Skip to content
Snippets Groups Projects
CalculateEfficiency.cpp 8.84 KiB
Newer Older
//----------------------------------------------------------------------
// Includes
//----------------------------------------------------------------------
#include "MantidAlgorithms/CalculateEfficiency.h"
#include "MantidAPI/WorkspaceValidators.h"
#include "MantidDataObjects/EventWorkspace.h"
#include "MantidDataObjects/EventList.h"
#include "MantidKernel/BoundedValidator.h"
namespace Mantid {
namespace Algorithms {

// Register the class into the algorithm factory
DECLARE_ALGORITHM(CalculateEfficiency)

using namespace Kernel;
using namespace API;
using namespace Geometry;
using namespace DataObjects;
void CalculateEfficiency::init() {
      new WorkspaceProperty<>("InputWorkspace", "", Direction::Input),
      "The workspace containing the flood data");
      new WorkspaceProperty<>("OutputWorkspace", "", Direction::Output),
      "The name of the workspace to be created as the output of the algorithm");
  auto positiveDouble = boost::make_shared<BoundedValidator<double>>();
  declareProperty(
      "MinEfficiency", EMPTY_DBL(), positiveDouble,
      "Minimum efficiency for a pixel to be considered (default: no minimum).");
  declareProperty(
      "MaxEfficiency", EMPTY_DBL(), positiveDouble,
      "Maximum efficiency for a pixel to be considered (default: no maximum).");
}

/** Executes the algorithm
 *
 */
void CalculateEfficiency::exec() {

  // Minimum efficiency. Pixels with lower efficiency will be masked
  double min_eff = getProperty("MinEfficiency");
  // Maximum efficiency. Pixels with higher efficiency will be masked
  double max_eff = getProperty("MaxEfficiency");

  // Get the input workspace
  MatrixWorkspace_sptr inputWS = getProperty("InputWorkspace");
  MatrixWorkspace_sptr rebinnedWS; // = inputWS;
  MatrixWorkspace_sptr outputWS; // = getProperty("OutputWorkspace");
  // DataObjects::EventWorkspace_const_sptr inputEventWS =
  // boost::dynamic_pointer_cast<const EventWorkspace>(inputWS);
  // Sum up all the wavelength bins
  IAlgorithm_sptr childAlg = createChildAlgorithm("Integration", 0.0, 0.2);
  childAlg->setProperty<MatrixWorkspace_sptr>("InputWorkspace", inputWS);
  childAlg->executeAsChildAlg();
  rebinnedWS = childAlg->getProperty("OutputWorkspace");
  outputWS = WorkspaceFactory::Instance().create(rebinnedWS);
Doucet, Mathieu's avatar
Doucet, Mathieu committed
  WorkspaceFactory::Instance().initializeFromParent(inputWS, outputWS, false);
  for (int i = 0; i < (int)rebinnedWS->getNumberHistograms(); i++) {
    outputWS->dataX(i) = rebinnedWS->readX(i);
  }
  setProperty("OutputWorkspace", outputWS);
  double sum = 0.0;
  double err = 0.0;
  int npixels = 0;

  // Loop over spectra and sum all the counts to get normalization
  // Skip monitors and masked detectors
  sumUnmaskedDetectors(rebinnedWS, sum, err, npixels);

  // Normalize each detector pixel by the sum we just found to get the
  // relative efficiency. If the minimum and maximum efficiencies are
  // provided, the pixels falling outside this range will be marked
  // as 'masked' in both the input and output workspace.
  // We mask detectors in the input workspace so that we can resum the
  // counts to find a new normalization factor that takes into account
  // the newly masked detectors.
  normalizeDetectors(rebinnedWS, outputWS, sum, err, npixels, min_eff, max_eff);

  if (!isEmpty(min_eff) || !isEmpty(max_eff)) {
    // Recompute the normalization, excluding the pixels that were outside
    // the acceptable efficiency range.
    sumUnmaskedDetectors(rebinnedWS, sum, err, npixels);

    // Now that we have a normalization factor that excludes bad pixels,
    // recompute the relative efficiency.
    // We pass EMPTY_DBL() to avoid masking pixels that might end up high or low
    // after the new normalization.
    normalizeDetectors(rebinnedWS, outputWS, sum, err, npixels, EMPTY_DBL(),
                       EMPTY_DBL());
 * @param rebinnedWS: workspace where all the wavelength bins have been grouped
 *together
 * @param sum: sum of all the unmasked detector pixels (counts)
 * @param error: error on sum (counts)
 * @param nPixels: number of unmasked detector pixels that contributed to sum
 */
void CalculateEfficiency::sumUnmaskedDetectors(MatrixWorkspace_sptr rebinnedWS,
                                               double &sum, double &error,
                                               int &nPixels) {
  // Number of spectra
  const int numberOfSpectra =
      static_cast<int>(rebinnedWS->getNumberHistograms());
  sum = 0.0;
  error = 0.0;
  nPixels = 0;

