Newer
Older
#include "MantidWorkflowAlgorithms/ConvolutionFitSequential.h"
#include "MantidAPI/AlgorithmManager.h"
Federico Montesino Pouzols
committed
#include "MantidAPI/Axis.h"
#include "MantidAPI/FunctionDomain1D.h"
#include "MantidAPI/FunctionFactory.h"
#include "MantidAPI/IFunction.h"
#include "MantidAPI/ITableWorkspace.h"
#include "MantidAPI/Progress.h"
Federico Montesino Pouzols
committed
#include "MantidAPI/WorkspaceFactory.h"
#include "MantidAPI/WorkspaceGroup.h"
#include "MantidKernel/MandatoryValidator.h"
#include "MantidKernel/BoundedValidator.h"
#include "MantidKernel/ListValidator.h"
#include "MantidKernel/StringContainsValidator.h"
#include "MantidKernel/VectorHelper.h"
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#include <cmath>
namespace {
Mantid::Kernel::Logger g_log("ConvolutionFitSequential");
}
namespace Mantid {
namespace Algorithms {
using namespace API;
using namespace Kernel;
// Register the algorithm into the AlgorithmFactory
DECLARE_ALGORITHM(ConvolutionFitSequential)
//----------------------------------------------------------------------------------------------
/// Algorithms name for identification. @see Algorithm::name
const std::string ConvolutionFitSequential::name() const {
return "ConvolutionFitSequential";
}
/// Algorithm's version for identification. @see Algorithm::version
int ConvolutionFitSequential::version() const { return 1; }
/// Algorithm's category for identification. @see Algorithm::category
const std::string ConvolutionFitSequential::category() const {
return "Workflow\\MIDAS";
}
/// Algorithm's summary for use in the GUI and help. @see Algorithm::summary
const std::string ConvolutionFitSequential::summary() const {
return "Performs a sequential fit for a convolution workspace";
}
//----------------------------------------------------------------------------------------------
/** Initialize the algorithm's properties.
*/
void ConvolutionFitSequential::init() {
declareProperty(
make_unique<WorkspaceProperty<>>("InputWorkspace", "", Direction::Input),
"The input workspace for the fit.");
auto scv = boost::make_shared<StringContainsValidator>();
auto requires = std::vector<std::string>{"Convolution", "Resolution"};
scv->setRequiredStrings(requires);
declareProperty("Function", "", scv,
"The function that describes the parameters of the fit.",
Direction::Input);
std::vector<std::string> backType{"Fixed Flat", "Fit Flat", "Fit Linear"};
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
declareProperty("BackgroundType", "Fixed Flat",
boost::make_shared<StringListValidator>(backType),
"The Type of background used in the fitting",
Direction::Input);
declareProperty(
"StartX", EMPTY_DBL(), boost::make_shared<MandatoryValidator<double>>(),
"The start of the range for the fit function.", Direction::Input);
declareProperty(
"EndX", EMPTY_DBL(), boost::make_shared<MandatoryValidator<double>>(),
"The end of the range for the fit function.", Direction::Input);
auto boundedV = boost::make_shared<BoundedValidator<int>>();
boundedV->setLower(0);
declareProperty("SpecMin", 0, boundedV, "The first spectrum to be used in "
"the fit. Spectra values can not be "
"negative",
Direction::Input);
declareProperty("SpecMax", 0, boundedV, "The final spectrum to be used in "
"the fit. Spectra values can not be "
"negative",
Direction::Input);
declareProperty("Convolve", true,
"If true, the fit is treated as a convolution workspace.",
Direction::Input);
declareProperty("Minimizer", "Levenberg-Marquardt",
boost::make_shared<MandatoryValidator<std::string>>(),
"Minimizer to use for fitting. Minimizers available are "
"'Levenberg-Marquardt', 'Simplex', 'FABADA',\n"
"'Conjugate gradient (Fletcher-Reeves imp.)', 'Conjugate "
"gradient (Polak-Ribiere imp.)' and 'BFGS'");
declareProperty("MaxIterations", 500, boundedV,
"The maximum number of iterations permitted",
Direction::Input);
declareProperty(make_unique<WorkspaceProperty<>>("OutputWorkspace", "",
Direction::Output),
"The OutputWorkspace containing the results of the fit.");
}
//----------------------------------------------------------------------------------------------
/** Execute the algorithm.
