Newer
Older
#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>
#include <sstream>
#include <cmath>
#include <complex>
#include <vector>
#include "MantidKernel/System.h"
#include "MantidKernel/Exception.h"
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
template<typename T>
std::ostream&
Geometry::operator<<(std::ostream& of,const Geometry::Matrix<T>& A)
/*!
External Friend :: outputs point to a stream
\param A :: Matrix to write out
\param of :: output stream
\returns The output stream (of)
*/
{
of<<std::endl;
A.write(of,5);
return of;
}
namespace Geometry
{
template<typename T>
Matrix<T>::Matrix(const int nrow,const int ncol)
: nx(0),ny(0),V(0)
/*!
Constructor with pre-set sizes. Matrix is zeroed
\param nrow :: number of rows
\param ncol :: number of columns
*/
{
// Note:: nx,ny zeroed so setMem always works
setMem(nrow,ncol);
zeroMatrix();
}
template<typename T>
Matrix<T>::Matrix(const std::vector<T>& A,const std::vector<T>& B)
: nx(0),ny(0),V(0)
/*!
Constructor to take two vectors and multiply them to
construct a matrix. (assuming that we have columns x row
vector.
\param A :: Column vector to multiply
\param B :: Row vector to multiply
*/
{
// Note:: nx,ny zeroed so setMem always works
setMem(A.size(),B.size());
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
V[i][j]=A[i]*B[j];
}
template<typename T>
Matrix<T>::Matrix(const Matrix<T>& A)
: nx(0),ny(0),V(0)
/*!
Simple copy constructor
\param A :: Object to copy
*/
{
// Note:: nx,ny zeroed so setMem always works
setMem(A.nx,A.ny);
if (nx*ny)
{
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
V[i][j]=A.V[i][j];
}
}
template<typename T>
Matrix<T>&
Matrix<T>::operator=(const Matrix<T>& A)
/*!
Simple assignment operator
\param A :: Object to copy
*/
{
if (&A!=this)
{
setMem(A.nx,A.ny);
if (nx*ny)
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
V[i][j]=A.V[i][j];
}
return *this;
}
template<typename T>
Matrix<T>::~Matrix()
/*!
Delete operator :: removes memory for
matrix
*/
{
deleteMem();
}
template<typename T>
Matrix<T>&
Matrix<T>::operator+=(const Matrix<T>& A)
/*!
Matrix addition THIS + A
If the size is different then 0 is added where appropiate
Matrix A is not expanded.
\param A :: Matrix to add
\returns Matrix(this + A)
*/
{
const int Xpt((nx>A.nx) ? A.nx : nx);
const int Ypt((ny>A.ny) ? A.ny : ny);
for(int i=0;i<Xpt;i++)
for(int j=0;j<Ypt;j++)
V[i][j]+=A.V[i][j];
return *this;
}
template<typename T>
Matrix<T>&
Matrix<T>::operator-=(const Matrix<T>& A)
/*!
Matrix subtractoin THIS - A
If the size is different then 0 is added where appropiate
Matrix A is not expanded.
\param A :: Matrix to add
\returns Ma
*/
{
const int Xpt((nx>A.nx) ? A.nx : nx);
const int Ypt((ny>A.ny) ? A.ny : ny);
for(int i=0;i<Xpt;i++)
for(int j=0;j<Ypt;j++)
V[i][j]-=A.V[i][j];
return *this;
}
template<typename T>
Matrix<T>
Matrix<T>::operator+(const Matrix<T>& A)
/*!
Matrix addition THIS + A
If the size is different then 0 is added where appropiate
Matrix A is not expanded.
\param A :: Matrix to add
\returns Matrix(this + A)
*/
{
Matrix<T> X(*this);
return X+=A;
}
template<typename T>
Matrix<T>
Matrix<T>::operator-(const Matrix<T>& A)
/*!
