Newer
Older
Doucet, Mathieu
committed
//----------------------------------------------------------------------
// Includes
//----------------------------------------------------------------------
#include "MantidAlgorithms/CalculateEfficiency.h"
#include "MantidAPI/WorkspaceValidators.h"
#include "MantidDataObjects/EventWorkspace.h"
#include "MantidDataObjects/EventList.h"
Doucet, Mathieu
committed
#include <vector>
#include "MantidKernel/BoundedValidator.h"
Doucet, Mathieu
committed
namespace Mantid {
namespace Algorithms {
Doucet, Mathieu
committed
// Register the class into the algorithm factory
DECLARE_ALGORITHM(CalculateEfficiency)
using namespace Kernel;
using namespace API;
using namespace Geometry;
using namespace DataObjects;
Doucet, Mathieu
committed
/** Initialization method.
*
*/
void CalculateEfficiency::init() {
Doucet, Mathieu
committed
declareProperty(
new WorkspaceProperty<>("InputWorkspace", "", Direction::Input),
"The workspace containing the flood data");
Doucet, Mathieu
committed
declareProperty(
new WorkspaceProperty<>("OutputWorkspace", "", Direction::Output),
"The name of the workspace to be created as the output of the algorithm");
Doucet, Mathieu
committed
auto positiveDouble = boost::make_shared<BoundedValidator<double>>();
Doucet, Mathieu
committed
positiveDouble->setLower(0);
declareProperty(
"MinEfficiency", EMPTY_DBL(), positiveDouble,
Doucet, Mathieu
committed
"Minimum efficiency for a pixel to be considered (default: no minimum).");
declareProperty(
"MaxEfficiency", EMPTY_DBL(), positiveDouble,
Doucet, Mathieu
committed
"Maximum efficiency for a pixel to be considered (default: no maximum).");
}
/** Executes the algorithm
*
*/
void CalculateEfficiency::exec() {
Doucet, Mathieu
committed
// Minimum efficiency. Pixels with lower efficiency will be masked
double min_eff = getProperty("MinEfficiency");
// Maximum efficiency. Pixels with higher efficiency will be masked
double max_eff = getProperty("MaxEfficiency");
// Get the input workspace
MatrixWorkspace_sptr inputWS = getProperty("InputWorkspace");
MatrixWorkspace_sptr rebinnedWS; // = inputWS;
Doucet, Mathieu
committed
// Now create the output workspace
MatrixWorkspace_sptr outputWS; // = getProperty("OutputWorkspace");
Doucet, Mathieu
committed
// DataObjects::EventWorkspace_const_sptr inputEventWS =
// boost::dynamic_pointer_cast<const EventWorkspace>(inputWS);
Doucet, Mathieu
committed
IAlgorithm_sptr childAlg = createChildAlgorithm("Integration", 0.0, 0.2);
childAlg->setProperty<MatrixWorkspace_sptr>("InputWorkspace", inputWS);
rebinnedWS = childAlg->getProperty("OutputWorkspace");
Doucet, Mathieu
committed
Doucet, Mathieu
committed
outputWS = WorkspaceFactory::Instance().create(rebinnedWS);
WorkspaceFactory::Instance().initializeFromParent(inputWS, outputWS, false);
for (int i = 0; i < (int)rebinnedWS->getNumberHistograms(); i++) {
Doucet, Mathieu
committed
outputWS->dataX(i) = rebinnedWS->readX(i);
}
setProperty("OutputWorkspace", outputWS);
Doucet, Mathieu
committed
Doucet, Mathieu
committed
double sum = 0.0;
double err = 0.0;
int npixels = 0;
// Loop over spectra and sum all the counts to get normalization
// Skip monitors and masked detectors
sumUnmaskedDetectors(rebinnedWS, sum, err, npixels);
// Normalize each detector pixel by the sum we just found to get the
// relative efficiency. If the minimum and maximum efficiencies are
// provided, the pixels falling outside this range will be marked
// as 'masked' in both the input and output workspace.
// We mask detectors in the input workspace so that we can resum the
// counts to find a new normalization factor that takes into account
// the newly masked detectors.
normalizeDetectors(rebinnedWS, outputWS, sum, err, npixels, min_eff, max_eff);
if (!isEmpty(min_eff) || !isEmpty(max_eff)) {
Doucet, Mathieu
committed
// Recompute the normalization, excluding the pixels that were outside
// the acceptable efficiency range.
sumUnmaskedDetectors(rebinnedWS, sum, err, npixels);
// Now that we have a normalization factor that excludes bad pixels,
// recompute the relative efficiency.
// We pass EMPTY_DBL() to avoid masking pixels that might end up high or low
// after the new normalization.
normalizeDetectors(rebinnedWS, outputWS, sum, err, npixels, EMPTY_DBL(),
EMPTY_DBL());
Doucet, Mathieu
committed
}
return;
}
/*
* Sum up all the unmasked detector pixels.