*/
void ConvolutionFitSequential::exec() {
// Initialise variables with properties
MatrixWorkspace_sptr inputWs = getProperty("InputWorkspace");
const std::string function = getProperty("Function");
const std::string backType =
convertBackToShort(getProperty("backgroundType"));
const double startX = getProperty("StartX");
const double endX = getProperty("EndX");
const int specMin = getProperty("SpecMin");
const int specMax = getProperty("Specmax");
const bool convolve = getProperty("Convolve");
const int maxIter = getProperty("MaxIterations");
const std::string minimizer = getProperty("Minimizer");
// Inspect function to obtain fit Type and background
const auto functionValues = findValuesFromFunction(function);
const auto LorentzNum = functionValues[0];
const auto funcName = functionValues[1];
// Check if a delta function is being used
auto pos = function.find("Delta");
if (pos != std::string::npos) {
delta = true;
usingDelta = "true";
}
m_log.information("Input files: " + inputWs->getName());
m_log.information("Fit type: Delta=" + usingDelta + "; Lorentzians=" +
LorentzNum);
m_log.information("Background type: " + backType);
// Output workspace name
pos = outputWsName.rfind('_');
if (pos != std::string::npos) {
outputWsName = outputWsName.substr(0, pos + 1);
}
outputWsName += "conv_";
if (delta) {
outputWsName += "Delta";
}
if (LorentzNum.compare("0") != 0) {
outputWsName += LorentzNum + "L";
} else {
outputWsName += convertFuncToShort(funcName);
}
outputWsName += backType + "_s";
outputWsName += std::to_string(specMin);
outputWsName += "_to_";
outputWsName += std::to_string(specMax);
// Convert input workspace to get Q axis
const std::string tempFitWsName = "__convfit_fit_ws";
convertInputToElasticQ(inputWs, tempFitWsName);
Progress plotPeakStringProg(this, 0.0, 0.05, specMax - specMin);
// Construct plotpeak string
std::string plotPeakInput;
for (int i = specMin; i < specMax + 1; i++) {
plotPeakInput += nextWs + ";";
plotPeakStringProg.report("Constructing PlotPeak name");
}
// passWSIndex
if (funcName.find("Diff") != std::string::npos ||
funcName.find("Stretched") != std::string::npos) {
passIndex = true;
}
// Run PlotPeaksByLogValue
auto plotPeaks = createChildAlgorithm("PlotPeakByLogValue", 0.05, 0.90, true);
plotPeaks->setProperty("Input", plotPeakInput);
plotPeaks->setProperty("OutputWorkspace", outputWsName);
plotPeaks->setProperty("Function", function);
plotPeaks->setProperty("StartX", startX);
plotPeaks->setProperty("EndX", endX);
plotPeaks->setProperty("FitType", "Sequential");
plotPeaks->setProperty("CreateOutput", true);
plotPeaks->setProperty("OutputCompositeMembers", true);
plotPeaks->setProperty("ConvolveMembers", convolve);
plotPeaks->setProperty("MaxIterations", maxIter);
plotPeaks->setProperty("Minimizer", minimizer);
plotPeaks->setProperty("PassWSIndexToFunction", passIndex);
plotPeaks->executeAsChildAlg();
ITableWorkspace_sptr outputWs = plotPeaks->getProperty("OutputWorkspace");
// Delete workspaces
Progress deleteProgress(this, 0.90, 0.91, 2);
auto deleter = createChildAlgorithm("DeleteWorkspace", -1.0, -1.0, false);
deleter->setProperty("WorkSpace",
outputWsName + "_NormalisedCovarianceMatrices");
deleter->executeAsChildAlg();
deleteProgress.report("Deleting PlotPeak Output");
deleter->setProperty("WorkSpace", outputWsName + "_Parameters");
deleter->executeAsChildAlg();
deleteProgress.report("Deleting PlotPeak Output");
const auto paramTableName = outputWsName + "_Parameters";
AnalysisDataService::Instance().add(paramTableName, outputWs);
// Construct output workspace
const auto resultWsName = outputWsName + "_Result";
Progress workflowProg(this, 0.91, 0.94, 4);
auto paramNames = std::vector<std::string>();
if (funcName.compare("DeltaFunction") == 0) {
} else {
auto func = FunctionFactory::Instance().createFunction(funcName);
if (delta) {
}
for (size_t i = 0; i < func->nParams(); i++) {
paramNames.push_back(func->parameterName(i));
workflowProg.report("Finding parameters to process");
}
if (funcName.compare("Lorentzian") == 0) {
// remove peak centre
size_t pos = find(paramNames.begin(), paramNames.end(), "PeakCentre") -
paramNames.begin();