Matrix subtraction THIS - A
If the size is different then 0 is subtracted where
appropiate. This matrix determines the size
\param A :: Matrix to add
\returns Matrix(this + A)
*/
{
Matrix<T> X(*this);
return X-=A;
}
template<typename T>
Vec3D
Matrix<T>::operator*(const Vec3D& A) const
{
throw Kernel::Exception::NotImplementedError("Operator Mantrix * Vec3D is not implmented");
return A;
}
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
template<typename T>
Matrix<T>
Matrix<T>::operator*(const Matrix<T>& A) const
/*!
Matrix multiplication THIS * A
\param A :: Matrix to multiply by (this->row must == A->columns)
\throw MisMatch<int> if there is a size mismatch.
\return Matrix(This * A)
*/
{
if (ny!=A.nx)
throw ColErr::MisMatch<int>(ny,A.nx,"Matrix::operator*(Matrix)");
Matrix<T> X(nx,A.ny);
for(int i=0;i<nx;i++)
for(int j=0;j<A.ny;j++)
for(int kk=0;kk<ny;kk++)
X.V[i][j]+=V[i][kk]*A.V[kk][j];
return X;
}
template<typename T>
std::vector<T>
Matrix<T>::operator*(const std::vector<T>& Vec) const
/*!
Matrix multiplication THIS * Vec to produce a vec
\param Vec :: size of vector > this->nrows
\throw MisMatch<int> if there is a size mismatch.
\return Matrix(This * Vec)
*/
{
std::vector<T> Out;
if (ny>static_cast<int>(Vec.size()))
throw ColErr::MisMatch<int>(ny,Vec.size(),"Matrix::operator*(Vec)");
Out.resize(nx);
for(int i=0;i<nx;i++)
{
Out[i]=0;
for(int j=0;j<ny;j++)
Out[i]+=V[i][j]*Vec[j];
}
return Out;
}
template<typename T>
Matrix<T>
Matrix<T>::operator*(const T& Value) const
/*!
Matrix multiplication THIS * Value
\param Value :: Scalar to multiply by
\return V * (this)
*/
{
Matrix<T> X(*this);
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
X.V[i][j]*=Value;
return X;
}
template<typename T>
Matrix<T>&
Matrix<T>::operator*=(const Matrix<T>& A)
/*!
Matrix multiplication THIS *= A
Note that we call operator* to avoid the problem
of changing matrix size.
\param A :: Matrix to multiply by (this->row must == A->columns)
\return This *= A
*/
{
if (ny!=A.nx)
throw ColErr::MisMatch<int>(ny,A.nx,"Matrix*=(Matrix<T>)");
// This construct to avoid the problem of changing size
*this = this->operator*(A);
return *this;
}
template<typename T>
Matrix<T>&
Matrix<T>::operator*=(const T& Value)
/*!
Matrix multiplication THIS * Value
\param Value :: Scalar to multiply matrix by
\return *this
*/
{
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
V[i][j]*=Value;
return *this;
}
template<typename T>
Matrix<T>&
Matrix<T>::operator/=(const T& Value)
/*!
Matrix divishio THIS / Value
\param Value :: Scalar to multiply matrix by
\return *this
*/
{
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
V[i][j]/=Value;
return *this;
}
template<typename T>
int
Matrix<T>::operator==(const Matrix<T>& A) const
/*!
Element by element comparison within tolerance.
Tolerance means that the value must be > tolerance
and less than (diff/max)>tolerance
Always returns 0 if the Matrix have different sizes
\param A :: matrix to check.
\return 1 on success
*/
{
const double Tolerance(1e-8);
if (&A!=this) // this == A == always true
{
if(A.nx!=nx || A.ny!=ny)
return 0;
double maxS(0.0);
double maxDiff(0.0); // max di
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
{
const T diff=(V[i][j]-A.V[i][j]);
if (fabs(diff)>maxDiff)
maxDiff=fabs(diff);
if (fabs(V[i][j])>maxS)
maxS=fabs(V[i][j]);
}
if (maxDiff<Tolerance)
return 1;
if (maxS>1.0 && (maxDiff/maxS)<Tolerance)
return 1;
return 0;
}
//this == this is true
return 1;
}
template<typename T>
void
Matrix<T>::deleteMem()
/*!
