Newer
Older
#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>
#include <sstream>
#include <cmath>
#include <complex>
#include <vector>
#include "MantidKernel/System.h"
#include "MantidKernel/Exception.h"
#include "MantidGeometry/Matrix.h"
/*!
External Friend :: outputs point to a stream
\param of :: output stream
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
\returns The output stream (of)
*/
{
of<<std::endl;
A.write(of,5);
return of;
}
template<typename T>
Matrix<T>::Matrix(const int nrow,const int ncol)
: nx(0),ny(0),V(0)
/*!
Constructor with pre-set sizes. Matrix is zeroed
\param nrow :: number of rows
\param ncol :: number of columns
*/
{
// Note:: nx,ny zeroed so setMem always works
setMem(nrow,ncol);
zeroMatrix();
}
template<typename T>
Matrix<T>::Matrix(const std::vector<T>& A,const std::vector<T>& B)
: nx(0),ny(0),V(0)
/*!
Constructor to take two vectors and multiply them to
construct a matrix. (assuming that we have columns x row
vector.
\param A :: Column vector to multiply
\param B :: Row vector to multiply
*/
{
// Note:: nx,ny zeroed so setMem always works
setMem(A.size(),B.size());
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
V[i][j]=A[i]*B[j];
}
template<typename T>
Matrix<T>::Matrix(const Matrix<T>& A)
: nx(0),ny(0),V(0)
/*!
Simple copy constructor
\param A :: Object to copy
*/
{
// Note:: nx,ny zeroed so setMem always works
setMem(A.nx,A.ny);
if (nx*ny)
{
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
V[i][j]=A.V[i][j];
}
}
template<typename T>
Matrix<T>&
Matrix<T>::operator=(const Matrix<T>& A)
/*!
Simple assignment operator
\param A :: Object to copy
*/
{
if (&A!=this)
{
setMem(A.nx,A.ny);
if (nx*ny)
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
V[i][j]=A.V[i][j];
}
return *this;
}
template<typename T>
Matrix<T>::~Matrix()
/*!
Delete operator :: removes memory for
matrix
*/
{
deleteMem();
}
template<typename T>
Matrix<T>&
Matrix<T>::operator+=(const Matrix<T>& A)
/*!
Matrix addition THIS + A
If the size is different then 0 is added where appropiate
Matrix A is not expanded.
\param A :: Matrix to add
\returns Matrix(this + A)
*/
{
const int Xpt((nx>A.nx) ? A.nx : nx);
const int Ypt((ny>A.ny) ? A.ny : ny);
for(int i=0;i<Xpt;i++)
for(int j=0;j<Ypt;j++)
V[i][j]+=A.V[i][j];
return *this;
}
template<typename T>
Matrix<T>&
Matrix<T>::operator-=(const Matrix<T>& A)
/*!
Matrix subtractoin THIS - A
If the size is different then 0 is added where appropiate
Matrix A is not expanded.
\param A :: Matrix to add
\returns Ma
*/
{
const int Xpt((nx>A.nx) ? A.nx : nx);
const int Ypt((ny>A.ny) ? A.ny : ny);
for(int i=0;i<Xpt;i++)
for(int j=0;j<Ypt;j++)
V[i][j]-=A.V[i][j];
return *this;
}
template<typename T>
Matrix<T>
Matrix<T>::operator+(const Matrix<T>& A)
/*!
Matrix addition THIS + A
If the size is different then 0 is added where appropiate
Matrix A is not expanded.
\param A :: Matrix to add
\returns Matrix(this + A)
*/
{
Matrix<T> X(*this);
return X+=A;
}
template<typename T>
Matrix<T>
Matrix<T>::operator-(const Matrix<T>& A)
/*!
Matrix subtraction THIS - A
If the size is different then 0 is subtracted where
appropiate. This matrix determines the size
\param A :: Matrix to add
\returns Matrix(this + A)
*/
{
Matrix<T> X(*this);
return X-=A;
}
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
template<typename T>
Matrix<T>
Matrix<T>::operator*(const Matrix<T>& A) const
/*!
Matrix multiplication THIS * A
\param A :: Matrix to multiply by (this->row must == A->columns)
\throw MisMatch<int> if there is a size mismatch.
\return Matrix(This * A)
*/
{
if (ny!=A.nx)
throw ColErr::MisMatch<int>(ny,A.nx,"Matrix::operator*(Matrix)");
Matrix<T> X(nx,A.ny);
for(int i=0;i<nx;i++)
for(int j=0;j<A.ny;j++)
for(int kk=0;kk<ny;kk++)
X.V[i][j]+=V[i][kk]*A.V[kk][j];
return X;
}
template<typename T>
std::vector<T>
Matrix<T>::operator*(const std::vector<T>& Vec) const
/*!