paramNames.erase(paramNames.begin() + pos);
}
// Run calcEISF if Delta
if (delta) {
calculateEISF(outputWs);
}
// Construct comma separated list for ProcessIndirectFitParameters
std::string paramNamesList;
const size_t maxNames = paramNames.size();
for (size_t i = 0; i < maxNames; i++) {
paramNamesList += paramNames.at(i);
if (i != (maxNames - 1)) {
paramNamesList += ",";
}
workflowProg.report("Constructing indirectFitParams input");
}
// Run ProcessIndirectFitParameters
auto pifp =
createChildAlgorithm("ProcessIndirectFitParameters", 0.94, 0.96, true);
pifp->setProperty("InputWorkspace", outputWs);
pifp->setProperty("ColumnX", "axis-1");
pifp->setProperty("XAxisUnit", "MomentumTransfer");
pifp->setProperty("ParameterNames", paramNamesList);
pifp->setProperty("OutputWorkspace", resultWsName);
pifp->executeAsChildAlg();
MatrixWorkspace_sptr resultWs = pifp->getProperty("OutputWorkspace");
AnalysisDataService::Instance().addOrReplace(resultWsName, resultWs);
// Handle sample logs
auto logCopier = createChildAlgorithm("CopyLogs", -1.0, -1.0, false);
logCopier->setProperty("InputWorkspace", inputWs);
logCopier->setProperty("OutputWorkspace", resultWs);
logCopier->executeAsChildAlg();
resultWs = logCopier->getProperty("OutputWorkspace");
// Create Sample Log
auto sampleLogStrings = std::map<std::string, std::string>();
sampleLogStrings["sample_filename"] = inputWs->getName();
sampleLogStrings["convolve_members"] = (convolve == 1) ? "true" : "false";
sampleLogStrings["fit_program"] = "ConvFit";
sampleLogStrings["background"] = backType;
sampleLogStrings["delta_function"] = usingDelta;
auto sampleLogNumeric = std::map<std::string, std::string>();
sampleLogNumeric["lorentzians"] =
boost::lexical_cast<std::string>(LorentzNum);
Progress logAdderProg(this, 0.96, 0.97, 6);
// Add String Logs
auto logAdder = createChildAlgorithm("AddSampleLog", -1.0, -1.0, false);
for (auto &sampleLogString : sampleLogStrings) {
logAdder->setProperty("Workspace", resultWs);
logAdder->setProperty("LogName", sampleLogString.first);
logAdder->setProperty("LogText", sampleLogString.second);
logAdder->setProperty("LogType", "String");
logAdder->executeAsChildAlg();
// Add Numeric Logs
logAdder->setProperty("Workspace", resultWs);
logAdder->setProperty("LogName", logItem.first);
logAdder->setProperty("LogText", logItem.second);
logAdder->setProperty("LogType", "Number");
logAdder->executeAsChildAlg();
logAdderProg.report("Adding Numerical logs");
// Copy Logs to GroupWorkspace
logCopier = createChildAlgorithm("CopyLogs", 0.97, 0.98, false);
logCopier->setProperty("InputWorkspace", resultWs);
std::string groupName = outputWsName + "_Workspaces";
logCopier->setProperty("OutputWorkspace", groupName);
logCopier->executeAsChildAlg();
// Rename Workspaces in group
WorkspaceGroup_sptr groupWs =
AnalysisDataService::Instance().retrieveWS<WorkspaceGroup>(outputWsName +
"_Workspaces");
const auto groupWsNames = groupWs->getNames();
auto renamer = createChildAlgorithm("RenameWorkspace", -1.0, -1.0, false);
Progress renamerProg(this, 0.98, 1.0, specMax + 1);
for (int i = specMin; i < specMax + 1; i++) {
renamer->setProperty("InputWorkspace", groupWsNames.at(i - specMin));
outName += "_Workspace";
renamer->setProperty("OutputWorkspace", outName);
renamer->executeAsChildAlg();
renamerProg.report("Renaming group workspaces");
setProperty("OutputWorkspace", resultWs);
}
/**
* Check function to establish if it is for one lorentzian or Two
* @param subFunction The unchecked substring of the function
* @return true if the function is two lorentzian false if one lorentzian
*/
bool ConvolutionFitSequential::checkForTwoLorentz(
const std::string &subFunction) {
auto pos = subFunction.rfind("Lorentzian");
return pos != std::string::npos;
}
/**
* Finds specific values embedded in the function supplied to the algorithm
* @param function The full function string
* @return all values of interest from the function (0 - fitType, 1 -
* functionName)
*/
std::vector<std::string>
ConvolutionFitSequential::findValuesFromFunction(const std::string &function) {
std::vector<std::string> result;
std::string fitType;
std::string functionName;