  for (int i = 0; i < numberOfSpectra; i++) {
    progress(0.2 + 0.2 * i / numberOfSpectra, "Computing sensitivity");
    // Get the detector object for this spectrum
    IDetector_const_sptr det = rebinnedWS->getDetector(i);
    // If this detector is masked, skip to the next one
    if (det->isMasked())
      continue;
    // If this detector is a monitor, skip to the next one
    if (det->isMonitor())
      continue;

    // Retrieve the spectrum into a vector
    const MantidVec &YValues = rebinnedWS->readY(i);
    const MantidVec &YErrors = rebinnedWS->readE(i);

    sum += YValues[0];
    error += YErrors[0] * YErrors[0];
    nPixels++;
  }
  error = std::sqrt(error);
}

/*
 * Normalize each detector to produce the relative detector efficiency.
 * Pixels that fall outside those efficiency limits will be masked in both
 * the input and output workspaces.
 *
 * @param rebinnedWS: input workspace
 * @param outputWS: output workspace containing the relative efficiency
 * @param sum: sum of all the unmasked detector pixels (counts)
 * @param error: error on sum (counts)
 * @param nPixels: number of unmasked detector pixels that contributed to sum
 */

void CalculateEfficiency::normalizeDetectors(MatrixWorkspace_sptr rebinnedWS,
                                             MatrixWorkspace_sptr outputWS,
                                             double sum, double error,
                                             int nPixels, double min_eff,
                                             double max_eff) {
  // Number of spectra
  const size_t numberOfSpectra = rebinnedWS->getNumberHistograms();

  // Empty vector to store the pixels that outside the acceptable efficiency
  // range
  std::vector<size_t> dets_to_mask;

  for (size_t i = 0; i < numberOfSpectra; i++) {
    const double currProgress =
        0.4 + 0.2 * ((double)i / (double)numberOfSpectra);
    progress(currProgress, "Computing sensitivity");
    // Get the detector object for this spectrum
    IDetector_const_sptr det = rebinnedWS->getDetector(i);
    // If this detector is masked, skip to the next one
    if (det->isMasked())
      continue;

    // Retrieve the spectrum into a vector
    const MantidVec &YIn = rebinnedWS->readY(i);
    const MantidVec &EIn = rebinnedWS->readE(i);
    MantidVec &YOut = outputWS->dataY(i);
    MantidVec &EOut = outputWS->dataE(i);
    // If this detector is a monitor, skip to the next one
    if (det->isMonitor()) {
      YOut[0] = 1.0;
      EOut[0] = 0.0;
      continue;
    // Normalize counts to get relative efficiency
    YOut[0] = nPixels / sum * YIn[0];
    const double err_sum = YIn[0] / sum * error;
    EOut[0] = nPixels / std::abs(sum) *
              std::sqrt(EIn[0] * EIn[0] + err_sum * err_sum);

    // Mask this detector if the signal is outside the acceptable band
    if (!isEmpty(min_eff) && YOut[0] < min_eff)
      dets_to_mask.push_back(i);
    if (!isEmpty(max_eff) && YOut[0] > max_eff)
      dets_to_mask.push_back(i);
  }

  // If we identified pixels to be masked, mask them now
  if (!dets_to_mask.empty()) {
    // Mask detectors that were found to be outside the acceptable efficiency
    // band
    try {
      IAlgorithm_sptr mask = createChildAlgorithm("MaskDetectors", 0.8, 0.9);
      // First we mask detectors in the output workspace
      mask->setProperty<MatrixWorkspace_sptr>("Workspace", outputWS);
      mask->setProperty<std::vector<size_t>>("WorkspaceIndexList",
                                             dets_to_mask);
      mask->execute();

      mask = createChildAlgorithm("MaskDetectors", 0.9, 1.0);
      // Then we mask the same detectors in the input workspace
      mask->setProperty<MatrixWorkspace_sptr>("Workspace", rebinnedWS);
      mask->setProperty<std::vector<size_t>>("WorkspaceIndexList",
                                             dets_to_mask);
      mask->execute();
    } catch (std::invalid_argument &err) {
      std::stringstream e;
      e << "Invalid argument to MaskDetectors Child Algorithm: " << err.what();
      g_log.error(e.str());
    } catch (std::runtime_error &err) {
      std::stringstream e;
      e << "Unable to successfully run MaskDetectors Child Algorithm: "
        << err.what();
      g_log.error(e.str());