Deletes the memory held in matrix
*/
{
if (V)
{
delete [] *V;
delete [] V;
V=0;
}
nx=0;
ny=0;
return;
}
template<typename T>
void
Matrix<T>::setMem(const int a,const int b)
/*!
Sets the memory held in matrix
\param a :: number of rows
\param b :: number of columns
*/
{
if (a==nx && b==ny)
return;
deleteMem();
if (a<=0 || b<=0)
return;
nx=a;
ny=b;
if (nx*ny)
{
T* tmpX=new T[nx*ny];
V=new T*[nx];
for (int i=0;i<nx;i++)
V[i]=tmpX + (i*ny);
}
return;
}
template<typename T>
void
Matrix<T>::swapRows(const int RowI,const int RowJ)
/*!
Swap rows I and J
\param RowI :: row I to swap
\param RowJ :: row J to swap
*/
{
if (nx*ny && RowI<nx && RowJ<nx &&
RowI!=RowJ)
{
for(int k=0;k<ny;k++)
{
T tmp=V[RowI][k];
V[RowI][k]=V[RowJ][k];
V[RowJ][k]=tmp;
}
}
return;
}
template<typename T>
void
Matrix<T>::swapCols(const int colI,const int colJ)
/*!
Swap columns I and J
\param colI :: col I to swap
\param colJ :: col J to swap
*/
{
if (nx*ny && colI<ny && colJ<ny &&
colI!=colJ)
{
for(int k=0;k<nx;k++)
{
T tmp=V[k][colI];
V[k][colI]=V[k][colJ];
V[k][colJ]=tmp;
}
}
return;
}
template<typename T>
void
Matrix<T>::zeroMatrix()
/*!
Zeros all elements of the matrix
*/
{
if (nx*ny)
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
V[i][j]=static_cast<T>(0);
return;
}
template<typename T>
void
Matrix<T>::identityMatrix()
/*!
Makes the matrix an idenity matrix.
Zeros all the terms outside of the square
*/
{
if (nx*ny)
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
V[i][j]=(j==i) ? 1 : 0;
return;
}
template<typename T>
void
Matrix<T>::rotate(const double tau,const double s,const int i,const int j,
const int k,const int m)
/*!
Applies a rotation to a particular point of tan(theta)=tau
\param tau :: tan(theta)
\param s :: sin(theta)
\param i :: first index (xpos)
\param j :: first index (ypos)
\param k :: second index (xpos)
\param m :: second index (ypos)
*/
{
const T gg=V[i][j];
const T hh=V[k][m];
V[i][j]=static_cast<T>(gg-s*(hh+gg*tau));
V[k][m]=static_cast<T>(hh+s*(gg-hh*tau));
return;
}
template<typename T>
Matrix<T>
Matrix<T>::fDiagonal(const std::vector<T>& Dvec) const
/*!
Construct a matrix based on
A * This, where A is made into a diagonal
matrix.
\param Dvec :: diagonal matrix (just centre points)
\returns a matrix multiplication
*/
{
// Note:: nx,ny zeroed so setMem always works
if (static_cast<int>(Dvec.size())!=nx)
{
std::ostringstream cx;
cx<<"Matrix::fDiagonal Size: "<<Dvec.size()<<" "<<nx<<" "<<ny;
throw ColErr::ExBase(0,cx.str());
}
Matrix<T> X(Dvec.size(),ny);
for(int i=0;i<static_cast<int>(Dvec.size());i++)
for(int j=0;j<ny;j++)
X.V[i][j]=Dvec[i]*V[i][j];
return X;
}
template<typename T>
Matrix<T>
Matrix<T>::bDiagonal(const std::vector<T>& Dvec) const
/*!