Matrix multiplication THIS * Vec to produce a vec
\param Vec :: size of vector > this->nrows
\throw MisMatch<int> if there is a size mismatch.
\return Matrix(This * Vec)
*/
{
std::vector<T> Out;
if (ny>static_cast<int>(Vec.size()))
throw ColErr::MisMatch<int>(ny,Vec.size(),"Matrix::operator*(Vec)");
Out.resize(nx);
for(int i=0;i<nx;i++)
{
Out[i]=0;
for(int j=0;j<ny;j++)
Out[i]+=V[i][j]*Vec[j];
}
return Out;
}
template<typename T>
Vec3D
Matrix<T>::operator*(const Vec3D& Vx) const
/*!
Matrix multiplication THIS * V
\param Vx :: Colunm vector to multiply by
\throw MisMatch<int> if there is a size mismatch.
\return Matrix(This * A)
*/
{
if (ny!=3)
throw ColErr::MisMatch<int>(ny,3,"Matrix::operator*(Vec3D)");
Vec3D X;
for(int i=0;i<nx;i++)
for(int kk=0;kk<ny;kk++)
X[i]+=V[i][kk]*Vx[kk];
return X;
}
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
template<typename T>
Matrix<T>
Matrix<T>::operator*(const T& Value) const
/*!
Matrix multiplication THIS * Value
\param Value :: Scalar to multiply by
\return V * (this)
*/
{
Matrix<T> X(*this);
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
X.V[i][j]*=Value;
return X;
}
template<typename T>
Matrix<T>&
Matrix<T>::operator*=(const Matrix<T>& A)
/*!
Matrix multiplication THIS *= A
Note that we call operator* to avoid the problem
of changing matrix size.
\param A :: Matrix to multiply by (this->row must == A->columns)
\return This *= A
*/
{
if (ny!=A.nx)
throw ColErr::MisMatch<int>(ny,A.nx,"Matrix*=(Matrix<T>)");
// This construct to avoid the problem of changing size
*this = this->operator*(A);
return *this;
}
template<typename T>
Matrix<T>&
Matrix<T>::operator*=(const T& Value)
/*!
Matrix multiplication THIS * Value
\param Value :: Scalar to multiply matrix by
\return *this
*/
{
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
V[i][j]*=Value;
return *this;
}
template<typename T>
Matrix<T>&
Matrix<T>::operator/=(const T& Value)
/*!
Matrix divishio THIS / Value
\param Value :: Scalar to multiply matrix by
\return *this
*/
{
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
V[i][j]/=Value;
return *this;
}
/*!
Element by Element comparison
\param A :: Matrix to check
\return true :: on succees
\return false :: failure
*/
/*!
Element by element comparison within tolerance.
Tolerance means that the value must be > tolerance
and less than (diff/max)>tolerance
Always returns 0 if the Matrix have different sizes
\param A :: matrix to check.
\return true on success
*/
{
const double Tolerance(1e-8);
if (&A!=this) // this == A == always true
double maxS(0.0);
double maxDiff(0.0); // max di
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
{
const T diff=(V[i][j]-A.V[i][j]);
if (fabs(diff)>maxDiff)
maxDiff=fabs(diff);
if (fabs(V[i][j])>maxS)
maxS=fabs(V[i][j]);
}
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
}
template<typename T>
void
Matrix<T>::deleteMem()
/*!
Deletes the memory held in matrix
*/
{
if (V)
{
delete [] *V;
delete [] V;
V=0;
}
nx=0;
ny=0;
return;
}
template<typename T>
void
Matrix<T>::setMem(const int a,const int b)
/*!
Sets the memory held in matrix
\param a :: number of rows
\param b :: number of columns
*/
{
if (a==nx && b==ny)
return;
deleteMem();
if (a<=0 || b<=0)
return;
nx=a;
ny=b;
if (nx*ny)
{
T* tmpX=new T[nx*ny];
V=new T*[nx];
for (int i=0;i<nx;i++)
V[i]=tmpX + (i*ny);
}
return;
}
template<typename T>
void
Matrix<T>::swapRows(const int RowI,const int RowJ)
/*!
