
try {
Poco::DateTime datetime_output;
int timezone_diff(0);
Poco::DateTimeParser::parse(Poco::DateTimeFormat::ISO8601_FORMAT,
datetime_iso, datetime_output, timezone_diff);
date = Poco::DateTimeFormatter::format(datetime_output, "%d-%m-%Y",
timezone_diff);
time = Poco::DateTimeFormatter::format(datetime_output, "%H:%M:%S",
timezone_diff);
} catch (Poco::SyntaxException &) {
date = "\?\?-\?\?-\?\?\?\?";
time = "\?\?:\?\?:\?\?";
g_log.warning() << "Cannot parse end time from entry in Nexus file.\n";
}
}
/**
* Load data about the sample
* @param local_workspace :: The workspace to load the logs to.
* @param entry :: The Nexus entry
*/
void LoadISISNexus2::loadSampleData(
DataObjects::Workspace2D_sptr &local_workspace, NXEntry &entry) {
/// Sample geometry
NXInt spb = entry.openNXInt("isis_vms_compat/SPB");
// Just load the index we need, not the whole block. The flag is the third
// value in
spb.load(1, 2);
int geom_id = spb[0];
local_workspace->mutableSample().setGeometryFlag(spb[0]);
NXFloat rspb = entry.openNXFloat("isis_vms_compat/RSPB");
// Just load the indices we need, not the whole block. The values start from
// the 4th onward
rspb.load(3, 3);
double thick(rspb[0]), height(rspb[1]), width(rspb[2]);
local_workspace->mutableSample().setThickness(thick);
local_workspace->mutableSample().setHeight(height);
local_workspace->mutableSample().setWidth(width);
g_log.debug() << "Sample geometry - ID: " << geom_id
<< ", thickness: " << thick << ", height: " << height
<< ", width: " << width << "\n";
}
/** Load logs from Nexus file. Logs are expected to be in
* /raw_data_1/runlog group of the file. Call to this method must be done
* within /raw_data_1 group.
* @param ws :: The workspace to load the logs to.
* @param entry :: Nexus entry
*/
void LoadISISNexus2::loadLogs(DataObjects::Workspace2D_sptr &ws,
NXEntry &entry) {
IAlgorithm_sptr alg = createChildAlgorithm("LoadNexusLogs", 0.0, 0.5);
alg->setPropertyValue("Filename", this->getProperty("Filename"));
alg->setProperty<MatrixWorkspace_sptr>("Workspace", ws);
try {
alg->executeAsChildAlg();
} catch (std::runtime_error &) {
g_log.warning() << "Unable to load run logs. There will be no log "
<< "data associated with this workspace\n";
return;
}
// For ISIS Nexus only, fabricate an additional log containing an array of
// proton charge information from the periods group.
try {
NXClass protonChargeClass = entry.openNXGroup("periods");
NXFloat periodsCharge = protonChargeClass.openNXFloat("proton_charge");
periodsCharge.load();
size_t nperiods = periodsCharge.dim0();
std::vector<double> chargesVector(nperiods);
std::copy(periodsCharge(), periodsCharge() + nperiods,
chargesVector.begin());
ArrayProperty<double> *protonLogData =
new ArrayProperty<double>("proton_charge_by_period", chargesVector);
ws->mutableRun().addProperty(protonLogData);
} catch (std::runtime_error &) {
this->g_log.debug("Cannot read periods information from the nexus file. "
"This group may be absent.");
}
// Populate the instrument parameters.
ws->populateInstrumentParameters();
// Make log creator object and add the run status log
m_logCreator.reset(
new ISISRunLogs(ws->run(), m_detBlockInfo.numberOfPeriods));
m_logCreator->addStatusLog(ws->mutableRun());
}
double LoadISISNexus2::dblSqrt(double in) { return sqrt(in); }
/**Method takes input parameters which describe monitor loading and analyze
*them against spectra/monitor block information in the file.
* The result is the option if monitors can be loaded together with spectra or
*mast be treated separately
* and additional information on how to treat monitor spectra.
*
*@param entry :: entry to the NeXus file, opened at root folder
*@param spectrum_index :: array of spectra indexes of the data present in
*the file
*@param ndets :: size of the spectrum index array
*@param n_vms_compat_spectra :: number of data entries containing common time
*bins (e.g. all spectra, or all spectra and monitors or some spectra (this is
*not fully supported)
*@param monitors :: map connecting monitor spectra ID against
*monitor group name in the file.
*@param excludeMonitors :: input property indicating if it is requested to
*exclude monitors from the target workspace
*@param separateMonitors :: input property indicating if it is requested to
*load monitors separately (and exclude them from target data workspace this way)
*
*@param OvelapMonitors :: output property containing the list of monitors
*ID for monitors, which are also included with spectra.
*@return excludeMonitors :: indicator if monitors should or mast be excluded
*from the main data workspace if they can not be loaded with the data
* (contain different number of time channels)
*
*/
bool LoadISISNexus2::findSpectraDetRangeInFile(
NXEntry &entry, boost::shared_array<int> &spectrum_index, int64_t ndets,
int64_t n_vms_compat_spectra, std::map<int64_t, std::string> &monitors,
bool excludeMonitors, bool separateMonitors,
std::map<int64_t, std::string> &OvelapMonitors) {
OvelapMonitors.clear();
size_t nmons = monitors.size();
if (nmons > 0) {
NXInt chans = entry.openNXInt(m_monitors.begin()->second + "/data");
m_monBlockInfo = DataBlock(chans);
m_monBlockInfo.numberOfSpectra = nmons; // each monitor is in separate group
// so number of spectra is equal to
// number of groups.