Construct a matrix based on
This * A, where A is made into a diagonal
matrix.
\param Dvec :: diagonal matrix (just centre points)
*/
{
// Note:: nx,ny zeroed so setMem always works
if (static_cast<int>(Dvec.size())!=ny)
{
std::ostringstream cx;
cx<<"Error Matrix::bDiaognal size:: "<<Dvec.size()
<<" "<<nx<<" "<<ny;
throw ColErr::ExBase(0,cx.str());
}
Matrix<T> X(nx,Dvec.size());
for(int i=0;i<nx;i++)
for(int j=0;j<static_cast<int>(Dvec.size());j++)
X.V[i][j]=Dvec[j]*V[i][j];
return X;
}
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
template<typename T>
Matrix<T>
Matrix<T>::Tprime() const
/*!
Transpose the matrix :
Has transpose for a square matrix case.
\return M^T
*/
{
if (!nx*ny)
return *this;
if (nx==ny) // inplace transpose
{
Matrix<T> MT(*this);
MT.Transpose();
return MT;
}
// irregular matrix
Matrix<T> MT(ny,nx);
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
MT.V[j][i]=V[i][j];
return MT;
}
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
template<typename T>
Matrix<T>&
Matrix<T>::Transpose()
/*!
Transpose the matrix :
Has a inplace transpose for a square matrix case.
*/
{
if (!nx*ny)
return *this;
if (nx==ny) // inplace transpose
{
for(int i=0;i<nx;i++)
for(int j=i+1;j<ny;j++)
{
T tmp=V[i][j];
V[i][j]=V[j][i];
V[j][i]=tmp;
}
return *this;
}
// irregular matrix
// get some memory
T* tmpX=new T[ny*nx];
T** Vt=new T*[ny];
for (int i=0;i<ny;i++)
Vt[i]=tmpX + (i*nx);
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
Vt[j][i]=V[i][j];
// remove old memory
const int tx=nx;
const int ty=ny;
deleteMem(); // resets nx,ny
// replace memory
V=Vt;
nx=ty;
ny=tx;
return *this;
}
template<>
int
Matrix<int>::GaussJordan(Geometry::Matrix<int>&)
/*!
Not valid for Integer
*/
{
return 0;
}
template<typename T>
int
Matrix<T>::GaussJordan(Matrix<T>& B)
/*!
Invert this Matrix and solve the
form such that if A.x=B then solve to generate x.
This requires that B is B[A.nx][Any]
The result is placed back in B
*/
{
// check for input errors
if (nx!=ny || B.nx!=nx)
return -1;
// pivoted rows
std::vector<int> pivoted(nx);
fill(pivoted.begin(),pivoted.end(),0);
std::vector<int> indxcol(nx); // Colunm index
std::vector<int> indxrow(nx); // row index
int irow(0),icol(0);
for(int i=0;i<nx;i++)
{
// Get Biggest non-pivoted item
double bigItem=0.0; // get point to pivot over
for(int j=0;j<nx;j++)
{
if (pivoted[j]!= 1) //check only non-pivots
{
for(int k=0;k<nx;k++)
if (!pivoted[k])
{
if (fabs(V[j][k]) >=bigItem)
{
bigItem=fabs(V[j][k]);
irow=j;
icol=k;
}
}
}
else if (pivoted[j]>1)
throw ColErr::ExBase(j,"Error doing G-J elem on a singular matrix");
}
pivoted[icol]++;
// Swap in row/col to make a diagonal item
if (irow != icol)
{
swapRows(irow,icol);
B.swapRows(irow,icol);
}
indxrow[i]=irow;
indxcol[i]=icol;
if (V[icol][icol] == 0.0)
{
std::cerr<<"Error doing G-J elem on a singular matrix"<<std::endl;
return 1;
}
const double pivDiv= 1.0/V[icol][icol];
V[icol][icol]=1;
for(int l=0;l<nx;l++)
V[icol][l] *= pivDiv;
for(int l=0;l<B.ny;l++)
B.V[icol][l] *=pivDiv;
for(int ll=0;ll<nx;ll++)
if (ll!=icol)
{
const double div_num=V[ll][icol];
V[ll][icol]=0.0;
for(int l=0;l<nx;l++)
V[ll][l] -= V[icol][l]*div_num;
for(int l=0;l<B.ny;l++)
B.V[ll][l] -= B.V[icol][l]*div_num;
}
}
// Un-roll interchanges
for(int l=nx-1;l>=0;l--)
if (indxrow[l] !=indxcol[l])
swapCols(indxrow[l],indxcol[l]);
return 0;
}
template<typename T>
std::vector<T>
Matrix<T>::Faddeev(Matrix<T>& InvOut)
/*!