*
* @param rebinnedWS: workspace where all the wavelength bins have been grouped
*together
Doucet, Mathieu
committed
* @param sum: sum of all the unmasked detector pixels (counts)
* @param error: error on sum (counts)
* @param nPixels: number of unmasked detector pixels that contributed to sum
*/
void CalculateEfficiency::sumUnmaskedDetectors(MatrixWorkspace_sptr rebinnedWS,
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
double &sum, double &error,
int &nPixels) {
// Number of spectra
const int numberOfSpectra =
static_cast<int>(rebinnedWS->getNumberHistograms());
sum = 0.0;
error = 0.0;
nPixels = 0;
for (int i = 0; i < numberOfSpectra; i++) {
progress(0.2 + 0.2 * i / numberOfSpectra, "Computing sensitivity");
// Get the detector object for this spectrum
IDetector_const_sptr det = rebinnedWS->getDetector(i);
// If this detector is masked, skip to the next one
if (det->isMasked())
continue;
// If this detector is a monitor, skip to the next one
if (det->isMonitor())
continue;
// Retrieve the spectrum into a vector
const MantidVec &YValues = rebinnedWS->readY(i);
const MantidVec &YErrors = rebinnedWS->readE(i);
sum += YValues[0];
error += YErrors[0] * YErrors[0];
nPixels++;
}
Doucet, Mathieu
committed
Doucet, Mathieu
committed
}
/*
* Normalize each detector to produce the relative detector efficiency.
* Pixels that fall outside those efficiency limits will be masked in both
* the input and output workspaces.
*
* @param rebinnedWS: input workspace
* @param outputWS: output workspace containing the relative efficiency
* @param sum: sum of all the unmasked detector pixels (counts)
* @param error: error on sum (counts)
* @param nPixels: number of unmasked detector pixels that contributed to sum
*/
void CalculateEfficiency::normalizeDetectors(MatrixWorkspace_sptr rebinnedWS,
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
MatrixWorkspace_sptr outputWS,
double sum, double error,
int nPixels, double min_eff,
double max_eff) {
// Number of spectra
const size_t numberOfSpectra = rebinnedWS->getNumberHistograms();
// Empty vector to store the pixels that outside the acceptable efficiency
// range
std::vector<size_t> dets_to_mask;
for (size_t i = 0; i < numberOfSpectra; i++) {
const double currProgress =
0.4 + 0.2 * ((double)i / (double)numberOfSpectra);
progress(currProgress, "Computing sensitivity");
// Get the detector object for this spectrum
IDetector_const_sptr det = rebinnedWS->getDetector(i);
// If this detector is masked, skip to the next one
if (det->isMasked())
continue;
// Retrieve the spectrum into a vector
const MantidVec &YIn = rebinnedWS->readY(i);
const MantidVec &EIn = rebinnedWS->readE(i);
MantidVec &YOut = outputWS->dataY(i);
MantidVec &EOut = outputWS->dataE(i);
// If this detector is a monitor, skip to the next one
if (det->isMonitor()) {
YOut[0] = 1.0;
EOut[0] = 0.0;
continue;
Doucet, Mathieu
committed
}
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
// Normalize counts to get relative efficiency
YOut[0] = nPixels / sum * YIn[0];
const double err_sum = YIn[0] / sum * error;
EOut[0] = nPixels / std::abs(sum) *
std::sqrt(EIn[0] * EIn[0] + err_sum * err_sum);
// Mask this detector if the signal is outside the acceptable band
if (!isEmpty(min_eff) && YOut[0] < min_eff)
dets_to_mask.push_back(i);
if (!isEmpty(max_eff) && YOut[0] > max_eff)
dets_to_mask.push_back(i);
}
// If we identified pixels to be masked, mask them now
if (!dets_to_mask.empty()) {
// Mask detectors that were found to be outside the acceptable efficiency
// band
try {
IAlgorithm_sptr mask = createChildAlgorithm("MaskDetectors", 0.8, 0.9);
// First we mask detectors in the output workspace
mask->setProperty<MatrixWorkspace_sptr>("Workspace", outputWS);
mask->setProperty<std::vector<size_t>>("WorkspaceIndexList",
dets_to_mask);
mask->execute();
mask = createChildAlgorithm("MaskDetectors", 0.9, 1.0);
// Then we mask the same detectors in the input workspace
mask->setProperty<MatrixWorkspace_sptr>("Workspace", rebinnedWS);
mask->setProperty<std::vector<size_t>>("WorkspaceIndexList",
dets_to_mask);
mask->execute();
} catch (std::invalid_argument &err) {
std::stringstream e;
e << "Invalid argument to MaskDetectors Child Algorithm: " << err.what();
g_log.error(e.str());
} catch (std::runtime_error &err) {
std::stringstream e;
e << "Unable to successfully run MaskDetectors Child Algorithm: "
<< err.what();
g_log.error(e.str());
Doucet, Mathieu
committed
}
Doucet, Mathieu
committed
}
} // namespace Algorithms
} // namespace Mantid