Newer
Older
// Includes
#include "MantidKernel/Statistics.h"
Peterson, Peter
committed
#include <algorithm>
#include <functional>
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
namespace Mantid {
namespace Kernel {
using std::string;
using std::vector;
/**
* Generate a Statistics object where all of the values are NaN. This is a good
* initial default.
*/
Statistics getNanStatistics() {
double nan = std::numeric_limits<double>::quiet_NaN();
Statistics stats;
stats.minimum = nan;
stats.maximum = nan;
stats.mean = nan;
stats.median = nan;
stats.standard_deviation = nan;
return stats;
}
/**
* There are enough special cases in determining the median where it useful to
* put it in a single function.
*/
template <typename TYPE>
double getMedian(const vector<TYPE> &data, const size_t num_data,
const bool sorted) {
if (num_data == 1)
return static_cast<double>(*(data.begin()));
bool is_even = ((num_data % 2) == 0);
if (is_even) {
double left = 0.0;
double right = 0.0;
if (sorted) {
// Just get the centre two elements.
left = static_cast<double>(*(data.begin() + num_data / 2 - 1));
right = static_cast<double>(*(data.begin() + num_data / 2));
} else {
// If the data is not sorted, make a copy we can mess with
vector<TYPE> temp(data.begin(), data.end());
// Get what the centre two elements should be...
std::nth_element(temp.begin(), temp.begin() + num_data / 2 - 1,
temp.end());
left = static_cast<double>(*(temp.begin() + num_data / 2 - 1));
std::nth_element(temp.begin(), temp.begin() + num_data / 2, temp.end());
right = static_cast<double>(*(temp.begin() + num_data / 2));
// return the average
return (left + right) / 2.;
} else
// Odd number
{
if (sorted) {
// If sorted and odd, just return the centre value
return static_cast<double>(*(data.begin() + num_data / 2));
} else {
// If the data is not sorted, make a copy we can mess with
vector<TYPE> temp(data.begin(), data.end());
// Make sure the centre value is in the correct position
std::nth_element(temp.begin(), temp.begin() + num_data / 2, temp.end());
// Now return the centre value
return static_cast<double>(*(temp.begin() + num_data / 2));
}
}
/**
* There are enough special cases in determining the Z score where it useful to
* put it in a single function.
*/
template <typename TYPE>
std::vector<double> getZscore(const vector<TYPE> &data) {
if (data.size() < 3) {
std::vector<double> Zscore(data.size(), 0.);
return Zscore;
}
std::vector<double> Zscore;
Statistics stats = getStatistics(data);
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
if (stats.standard_deviation == 0.) {
std::vector<double> Zscore(data.size(), 0.);
return Zscore;
}
typename vector<TYPE>::const_iterator it = data.begin();
for (; it != data.end(); ++it) {
double tmp = static_cast<double>(*it);
Zscore.push_back(fabs((tmp - stats.mean) / stats.standard_deviation));
}
return Zscore;
}
/**
* There are enough special cases in determining the modified Z score where it
* useful to
* put it in a single function.
*/
template <typename TYPE>
std::vector<double> getModifiedZscore(const vector<TYPE> &data,
const bool sorted) {
if (data.size() < 3) {
std::vector<double> Zscore(data.size(), 0.);
return Zscore;
}
std::vector<double> MADvec;
double tmp;
size_t num_data = data.size(); // cache since it is frequently used
double median = getMedian(data, num_data, sorted);
typename vector<TYPE>::const_iterator it = data.begin();
for (; it != data.end(); ++it) {
tmp = static_cast<double>(*it);
MADvec.push_back(fabs(tmp - median));
}
double MAD = getMedian(MADvec, num_data, sorted);
if (MAD == 0.) {
std::vector<double> Zscore(data.size(), 0.);
return Zscore;
}
MADvec.clear();
std::vector<double> Zscore;
it = data.begin();
for (; it != data.end(); ++it) {
tmp = static_cast<double>(*it);
Zscore.push_back(0.6745 * fabs((tmp - median) / MAD));
}
return Zscore;
}
/**
* Determine the statistics for a vector of data. If it is sorted then let the
* function know so it won't make a copy of the data for determining the median.