// identify monitor ID range.
for (auto it = monitors.begin(); it != monitors.end(); it++) {
int64_t mon_id = static_cast<int64_t>(it->first);
if (m_monBlockInfo.spectraID_min > mon_id)
m_monBlockInfo.spectraID_min = mon_id;
if (m_monBlockInfo.spectraID_max < mon_id)
m_monBlockInfo.spectraID_max = mon_id;
}
if (m_monBlockInfo.spectraID_max - m_monBlockInfo.spectraID_min + 1 !=
static_cast<int64_t>(nmons)) {
g_log.warning() << "When trying to find the range of monitor spectra: "
"non-consequent monitor ID-s in the monitor block. "
"Unexpected situation for the loader\n";
}
// at this stage we assume that the only going to load monitors
m_loadBlockInfo = m_monBlockInfo;
}
if (ndets == 0) {
separateMonitors = false; // only monitors in the main workspace. No
// detectors. Will be loaded in the main workspace
// Possible function exit point
return separateMonitors;
}
// detectors are present in the file
NXData nxData = entry.openNXData("detector_1");
NXInt data = nxData.openIntData();
m_detBlockInfo = DataBlock(data);
// We assume again that this spectrum list ID increase monotonically
m_detBlockInfo.spectraID_min = spectrum_index[0];
m_detBlockInfo.spectraID_max = spectrum_index[ndets - 1];
if (m_detBlockInfo.spectraID_max - m_detBlockInfo.spectraID_min + 1 !=
static_cast<int64_t>(m_detBlockInfo.numberOfSpectra)) {
g_log.warning() << "When trying to find the range of monitor spectra: "
"non-consequent spectra ID-s in the detectors block. "
"Unexpected situation for the loader\n";
}
m_loadBlockInfo = m_detBlockInfo;
// now we are analyzing what is actually going or can be loaded
bool removeMonitors = excludeMonitors || separateMonitors;
if (((m_detBlockInfo.numberOfPeriods != m_monBlockInfo.numberOfPeriods) ||
(m_detBlockInfo.numberOfChannels != m_monBlockInfo.numberOfChannels)) &&
nmons > 0) {
// detectors and monitors have different characteristics. Can be loaded only
// to separate workspaces.
if (!removeMonitors) {
g_log.warning() << " Performing separate loading as can not load spectra "
"and monitors in the single workspace:\n";
g_log.warning() << " Monitors data contain :"
<< m_monBlockInfo.numberOfChannels
<< " time channels and: "
<< m_monBlockInfo.numberOfPeriods << " period(s)\n";
g_log.warning() << " Spectra data contain :"
<< m_detBlockInfo.numberOfChannels
<< " time channels and: "
<< m_detBlockInfo.numberOfPeriods << " period(s)\n";
}
separateMonitors = true;
removeMonitors = true;
}
int64_t spectraID_min =
std::min(m_monBlockInfo.spectraID_min, m_detBlockInfo.spectraID_min);
int64_t spectraID_max =
std::max(m_monBlockInfo.spectraID_max, m_detBlockInfo.spectraID_max);
size_t totNumOfSpectra =
m_monBlockInfo.numberOfSpectra + m_detBlockInfo.numberOfSpectra;
if (!removeMonitors) {
m_loadBlockInfo.numberOfSpectra = totNumOfSpectra;
m_loadBlockInfo.spectraID_min = spectraID_min;
m_loadBlockInfo.spectraID_max = spectraID_max;
}
if (separateMonitors)
m_loadBlockInfo = m_detBlockInfo;
// verify integrity of the monitor and detector information
if ((totNumOfSpectra == static_cast<size_t>(n_vms_compat_spectra)) &&
(spectraID_max - spectraID_min + 1 ==
static_cast<int64_t>(n_vms_compat_spectra))) {
// all information written in the file is correct, there are no spurious
// spectra and detectors & monitors form continuous block on HDD
return separateMonitors;
}
// something is wrong and we need to analyze spectra map. Currently we can
// identify and manage the case when all monitor's spectra are written
// together with detectors
// make settings for this situation
m_detBlockInfo.numberOfSpectra -= m_monBlockInfo.numberOfSpectra;
m_loadBlockInfo.numberOfSpectra -= m_monBlockInfo.numberOfSpectra;
std::map<int64_t, std::string> remaining_monitors;
if (removeMonitors) {
for (auto it = monitors.begin(); it != monitors.end(); it++) {
if (it->first >= m_detBlockInfo.spectraID_min &&
it->first <= m_detBlockInfo.spectraID_max) { // monitors ID-s are
// included with spectra
// ID-s -- let's try not
// to load it twice.
OvelapMonitors.insert(*it);
} else {
remaining_monitors.insert(*it);
}
}
}
monitors.swap(remaining_monitors);
return separateMonitors;
}
} // namespace DataHandling
} // namespace Mantid