Swap rows I and J
\param RowI :: row I to swap
\param RowJ :: row J to swap
*/
{
if (nx*ny && RowI<nx && RowJ<nx &&
RowI!=RowJ)
{
for(int k=0;k<ny;k++)
{
T tmp=V[RowI][k];
V[RowI][k]=V[RowJ][k];
V[RowJ][k]=tmp;
}
}
return;
}
template<typename T>
void
Matrix<T>::swapCols(const int colI,const int colJ)
/*!
Swap columns I and J
\param colI :: col I to swap
\param colJ :: col J to swap
*/
{
if (nx*ny && colI<ny && colJ<ny &&
colI!=colJ)
{
for(int k=0;k<nx;k++)
{
T tmp=V[k][colI];
V[k][colI]=V[k][colJ];
V[k][colJ]=tmp;
}
}
return;
}
template<typename T>
void
Matrix<T>::zeroMatrix()
/*!
Zeros all elements of the matrix
*/
{
if (nx*ny)
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
V[i][j]=static_cast<T>(0);
return;
}
template<typename T>
void
Matrix<T>::identityMatrix()
/*!
Makes the matrix an idenity matrix.
Zeros all the terms outside of the square
*/
{
if (nx*ny)
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
V[i][j]=(j==i) ? 1 : 0;
return;
}
template<typename T>
void
Matrix<T>::rotate(const double tau,const double s,const int i,const int j,
const int k,const int m)
/*!
Applies a rotation to a particular point of tan(theta)=tau.
Note that you need both sin(theta) and tan(theta) because of
sign preservation.
\param tau :: tan(theta)
\param s :: sin(theta)
\param i :: first index (xpos)
\param j :: first index (ypos)
\param k :: second index (xpos)
\param m :: second index (ypos)
*/
{
const T gg=V[i][j];
const T hh=V[k][m];
V[i][j]=static_cast<T>(gg-s*(hh+gg*tau));
V[k][m]=static_cast<T>(hh+s*(gg-hh*tau));
return;
}
template<typename T>
Matrix<T>
Matrix<T>::fDiagonal(const std::vector<T>& Dvec) const
/*!
Calculate the forward diagonal product.
Construct a matrix based on Dvec * This,
where Dvec is made into a diagonal matrix.
*/
{
// Note:: nx,ny zeroed so setMem always works
if (static_cast<int>(Dvec.size())!=nx)
{
std::ostringstream cx;
cx<<"Matrix::fDiagonal Size: "<<Dvec.size()<<" "<<nx<<" "<<ny;
throw ColErr::ExBase(0,cx.str());
}
Matrix<T> X(Dvec.size(),ny);
for(int i=0;i<static_cast<int>(Dvec.size());i++)
for(int j=0;j<ny;j++)
X.V[i][j]=Dvec[i]*V[i][j];
return X;
}
template<typename T>
Matrix<T>
Matrix<T>::bDiagonal(const std::vector<T>& Dvec) const
/*!
*/
{
// Note:: nx,ny zeroed so setMem always works
if (static_cast<int>(Dvec.size())!=ny)
{
std::ostringstream cx;
cx<<"Error Matrix::bDiaognal size:: "<<Dvec.size()
<<" "<<nx<<" "<<ny;
throw ColErr::ExBase(0,cx.str());
}
Matrix<T> X(nx,Dvec.size());
for(int i=0;i<nx;i++)
for(int j=0;j<static_cast<int>(Dvec.size());j++)
X.V[i][j]=Dvec[j]*V[i][j];
return X;
}
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
template<typename T>
Matrix<T>
Matrix<T>::Tprime() const
/*!
Transpose the matrix :
Has transpose for a square matrix case.
\return M^T
*/
{
if (!nx*ny)
return *this;
if (nx==ny) // inplace transpose
{
Matrix<T> MT(*this);
MT.Transpose();
return MT;
}
// irregular matrix
Matrix<T> MT(ny,nx);
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
MT.V[j][i]=V[i][j];
return MT;
}
template<typename T>
Matrix<T>&
Matrix<T>::Transpose()
/*!
Transpose the matrix :
Has a inplace transpose for a square matrix case.
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
*/
{
if (!nx*ny)
return *this;
if (nx==ny) // inplace transpose
{
for(int i=0;i<nx;i++)
for(int j=i+1;j<ny;j++)
{
T tmp=V[i][j];
V[i][j]=V[j][i];
V[j][i]=tmp;
}
return *this;
}
// irregular matrix
// get some memory
T* tmpX=new T[ny*nx];
T** Vt=new T*[ny];
for (int i=0;i<ny;i++)
Vt[i]=tmpX + (i*nx);
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
Vt[j][i]=V[i][j];
// remove old memory
const int tx=nx;
const int ty=ny;
deleteMem(); // resets nx,ny
// replace memory
V=Vt;
nx=ty;
ny=tx;
return *this;
}
template<>
int
Matrix<int>::GaussJordan(Geometry::Matrix<int>&)
/*!
