Newer
Older
#include "MantidDataHandling/LoadANSTOHelper.h"
#include "MantidDataObjects/EventWorkspace.h"
#include "MantidAPI/FileProperty.h"
#include "MantidAPI/RegisterFileLoader.h"
#include "MantidAPI/WorkspaceValidators.h"
#include "MantidKernel/UnitFactory.h"
#include "MantidGeometry/Instrument.h"
#include "MantidGeometry/Instrument/RectangularDetector.h"
#include "MantidGeometry/Objects/ShapeFactory.h"
#include "MantidNexus/NexusClasses.h"
//#include <Poco/File.h>
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
namespace Mantid {
namespace DataHandling {
namespace ANSTO {
// ProgressTracker
ProgressTracker::ProgressTracker(API::Progress &progBar, const char *msg,
int64_t target, size_t count)
: m_msg(msg), m_count(count), m_step(target / count), m_next(m_step),
m_progBar(progBar) {
m_progBar.doReport(m_msg);
}
ProgressTracker::~ProgressTracker() { complete(); }
void ProgressTracker::update(int64_t position) {
while (m_next <= position) {
m_progBar.report(m_msg);
switch (m_count) {
case 0:
return;
case 1:
m_count = 0;
m_next = std::numeric_limits<int64_t>::max();
return;
default:
m_count--;
m_next += m_step;
}
}
}
void ProgressTracker::complete() {
if (m_count != 0) {
m_progBar.reportIncrement(m_count, m_msg);
m_count = 0;
}
}
// EventCounter
EventCounter::EventCounter(std::vector<size_t> &eventCounts,
const std::vector<bool> &mask,
const std::vector<int> &offsets, size_t stride,
size_t pixelsCutOffL, size_t tubeBinning,
size_t finalBinsY, double periode, double phase)
: m_eventCounts(eventCounts), m_mask(mask), m_offsets(offsets),
m_stride(stride), m_pixelsCutOffL(pixelsCutOffL),
m_tubeBinning(tubeBinning), m_finalBinsY(finalBinsY),
m_tofMin(std::numeric_limits<double>::max()),
m_tofMax(std::numeric_limits<double>::min()), m_period(periode),
m_phase(phase) {}
double EventCounter::tofMin() const {
return m_tofMin <= m_tofMax ? m_tofMin : 0.0;
}
double EventCounter::tofMax() const {
return m_tofMin <= m_tofMax ? m_tofMax : 0.0;
}
void EventCounter::addEvent(size_t x, size_t y, double tof) {
// correction
if (m_period > 0.0) {
tof += m_phase;
while (tof > m_period)
tof -= m_period;
while (tof < 0)
tof += m_period;
}
y = y + (size_t)m_offsets[x];
if (y < m_stride) { // sufficient because yNew is size_t
if (m_mask[m_stride * x + y]) {
if (m_tofMin > tof)
m_tofMin = tof;
if (m_tofMax < tof)
m_tofMax = tof;
// transformation to bin index
size_t j = (y - m_pixelsCutOffL) / m_tubeBinning;
m_eventCounts[m_finalBinsY * x + j]++;
}
}
// EventAssigner
EventAssigner::EventAssigner(std::vector<EventVector_pt> &eventVectors,
const std::vector<bool> &mask,
const std::vector<int> &offsets, size_t stride,
size_t pixelsCutOffL, size_t tubeBinning,
size_t finalBinsY, double periode, double phase)
: m_eventVectors(eventVectors), m_mask(mask), m_offsets(offsets),
m_stride(stride), m_pixelsCutOffL(pixelsCutOffL),
m_tubeBinning(tubeBinning), m_finalBinsY(finalBinsY), m_period(periode),
m_phase(phase) {}
void EventAssigner::addEvent(size_t x, size_t y, double tof) {
// correction
if (m_period > 0.0) {
tof += m_phase;
while (tof > m_period)
tof -= m_period;
while (tof < 0)
tof += m_period;
}
y = y + (size_t)m_offsets[x];
if (y < m_stride) { // sufficient because yNew is size_t
if (m_mask[m_stride * x + y]) {
// transformation to bin index
size_t j = (y - m_pixelsCutOffL) / m_tubeBinning;
m_eventVectors[m_finalBinsY * x + j]->push_back(tof);
}
FastReadOnlyFile::FastReadOnlyFile(const char *filename) {
m_handle = CreateFileA(filename, GENERIC_READ, FILE_SHARE_READ, NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
}
FastReadOnlyFile::~FastReadOnlyFile() {
CloseHandle(m_handle);
m_handle = NULL;
}
void *FastReadOnlyFile::handle() const { return m_handle; }
bool FastReadOnlyFile::read(void *buffer, uint32_t size) {
DWORD bytesRead;
return (FALSE != ReadFile(m_handle, buffer, size, &bytesRead, NULL)) &&
(bytesRead == size);
}
bool FastReadOnlyFile::seek(int64_t offset, int whence, int64_t *newPosition) {
return FALSE != SetFilePointerEx(m_handle, *(LARGE_INTEGER *)&offset,
(LARGE_INTEGER *)newPosition, whence);
}
FastReadOnlyFile::FastReadOnlyFile(const char *filename) {
m_handle = fopen(filename, "rb");