Return the polynominal for the matrix
and the inverse.
The polybnomial is such that
\f[
det(sI-A)=s^n+a_{n-1}s^{n-1} \dots +a_0
\f]
\param InvOut ::: output
*/
{
if (nx!=ny)
throw ColErr::MisMatch<int>(nx,ny,"Matrix::Faddev(Matrix)");
Matrix<T>& A(*this);
Matrix<T> B(A);
Matrix<T> Ident(nx,ny);
T tVal=B.Trace(); // Trace of the matrix
std::vector<T> Poly;
Poly.push_back(1);
Poly.push_back(tVal);
for(int i=0;i<nx-2;i++) // skip first (just copy) and last (to keep B-1)
{
B=A*B - Ident*tVal;
tVal=B.Trace();
Poly.push_back(tVal/(i+1));
}
// Last on need to keep B;
InvOut=B;
B=A*B - Ident*tVal;
tVal=B.Trace();
Poly.push_back(tVal/nx);
InvOut-= Ident* (-Poly[nx-1]);
InvOut/= Poly.back();
return Poly;
}
template<typename T>
T
Matrix<T>::Invert()
/*!
If the Matrix is square then invert the matrix
using LU decomposition
\returns Determinate (0 if the matrix is singular)
*/
{
if (nx!=ny && nx<1)
return 0;
int* indx=new int[nx]; // Set in lubcmp
double* col=new double[nx];
int d;
Matrix<T> Lcomp(*this);
Lcomp.lubcmp(indx,d);
double det=static_cast<double>(d);
for(int j=0;j<nx;j++)
det *= Lcomp.V[j][j];
for(int j=0;j<nx;j++)
{
for(int i=0;i<nx;i++)
col[i]=0.0;
col[j]=1.0;
Lcomp.lubksb(indx,col);
for(int i=0;i<nx;i++)
V[i][j]=static_cast<T>(col[i]);
}
delete [] indx;
delete [] col;
return static_cast<T>(det);
}
template<typename T>
T
Matrix<T>::determinant() const
/*!
Calculate the derminant of the matrix
\return Determinant of matrix.
*/
{
if (nx!=ny)
throw ColErr::MisMatch<int>(nx,ny,
"Determinate error :: Matrix is not NxN");
Matrix<T> Mt(*this); //temp copy
T D=Mt.factor();
return D;
}
template<typename T>
T
Matrix<T>::factor()
/*!
Gauss jordan diagonal factorisation
The diagonal is left as the values,
the lower part is zero.
*/
{
if (nx!=ny || nx<1)
throw ColErr::ExBase(0,"Matirx::fractor Matrix is not NxN");
double Pmax;
double deter=1.0;
for(int i=0;i<nx-1;i++) //loop over each row
{
int jmax=i;
Pmax=fabs(V[i][i]);
for(int j=i+1;j<nx;j++) // find max in Row i
{
if (fabs(V[i][j])>Pmax)
{
Pmax=fabs(V[i][j]);
jmax=j;
}
}
if (Pmax<1e-8) // maxtrix signular
{
std::cerr<<"Matrix Singlular"<<std::endl;
return 0;
}
// Swap Columns
if (i!=jmax)
{
swapCols(i,jmax);
deter*=-1; //change sign.