* @param data Data points whose statistics are to be evaluated
* @param flags A set of flags to control the computation of the stats
Statistics getStatistics(const vector<TYPE> &data, const unsigned int flags) {
Statistics stats = getNanStatistics();
size_t num_data = data.size(); // cache since it is frequently used
if (num_data == 0) { // don't do anything
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
// calculate the mean if this or the stddev is requested
const bool stddev = ((flags & StatOptions::UncorrectedStdDev) ||
(flags & StatOptions::CorrectedStdDev));
if ((flags & StatOptions::Mean) || stddev) {
const TYPE sum = std::accumulate(data.begin(), data.end(),
static_cast<TYPE>(0), std::plus<TYPE>());
stats.mean = static_cast<double>(sum) / (static_cast<double>(num_data));
if (stddev) {
// calculate the standard deviation, min, max
stats.minimum = stats.mean;
stats.maximum = stats.mean;
double stddev = 0.;
typename vector<TYPE>::const_iterator it = data.begin();
for (; it != data.end(); ++it) {
double temp = static_cast<double>(*it);
stddev += ((temp - stats.mean) * (temp - stats.mean));
if (temp > stats.maximum)
stats.maximum = temp;
if (temp < stats.minimum)
stats.minimum = temp;
}
size_t ndofs =
(flags & StatOptions::CorrectedStdDev) ? num_data - 1 : num_data;
stats.standard_deviation = sqrt(stddev / (static_cast<double>(ndofs)));
}
}
// calculate the median if requested
if (flags & StatOptions::Median) {
stats.median = getMedian(data, num_data, flags & StatOptions::SortedData);
}
return stats;
}
/// Getting statistics of a string array should just give a bunch of NaNs
template <>
DLLExport Statistics
getStatistics<string>(const vector<string> &data, const unsigned int flags) {
UNUSED_ARG(flags);
UNUSED_ARG(data);
return getNanStatistics();
}
/// Getting statistics of a boolean array should just give a bunch of NaNs
template <>
DLLExport Statistics
getStatistics<bool>(const vector<bool> &data, const unsigned int flags) {
UNUSED_ARG(flags);
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
UNUSED_ARG(data);
return getNanStatistics();
}
/** Return the Rwp of a diffraction pattern data
* @param obsI :: array of observed intensity values
* @param calI :: array of calculated intensity values;
* @param obsE :: array of error of the observed data;
* @return :: RFactor including Rp and Rwp
*
*/
Rfactor getRFactor(const std::vector<double> &obsI,
const std::vector<double> &calI,
const std::vector<double> &obsE) {
// 1. Check
if (obsI.size() != calI.size() || obsI.size() != obsE.size()) {
std::stringstream errss;
errss << "GetRFactor() Input Error! Observed Intensity (" << obsI.size()
<< "), Calculated Intensity (" << calI.size()
<< ") and Observed Error (" << obsE.size()
<< ") have different number of elements.";
throw std::runtime_error(errss.str());
}
if (obsI.size() == 0) {
throw std::runtime_error("getRFactor(): the input arrays are empty.");
}
double sumnom = 0;
double sumdenom = 0;
double sumrpnom = 0;
double sumrpdenom = 0;
size_t numpts = obsI.size();
for (size_t i = 0; i < numpts; ++i) {
double cal_i = calI[i];
double obs_i = obsI[i];
double sigma = obsE[i];
double weight = 1.0 / (sigma * sigma);
double diff = obs_i - cal_i;
if (weight == weight && weight <= DBL_MAX) {
// If weight is not NaN.
sumrpnom += fabs(diff);
sumrpdenom += fabs(obs_i);
double tempnom = weight * diff * diff;
double tempden = weight * obs_i * obs_i;
sumnom += tempnom;
sumdenom += tempden;
if (tempnom != tempnom || tempden != tempden) {
std::cout << "***** Error! ****** Data indexed " << i << " is NaN. "
<< "i = " << i << ": cal = " << calI[i] << ", obs = " << obs_i
<< ", weight = " << weight << ". \n";
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
}
Rfactor rfactor(0., 0.);
rfactor.Rp = (sumrpnom / sumrpdenom);
rfactor.Rwp = std::sqrt(sumnom / sumdenom);
if (rfactor.Rwp != rfactor.Rwp)
std::cout << "Rwp is NaN. Denominator = " << sumnom
<< "; Nominator = " << sumdenom << ". \n";
return rfactor;
}
/**
* This will calculate the first n-moments (inclusive) about the origin. For
*example
* if maxMoment=2 then this will return 3 values: 0th (total weight), 1st
*(mean), 2nd (deviation).
*
* @param x The independent values
* @param y The dependent values
* @param maxMoment The number of moments to calculate
* @returns The first n-moments.
