"Framework/Algorithms/test/ConjoinWorkspacesTest.h" did not exist on "f4172a00266c7e6f6b4168ac870760afa528a31b"
Newer
Older
.. _FitFunctionsInPython:
Fit Functions In Python
=======================
Introduction
------------
Mantid enables Fit function objects to be produced in python. For example
.. code:: python
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
will make ``g`` into a Gaussian function with default values and
.. code:: python
g = Gaussian(Height=1, Sigma=0.1)
will make ``g`` into a Gaussian function with ``Height`` set to 1, ``Sigma`` set to 0.1 and ``PeakCentre`` set to default value.
One can also make function with attributes such as
.. code:: python
p = Polynomial(n=3, A0=1, A1=2, A2=4, A3=3)
One can get and set function parameters and attributes, by array operations, for example:
.. code:: python
gSigma = g["Sigma"]
g["Height"] = 1.5
One can also get and set function parameters and attributes, by dot operations, for example:
.. code:: python
gSigma = g.Sigma
g.Height = 1.5
Composite Functions
-------------------
Composite functions can be created by means of the plus operation and
individual functions can be accessed by array index operations.
For example:
.. code:: python
spectrum = LinearBackground() + Gaussian(PeakCentre=1) + Gaussian(PeakCentre=2)
peak1 = spectrum[1]
peak1['Sigma'] = 0.123
spectrum[2] = Lorentzian(PeakCentre=2)
which sets ``Sigma`` of the second function (first Gaussian) to 0.123 and changes the third function to a Lorentzian.
Similarly product functions can be constructed using the multiplication operator.
.. code:: python
p = ExpDecay() * Gaussian(Height=1,Sigma=0.2)
One can get and set the parameters of a composite function, by array operations,
but not by dot operations because the parameter name already contains a dot, for example:
.. code:: python
f1Sigma = spectrum["f1.Sigma"]
spectrum["f1.Height"] = 1.5
One can add a function by the ``+-`` operator or remove be the ``del`` function.
.. code:: python
spectrum += Lorentzian(PeakCentre=3)
del spectrum[1]
Also available is the ``len`` function and iteration over the member functions:
.. code:: python
n_peaks = len(spectrum)
for func in spectrum:
print(func)
The plus and times operators are associative and
so may not preserve a composite function within a composite function as such,
but replace it with a list of its member functions.
Instead you may use:
.. code:: python
spectrum = CompositeFunctionWrapper(LinearBackground(), Gaussian(PeakCentre=1), Gaussian(PeakCentre=2))
P = ProductFunctionWrapper(ExpDecay(), Gaussian(Height=1,Sigma=0.2))
Multi-Domain Functions
----------------------
Multi-Domain functions can be constructed like this:
.. code:: python
md_fun = MultiDomainFunction(Gaussian(PeakCentre=1, Sigma=0.1), Gaussian(PeakCentre=1, Sigma=0.2), ..., global=['Height'])
Setting Ties
------------
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
The parameters of functions can be tied or fixed like this:
.. code:: python
func1.tie(A0=2.0)
func2.tie({'f1.A2': '2*f0.A1', 'f2.A2': '3*f0.A1 + 1'})
func3.fix('A0')
func4.fix('f2.A2')
Both fixes and ties can be removed by ``untie``:
.. code:: python
func.untie('f3.Sigma')
To tie all parameters of the same local name in a composite function, one can use ``TieAll``:
.. code:: python
func.tieAll('Sigma')
All members of the composite function must have this parameter (in this case ``Sigma``).
Similarly with fixing:
.. code:: python
spectrum1.fixAll('FWHM')
Also parameters of a function can be fixed with ``fixAllParameters`` and unfixed with ``untieAllParameters``.
.. code:: python
c.fixAllParameters()
...
c.untieAllParameters()
-------------------
One can set and remove constraints as follows:
.. code:: python
g.constrain("Sigma < 2.0, Height > 7.0")
...
g.unconstrain("Sigma")
g.unconstrain("Height")
comp.constrain("f1.Sigma < 2, f0.Height > 7")
...
comp.unconstrain("f1.Sigma")
comp.unconstrain("f0.Height")
One can all constrain a given parameter in all members of a composite function that have this parameter
and also remove such constraints.
.. code:: python
comp.constrainAll("Sigma < 1.8")
...
comp.unconstrainAll("Sigma")
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
Evaluation
----------
One can evaluate functions:
.. code:: python
p = Polynomial(n=2, A0=0, A1=0.5, A2=0.5)
print p(1) # expect 1.0
print p(2) # expect 3.0
print p(3) # expect 6.0
print p([0,1,2,3]) # expect [ 0. 1. 3. 6.]
ws = CreateWorkspace(DataX=[0,1,2,3,4,5,6,7], DataY=[5,5,5,5,5,5,5])
print p(ws).readY(1) # expect [ 0.375 1.875 4.375 7.875 12.375 17.875 24.375]
One can use numpy arrays:
.. code:: python
import numpy as np
a = np.array([[0, 1,], [2, 3]])
p = Polynomial(n=4, A0=1, A1=1, A2=1, A3=1, A4=1)
print p(a)
# expect [[ 1. 5.]
# [ 31. 121.]]
Also one can put parameters into the function when evaluating.
.. code:: python
p = Polynomial(n=2)
print p([0,1,2,3], 0.0, 0.5, 0.5) #expect [ 0. 1. 3. 6.]
This enables one to fit the functions with ``scipy.optimize.curve_fit``.
Plotting
--------
Functions may be plotted by calling the plot method of the function.
This method can be called in any of the following manners:
.. code:: python
f.plot(xValues=[0,2,2.5,3,5]) # for these x-values
f.plot(workpace=ws) # for the x-values of workspace ws
f.plot(workspace=ws, workspaceIndex=i) # for x-values of workspace index i of ws
f.plot(startX=xmin, endX=xmax) # for 20 x-values between xmin and xmax
f.plot(startX=xmin, endX=xmax, nSteps=10) # for 10 x-values between xmin and xmax
f.plot(workspace=ws, startX=xmin, endX=xmax) # for x-values of ws between xmin & xmax
Owing to the way workspaces are named in python, only one plot can be shown at a time.
.. categories:: Concepts