Not valid for Integer
*/
{
return 0;
}
template<typename T>
int
Matrix<T>::GaussJordan(Matrix<T>& B)
/*!
Invert this Matrix and solve the
form such that if A.x=B then solve to generate x.
This requires that B is B[A.nx][Any]
The result is placed back in B
*/
{
// check for input errors
if (nx!=ny || B.nx!=nx)
return -1;
// pivoted rows
std::vector<int> pivoted(nx);
fill(pivoted.begin(),pivoted.end(),0);
std::vector<int> indxcol(nx); // Colunm index
std::vector<int> indxrow(nx); // row index
int irow(0),icol(0);
for(int i=0;i<nx;i++)
{
// Get Biggest non-pivoted item
double bigItem=0.0; // get point to pivot over
for(int j=0;j<nx;j++)
{
if (pivoted[j]!= 1) //check only non-pivots
{
for(int k=0;k<nx;k++)
if (!pivoted[k])
{
if (fabs(V[j][k]) >=bigItem)
{
bigItem=fabs(V[j][k]);
irow=j;
icol=k;
}
}
}
else if (pivoted[j]>1)
throw ColErr::ExBase(j,"Error doing G-J elem on a singular matrix");
}
pivoted[icol]++;
// Swap in row/col to make a diagonal item
if (irow != icol)
{
swapRows(irow,icol);
B.swapRows(irow,icol);
}
indxrow[i]=irow;
indxcol[i]=icol;
if (V[icol][icol] == 0.0)
{
std::cerr<<"Error doing G-J elem on a singular matrix"<<std::endl;
return 1;
}
const double pivDiv= 1.0/V[icol][icol];
V[icol][icol]=1;
for(int l=0;l<nx;l++)
V[icol][l] *= pivDiv;
for(int l=0;l<B.ny;l++)
B.V[icol][l] *=pivDiv;
for(int ll=0;ll<nx;ll++)
if (ll!=icol)
{
const double div_num=V[ll][icol];
V[ll][icol]=0.0;
for(int l=0;l<nx;l++)
V[ll][l] -= V[icol][l]*div_num;
for(int l=0;l<B.ny;l++)
B.V[ll][l] -= B.V[icol][l]*div_num;
}
}
// Un-roll interchanges
for(int l=nx-1;l>=0;l--)
if (indxrow[l] !=indxcol[l])
swapCols(indxrow[l],indxcol[l]);
return 0;
}
template<typename T>
std::vector<T>
Matrix<T>::Faddeev(Matrix<T>& InvOut)
/*!
Return the polynominal for the matrix
and the inverse.
\f[
det(sI-A)=s^n+a_{n-1}s^{n-1} \dots +a_0
\f]
\param InvOut ::: output
*/
{
if (nx!=ny)
throw ColErr::MisMatch<int>(nx,ny,"Matrix::Faddev(Matrix)");
Matrix<T>& A(*this);
Matrix<T> B(A);
Matrix<T> Ident(nx,ny);
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
T tVal=B.Trace(); // Trace of the matrix
std::vector<T> Poly;
Poly.push_back(1);
Poly.push_back(tVal);
for(int i=0;i<nx-2;i++) // skip first (just copy) and last (to keep B-1)
{
B=A*B - Ident*tVal;
tVal=B.Trace();
Poly.push_back(tVal/(i+1));
}
// Last on need to keep B;
InvOut=B;
B=A*B - Ident*tVal;
tVal=B.Trace();
Poly.push_back(tVal/nx);
InvOut-= Ident* (-Poly[nx-1]);
InvOut/= Poly.back();
return Poly;
}
template<typename T>
T
Matrix<T>::Invert()
/*!
If the Matrix is square then invert the matrix
using LU decomposition
\returns Determinate (0 if the matrix is singular)
*/
{
if (nx!=ny && nx<1)
return 0;
int* indx=new int[nx]; // Set in lubcmp
double* col=new double[nx];
int d;
Matrix<T> Lcomp(*this);
Lcomp.lubcmp(indx,d);
double det=static_cast<double>(d);
for(int j=0;j<nx;j++)
det *= Lcomp.V[j][j];
for(int j=0;j<nx;j++)
{
for(int i=0;i<nx;i++)
col[i]=0.0;
col[j]=1.0;
Lcomp.lubksb(indx,col);
for(int i=0;i<nx;i++)
V[i][j]=static_cast<T>(col[i]);
}
delete [] indx;
delete [] col;
return static_cast<T>(det);
}
template<typename T>
T
Matrix<T>::determinant() const
/*!