}
// zero all rows below diagonal
Pmax=V[i][i];
deter*=Pmax;
for(int k=i+1;k<nx;k++) // row index
{
const double scale=V[k][i]/Pmax;
V[k][i]=static_cast<T>(0);
for(int q=i+1;q<nx;q++) //column index
V[k][q]-=static_cast<T>(scale*V[i][q]);
}
}
deter*=V[nx-1][nx-1];
return static_cast<T>(deter);
}
template<typename T>
void
Matrix<T>::normVert()
/*!
Normalise EigenVectors
Assumes that they have already been calculated
*/
{
for(int i=0;i<nx;i++)
{
T sum=0;
for(int j=0;j<ny;j++)
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
for(int j=0;j<ny;j++)
V[i][j]/=sum;
}
return;
}
template<typename T>
T
Matrix<T>::compSum() const
/*!
Add up each component sums for the matrix
\return \f$ \sum_i \sum_j V_{ij}^2 \f$
*/
{
T sum(0);
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
sum+=V[i][j]*V[i][j];
return sum;
}
template<typename T>
void
Matrix<T>::lubcmp(int* rowperm,int& interchange)
/*!
Find biggest pivit and move to top row. Then
divide by pivit.
\param interchange :: odd/even nterchange (+/-1)
\param rowperm :: row permuations
*/
{
int imax(0),j,k;
double sum,dum,big,temp;
if (nx!=ny || nx<2)
{
std::cerr<<"Error with lubcmp"<<std::endl;
return;
}
double *vv=new double[nx];
interchange=1;
for(int i=0;i<nx;i++)
{
big=0.0;
for(j=0;j<nx;j++)
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
big=temp;
if (big == 0.0)
return;
vv[i]=1.0/big;
}
for (j=0;j<nx;j++)
{
for(int i=0;i<j;i++)
{
sum=V[i][j];
for(k=0;k<i;k++)
sum-= V[i][k] * V[k][j];
V[i][j]=static_cast<T>(sum);
}
big=0.0;
imax=j;
for (int i=j;i<nx;i++)
{
sum=V[i][j];
for (k=0;k<j;k++)
sum -= V[i][k] * V[k][j];
V[i][j]=static_cast<T>(sum);
if ( (dum=vv[i] * fabs(sum)) >=big)
{
big=dum;
imax=i;
}
}
if (j!=imax)
{
for(k=0;k<nx;k++)
{ //Interchange rows
dum=V[imax][k];
V[imax][k]=V[j][k];
V[j][k]=static_cast<T>(dum);
}
interchange *= -1;
vv[imax]=static_cast<T>(vv[j]);
}
rowperm[j]=imax;
if (V[j][j] == 0.0)
V[j][j]=static_cast<T>(1e-14);
if (j != nx-1)
{
dum=1.0/(V[j][j]);
for(int i=j+1;i<nx;i++)
V[i][j] *= static_cast<T>(dum);
}
}
delete [] vv;
return;
}
template<typename T>
void
Matrix<T>::lubksb(const int* rowperm,double* b)
/*!
Impliments a separation of the Matrix
into a triangluar matrix
*/
{
int ii= -1;
for(int i=0;i<nx;i++)
{
int ip=rowperm[i];
double sum=b[ip];
b[ip]=b[i];
if (ii != -1)
for (int j=ii;j<i;j++)
sum -= V[i][j] * b[j];
else if (sum)
ii=i;
b[i]=sum;
}
for (int i=nx-1;i>=0;i--)
{
double sum=static_cast<T>(b[i]);
for (int j=i+1;j<nx;j++)
sum -= V[i][j] * b[j];