auto startPos = function.rfind("name=");
if (startPos != std::string::npos) {
fitType = function.substr(startPos, function.size());
auto nextPos = fitType.find_first_of(',');
fitType = fitType.substr(5, nextPos - 5);
functionName = fitType;
if (fitType.compare("Lorentzian") == 0) {
std::string newSub = function.substr(0, startPos);
bool isTwoL = checkForTwoLorentz(newSub);
if (isTwoL) {
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
fitType = "2";
} else {
fitType = "1";
}
} else {
fitType = "0";
}
result.push_back(fitType);
}
result.push_back(functionName);
return result;
}
/**
* Searchs for a given fit parameter within the a vector of columnNames
* @param suffix - The string to search for within the columnName
* @param columns - A vector of column names to be searched through
* @return A vector of all the column names that contained the given suffix
* string
*/
std::vector<std::string> ConvolutionFitSequential::searchForFitParams(
const std::string &suffix, const std::vector<std::string> &columns) {
auto fitParams = std::vector<std::string>();
const size_t totalColumns = columns.size();
for (size_t i = 0; i < totalColumns; i++) {
auto pos = columns.at(i).rfind(suffix);
if (pos != std::string::npos) {
auto endCheck = pos + suffix.size();
if (endCheck == columns.at(i).size()) {
fitParams.push_back(columns.at(i));
}
}
}
return fitParams;
}
/**
* Squares all the values inside a vector of type double
* @param target - The vector to be squared
* @return The vector after being squared
*/
std::vector<double>
ConvolutionFitSequential::squareVector(std::vector<double> target) {
std::transform(target.begin(), target.end(), target.begin(),
VectorHelper::Squares<double>());
return target;
}
/**
* Creates a vector of type double using the values of another vector
* @param original - The original vector to be cloned
* @return A clone of the original vector
*/
std::vector<double>
ConvolutionFitSequential::cloneVector(const std::vector<double> &original) {
return std::vector<double>(original.begin(), original.end());
}
/**
* Converts the input workspaces to spectrum axis to ElasticQ and adds it to the
* ADS to be used by PlotPeakBylogValue
* @param inputWs - The MatrixWorkspace to be converted
* @param wsName - The desired name of the output workspace
*/
void ConvolutionFitSequential::convertInputToElasticQ(
API::MatrixWorkspace_sptr &inputWs, const std::string &wsName) {
auto axis = inputWs->getAxis(1);
if (axis->isSpectra()) {
auto convSpec = createChildAlgorithm("ConvertSpectrumAxis");
// Store in ADS to allow use by PlotPeakByLogValue
convSpec->setAlwaysStoreInADS(true);
convSpec->setProperty("InputWorkSpace", inputWs);
convSpec->setProperty("OutputWorkSpace", wsName);
convSpec->setProperty("Target", "ElasticQ");
convSpec->setProperty("EMode", "Indirect");
convSpec->executeAsChildAlg();
} else if (axis->isNumeric()) {
// Check that units are Momentum Transfer
if (axis->unit()->unitID() != "MomentumTransfer") {
throw std::runtime_error("Input must have axis values of Q");
}
auto cloneWs = createChildAlgorithm("CloneWorkspace");
// Store in ADS to allow use by PlotPeakByLogValue
cloneWs->setAlwaysStoreInADS(true);
cloneWs->setProperty("InputWorkspace", inputWs);
cloneWs->setProperty("OutputWorkspace", wsName);
cloneWs->executeAsChildAlg();
} else {
throw std::runtime_error(
"Input workspace must have either spectra or numeric axis.");
}
}
/**
* Calculates the EISF if the fit includes a Delta function
* @param tableWs - The TableWorkspace to append the EISF calculation to
*/
void ConvolutionFitSequential::calculateEISF(
API::ITableWorkspace_sptr &tableWs) {
// Get height data from parameter table
const auto columns = tableWs->getColumnNames();
const auto height = searchForFitParams("Height", columns).at(0);
const auto heightErr = searchForFitParams("Height_Err", columns).at(0);
auto heightY = tableWs->getColumn(height)->numeric_fill<>();
auto heightE = tableWs->getColumn(heightErr)->numeric_fill<>();
// Get amplitude column names
const auto ampNames = searchForFitParams("Amplitude", columns);
const auto ampErrorNames = searchForFitParams("Amplitude_Err", columns);