*/
template <typename TYPE>
std::vector<double> getMomentsAboutOrigin(const std::vector<TYPE> &x,
const std::vector<TYPE> &y,
const int maxMoment) {
// densities have the same number of x and y
bool isDensity(x.size() == y.size());
// if it isn't a density then check for histogram
if ((!isDensity) && (x.size() != y.size() + 1)) {
std::stringstream msg;
msg << "length of x (" << x.size() << ") and y (" << y.size()
<< ")do not match";
throw std::out_of_range(msg.str());
}
// initialize a result vector with all zeros
std::vector<double> result(maxMoment + 1, 0.);
// cache the maximum index
size_t numPoints = y.size();
if (isDensity)
numPoints = x.size() - 1;
// densities are calculated using Newton's method for numerical integration
// as backwards as it sounds, the outer loop should be the points rather
// than
// the moments
for (size_t j = 0; j < numPoints; ++j) {
// reduce item lookup - and central x for histogram
const double xVal = .5 * static_cast<double>(x[j] + x[j + 1]);
// this variable will be (x^n)*y
double temp = static_cast<double>(y[j]); // correct for histogram
if (isDensity) {
const double xDelta = static_cast<double>(x[j + 1] - x[j]);
temp = .5 * (temp + static_cast<double>(y[j + 1])) * xDelta;
// accumulate the moments
result[0] += temp;
for (size_t i = 1; i < result.size(); ++i) {
temp *= xVal;
result[i] += temp;
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
}
return result;
}
/**
* This will calculate the first n-moments (inclusive) about the mean (1st
*moment). For example
* if maxMoment=2 then this will return 3 values: 0th (total weight), 1st
*(mean), 2nd (deviation).
*
* @param x The independent values
* @param y The dependent values
* @param maxMoment The number of moments to calculate
* @returns The first n-moments.
*/
template <typename TYPE>
std::vector<double> getMomentsAboutMean(const std::vector<TYPE> &x,
const std::vector<TYPE> &y,
const int maxMoment) {
// get the zeroth (integrated value) and first moment (mean)
std::vector<double> momentsAboutOrigin = getMomentsAboutOrigin(x, y, 1);
const double mean = momentsAboutOrigin[1];
// initialize a result vector with all zeros
std::vector<double> result(maxMoment + 1, 0.);
result[0] = momentsAboutOrigin[0];
// escape early if we need to
if (maxMoment == 0)
return result;
// densities have the same number of x and y
bool isDensity(x.size() == y.size());
// cache the maximum index
size_t numPoints = y.size();
if (isDensity)
numPoints = x.size() - 1;
// densities are calculated using Newton's method for numerical integration
// as backwards as it sounds, the outer loop should be the points rather
// than
// the moments
for (size_t j = 0; j < numPoints; ++j) {
// central x in histogram with a change of variables - and just change for
// density
const double xVal =
.5 * static_cast<double>(x[j] + x[j + 1]) - mean; // change of variables
// this variable will be (x^n)*y
double temp;
if (isDensity) {
const double xDelta = static_cast<double>(x[j + 1] - x[j]);
temp = xVal * .5 * static_cast<double>(y[j] + y[j + 1]) * xDelta;
} else {
temp = xVal * static_cast<double>(y[j]);
// accumulate the moment
result[1] += temp;
for (size_t i = 2; i < result.size(); ++i) {
temp *= xVal;
result[i] += temp;
}
return result;
}
// -------------------------- Macro to instantiation concrete types
// --------------------------------
#define INSTANTIATE(TYPE) \
template MANTID_KERNEL_DLL Statistics \
getStatistics<TYPE>(const vector<TYPE> &, const unsigned int); \
template MANTID_KERNEL_DLL std::vector<double> getZscore<TYPE>( \
template MANTID_KERNEL_DLL std::vector<double> getModifiedZscore<TYPE>( \
const vector<TYPE> &, const bool); \
template MANTID_KERNEL_DLL std::vector<double> getMomentsAboutOrigin<TYPE>( \
const std::vector<TYPE> &x, const std::vector<TYPE> &y, \
const int maxMoment); \
template MANTID_KERNEL_DLL std::vector<double> getMomentsAboutMean<TYPE>( \
const std::vector<TYPE> &x, const std::vector<TYPE> &y, \
const int maxMoment);
// --------------------------- Concrete instantiations
// ---------------------------------------------
INSTANTIATE(float)
INSTANTIATE(double)
INSTANTIATE(int)
INSTANTIATE(long)
INSTANTIATE(long long)
INSTANTIATE(unsigned int)
INSTANTIATE(unsigned long)
INSTANTIATE(unsigned long long)
Peterson, Peter
committed
} // namespace Mantid