Calculate the derminant of the matrix
\return Determinant of matrix.
*/
{
if (nx!=ny)
throw ColErr::MisMatch<int>(nx,ny,
"Determinate error :: Matrix is not NxN");
Matrix<T> Mt(*this); //temp copy
T D=Mt.factor();
return D;
}
template<typename T>
T
Matrix<T>::factor()
/*!
Gauss jordan diagonal factorisation
The diagonal is left as the values,
the lower part is zero.
*/
{
if (nx!=ny || nx<1)
throw ColErr::ExBase(0,"Matirx::fractor Matrix is not NxN");
double Pmax;
double deter=1.0;
for(int i=0;i<nx-1;i++) //loop over each row
{
int jmax=i;
Pmax=fabs(V[i][i]);
for(int j=i+1;j<nx;j++) // find max in Row i
{
if (fabs(V[i][j])>Pmax)
{
Pmax=fabs(V[i][j]);
jmax=j;
}
}
if (Pmax<1e-8) // maxtrix signular
{
std::cerr<<"Matrix Singlular"<<std::endl;
return 0;
}
// Swap Columns
if (i!=jmax)
{
swapCols(i,jmax);
deter*=-1; //change sign.
}
// zero all rows below diagonal
Pmax=V[i][i];
deter*=Pmax;
for(int k=i+1;k<nx;k++) // row index
{
const double scale=V[k][i]/Pmax;
V[k][i]=static_cast<T>(0);
for(int q=i+1;q<nx;q++) //column index
V[k][q]-=static_cast<T>(scale*V[i][q]);
}
}
deter*=V[nx-1][nx-1];
return static_cast<T>(deter);
}
template<typename T>
void
Matrix<T>::normVert()
/*!
Normalise EigenVectors
Assumes that they have already been calculated
*/
{
for(int i=0;i<nx;i++)
{
T sum=0;
for(int j=0;j<ny;j++)
sum+=V[i][j]*V[i][j];
sum=static_cast<T>(std::sqrt(static_cast<double>(sum)));
for(int j=0;j<ny;j++)
V[i][j]/=sum;
}
return;
}
template<typename T>
T
Matrix<T>::compSum() const
/*!
Add up each component sums for the matrix
\return \f$ \sum_i \sum_j V_{ij}^2 \f$
*/
{
T sum(0);
for(int i=0;i<nx;i++)
for(int j=0;j<ny;j++)
sum+=V[i][j]*V[i][j];
return sum;
}
template<typename T>
void
Matrix<T>::lubcmp(int* rowperm,int& interchange)
/*!
Find biggest pivot and move to top row. Then
divide by pivot.
*/
{
int imax(0),j,k;
double sum,dum,big,temp;
if (nx!=ny || nx<2)
{
std::cerr<<"Error with lubcmp"<<std::endl;
return;
}
double *vv=new double[nx];
interchange=1;
for(int i=0;i<nx;i++)
{
big=0.0;
for(j=0;j<nx;j++)
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
vv[i]=1.0/big;
}
for (j=0;j<nx;j++)
{
for(int i=0;i<j;i++)
{
sum=V[i][j];
for(k=0;k<i;k++)
sum-= V[i][k] * V[k][j];
V[i][j]=static_cast<T>(sum);
}
big=0.0;
imax=j;
for (int i=j;i<nx;i++)
{
sum=V[i][j];
for (k=0;k<j;k++)
sum -= V[i][k] * V[k][j];
V[i][j]=static_cast<T>(sum);
if ( (dum=vv[i] * fabs(sum)) >=big)
{
big=dum;
imax=i;
}
}
if (j!=imax)
{
for(k=0;k<nx;k++)
{ //Interchange rows
dum=V[imax][k];
V[imax][k]=V[j][k];
V[j][k]=static_cast<T>(dum);
}
interchange *= -1;
vv[imax]=static_cast<T>(vv[j]);
}
rowperm[j]=imax;
if (V[j][j] == 0.0)
V[j][j]=static_cast<T>(1e-14);
if (j != nx-1)
{
dum=1.0/(V[j][j]);
for(int i=j+1;i<nx;i++)
V[i][j] *= static_cast<T>(dum);