// For each lorentzian, calculate EISF
if (ampErrorNames.size() > maxSize) {
maxSize = ampErrorNames.size();
}
for (size_t i = 0; i < maxSize; i++) {
// Get amplitude from column in table workspace
auto ampY = tableWs->getColumn(ampName)->numeric_fill<>();
const auto ampErrorName = ampErrorNames.at(i);
auto ampErr = tableWs->getColumn(ampErrorName)->numeric_fill<>();
// Calculate EISF and EISF error
// total = heightY + ampY
auto total = cloneVector(heightY);
std::transform(total.begin(), total.end(), ampY.begin(), total.begin(),
std::plus<double>());
// eisfY = heightY / total
auto eisfY = cloneVector(heightY);
std::transform(eisfY.begin(), eisfY.end(), total.begin(), eisfY.begin(),
std::divides<double>());
// heightE squared
auto heightESq = cloneVector(heightE);
heightESq = squareVector(heightESq);
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
// ampErr squared
auto ampErrSq = cloneVector(ampErr);
ampErrSq = squareVector(ampErrSq);
// totalErr = heightE squared + ampErr squared
auto totalErr = cloneVector(heightESq);
std::transform(totalErr.begin(), totalErr.end(), ampErrSq.begin(),
totalErr.begin(), std::plus<double>());
// heightY squared
auto heightYSq = cloneVector(heightY);
heightYSq = squareVector(heightYSq);
// total Squared
auto totalSq = cloneVector(total);
totalSq = squareVector(totalSq);
// errOverTotalSq = totalErr / total squared
auto errOverTotalSq = cloneVector(totalErr);
std::transform(errOverTotalSq.begin(), errOverTotalSq.end(),
totalSq.begin(), errOverTotalSq.begin(),
std::divides<double>());
// heightESqOverYSq = heightESq / heightYSq
auto heightESqOverYSq = cloneVector(heightESq);
std::transform(heightESqOverYSq.begin(), heightESqOverYSq.end(),
heightYSq.begin(), heightESqOverYSq.begin(),
std::divides<double>());
// sqrtESqOverYSq = squareRoot( heightESqOverYSq )
auto sqrtESqOverYSq = cloneVector(heightESqOverYSq);
std::transform(sqrtESqOverYSq.begin(), sqrtESqOverYSq.end(),
sqrtESqOverYSq.begin(),
static_cast<double (*)(double)>(sqrt));
// eisfYSumRoot = eisfY * sqrtESqOverYSq
auto eisfYSumRoot = cloneVector(eisfY);
std::transform(eisfYSumRoot.begin(), eisfYSumRoot.end(),
sqrtESqOverYSq.begin(), eisfYSumRoot.begin(),
std::multiplies<double>());
// eisfErr = eisfYSumRoot + errOverTotalSq
auto eisfErr = cloneVector(eisfYSumRoot);
std::transform(eisfErr.begin(), eisfErr.end(), errOverTotalSq.begin(),
eisfErr.begin(), std::plus<double>());
// Append the calculated values to the table workspace
ampName.substr(0, (ampName.size() - std::string("Amplitude").size()));
columnName += "EISF";
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
0, (ampName.size() - std::string("Amplitude_Err").size()));
errorColumnName += "EISF_Err";
tableWs->addColumn("double", columnName);
tableWs->addColumn("double", errorColumnName);
size_t maxEisf = eisfY.size();
if (eisfErr.size() > maxEisf) {
maxEisf = eisfErr.size();
}
Column_sptr col = tableWs->getColumn(columnName);
Column_sptr errCol = tableWs->getColumn(errorColumnName);
for (size_t j = 0; j < maxEisf; j++) {
col->cell<double>(j) = eisfY.at(j);
errCol->cell<double>(j) = eisfErr.at(j);
}
}
}
/**
* Converts the user input for background into short hand for use in the
* workspace naming
* @param original - The original user input to the function
* @return The short hand of the users input
*/
std::string
ConvolutionFitSequential::convertBackToShort(const std::string &original) {
auto result = original.substr(0, 3);
const auto pos = original.find(' ');
if (pos != std::string::npos) {
result += original.at(pos + 1);
}
return result;
}
/**
* Converts the user input for function into short hand for use in the workspace
* naming
* @param original - The original user input to the function
* @return The short hand of the users input
*/
std::string
ConvolutionFitSequential::convertFuncToShort(const std::string &original) {
if (original.compare("DeltaFunction") != 0) {
if (original.at(0) == 'E') {
result += "E";
} else if (original.at(0) == 'I') {
result += "I";
} else {
return "SFT";
}
if (pos != std::string::npos) {
result += "DC";
} else {
result += "DS";
}
}
return result;
}
} // namespace Algorithms
} // namespace Mantid