}
FastReadOnlyFile::~FastReadOnlyFile() {
fclose(m_handle);
m_handle = NULL;
}
void *FastReadOnlyFile::handle() const { return m_handle; }
bool FastReadOnlyFile::read(void *buffer, uint32_t size) {
return 1 == fread(buffer, (size_t)size, 1, m_handle);
}
bool FastReadOnlyFile::seek(int64_t offset, int whence, int64_t *newPosition) {
return (0 == fseek(m_handle, offset, whence)) &&
((newPosition == NULL) ||
(0 <= (*newPosition = (int64_t)ftell(m_handle))));
}
template <size_t N> int64_t octalToInt(char(&str)[N]) {
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
int64_t result = 0;
char *p = str;
for (size_t n = N; n > 1; --n) { // last character is '\0'
char c = *p++;
if (('0' <= c) && (c <= '9'))
result = result * 8 + (c - '0');
}
return result;
}
// construction
File::File(const std::string &path)
: m_good(true), m_file(path.c_str()), m_selected((size_t)-1), m_position(0),
m_size(0), m_bufferPosition(0), m_bufferAvailable(0) {
m_good = m_file.handle() != NULL;
while (m_good) {
EntryHeader header;
int64_t position;
m_good &= m_file.read(&header, sizeof(EntryHeader));
m_good &= m_file.seek(512 - sizeof(EntryHeader), SEEK_CUR, &position);
if (!m_good)
break;
std::string fileName(header.FileName);
if (fileName.length() == 0)
return;
FileInfo fileInfo;
fileInfo.Offset = position;
fileInfo.Size = octalToInt(header.FileSize);
if (header.TypeFlag == TarTypeFlag_NormalFile) {
m_fileNames.push_back(fileName);
m_fileInfos.push_back(fileInfo);
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
size_t offset = (size_t)(fileInfo.Size % 512);
if (offset != 0)
offset = 512 - offset;
m_good &= m_file.seek(fileInfo.Size + offset, SEEK_CUR);
}
}
// properties
bool File::good() const { return m_good; }
const std::vector<std::string> &File::files() const { return m_fileNames; }
const std::string &File::selected_name() const {
return m_fileNames[m_selected];
}
int64_t File::selected_position() const { return m_position; }
int64_t File::selected_size() const { return m_size; }
// methods
bool File::select(const char *file) {
if (!m_good)
return false;
// reset buffer
m_bufferPosition = 0;
m_bufferAvailable = 0;
for (size_t i = 0; i != m_fileNames.size(); i++)
if (m_fileNames[i] == file) {
const FileInfo &info = m_fileInfos[i];
m_selected = i;
m_position = 0;
m_size = info.Size;
return m_good &= m_file.seek(info.Offset, SEEK_SET);
}
m_selected = (size_t)-1;
m_position = 0;
m_size = 0;
return false;
}
bool File::skip(uint64_t offset) {
if (!m_good || (m_selected == (size_t)-1))
return false;
bool overrun = offset > (uint64_t)(m_size - m_position);
if (overrun)
offset = m_size - m_position;
m_position += offset;
uint64_t bufferPosition = (uint64_t)m_bufferPosition + offset;
if (bufferPosition <= m_bufferAvailable)
m_bufferPosition = (size_t)bufferPosition;
else {
m_good &= m_file.seek(bufferPosition - m_bufferAvailable, SEEK_CUR);
m_bufferPosition = 0;
m_bufferAvailable = 0;
}
return m_good && !overrun;
}
size_t File::read(void *dst, size_t size) {
if (!m_good || (m_selected == (size_t)-1))
return 0;
if ((int64_t)size > (m_size - m_position))
size = (size_t)(m_size - m_position);
auto ptr = (uint8_t *)dst;
size_t result = 0;
if (m_bufferPosition != m_bufferAvailable) {
result = m_bufferAvailable - m_bufferPosition;
if (result > size)
result = size;
memcpy(ptr, m_buffer, result);
ptr += result;
size -= result;
m_position += result;
m_bufferPosition += result;
}
while (size != 0) {
auto bytesToRead =
(uint32_t)std::min<size_t>(size, std::numeric_limits<uint32_t>::max());
m_good &= m_file.read(ptr, bytesToRead);
if (!m_good)
break;
ptr += bytesToRead;
size -= bytesToRead;
result += bytesToRead;
m_position += bytesToRead;
}
return result;
}
int File::read_byte() {
if (!m_good || (m_selected == (size_t)-1))
return -1;
if (m_bufferPosition == m_bufferAvailable) {
if (m_position >= m_size)
return -1;
m_bufferPosition = 0;
m_bufferAvailable = 0;
uint32_t size =
(uint32_t)std::min<int64_t>(sizeof(m_buffer), m_size - m_position);
m_good &= m_file.read(m_buffer, size);
if (m_good)
m_bufferAvailable = size;
else
return -1;
}
m_position++;
return m_buffer[m_bufferPosition++];
}
}
}
} // namespace