Newer
Older
#ifndef MUONCALCULATEASYMMETRYTEST_H_
#define MUONCALCULATEASYMMETRYTEST_H_
#include <cxxtest/TestSuite.h>
#include "MantidAlgorithms/CalculateAsymmetry.h"
#include "MantidKernel/PhysicalConstants.h"
#include "MantidAPI/FrameworkManager.h"
#include "MantidAPI/AlgorithmManager.h"
#include "MantidHistogramData/LinearGenerator.h"
#include "MantidTestHelpers/WorkspaceCreationHelper.h"
using namespace Mantid::API;
using Mantid::MantidVec;
using Mantid::Algorithms::CalculateAsymmetry;
const std::string outputName = "CalculateAsymmetry_Output";
namespace {
MatrixWorkspace_sptr createWorkspace(size_t nspec, size_t maxt) {
// Create a fake muon dataset
double a = 10.0; // Amplitude of the oscillations
double tau = Mantid::PhysicalConstants::MuonLifetime *
1e6; // Muon life time in microseconds
MantidVec X;
MantidVec Y;
MantidVec E;
for (size_t s = 0; s < nspec; s++) {
double x = 10. * static_cast<double>(t) / static_cast<double>(maxt);
Y.push_back(20. * (1.0 + a * cos(w * x + phi)) * e);
E.push_back(0.005);
}
}
auto createWS = AlgorithmManager::Instance().create("CreateWorkspace");
createWS->initialize();
createWS->setChild(true);
createWS->setProperty("DataX", X);
createWS->setProperty("DataY", Y);
createWS->setProperty("DataE", E);
createWS->setProperty("NSpec", static_cast<int>(nspec));
createWS->setPropertyValue("OutputWorkspace", "ws");
createWS->execute();
MatrixWorkspace_sptr ws = createWS->getProperty("OutputWorkspace");
// Add number of good frames
ws->mutableRun().addProperty("goodfrm", 10);
return ws;
}
}
class CalculateAsymmetryTest : public CxxTest::TestSuite {
public:
// This pair of boilerplate methods prevent the suite being created statically
// This means the constructor isn't called when running other tests
static CalculateAsymmetryTest *createSuite() {
return new CalculateAsymmetryTest();
}
static void destroySuite(CalculateAsymmetryTest *suite) { delete suite; }
CalculateAsymmetryTest() { FrameworkManager::Instance(); }
void testInit() {
IAlgorithm_sptr alg =
AlgorithmManager::Instance().create("CalculateAsymmetry");
alg->initialize();
TS_ASSERT(alg->isInitialized())
}
void test_Execute() {
auto ws = createWorkspace(1, 50);
IAlgorithm_sptr alg =
AlgorithmManager::Instance().create("CalculateAsymmetry");
alg->initialize();
alg->setChild(true);
alg->setProperty("InputWorkspace", ws);
alg->setPropertyValue("OutputWorkspace", outputName);
alg->setProperty("StartX", 0.1);
alg->setProperty("EndX", 10.);
alg->setProperty(
"myFunction",
"name=UserFunction,Formula=A*cos(omega*x+phi),A=10,omega=3.0,phi=0.0");
TS_ASSERT_THROWS_NOTHING(alg->execute());
TS_ASSERT(alg->isExecuted());
MatrixWorkspace_sptr outWS = alg->getProperty("OutputWorkspace");
}
void test_EmptySpectrumList() {
auto ws = createWorkspace(2, 50);
IAlgorithm_sptr alg =
AlgorithmManager::Instance().create("CalculateAsymmetry");
alg->initialize();
alg->setChild(true);
alg->setProperty("InputWorkspace", ws);
alg->setPropertyValue("OutputWorkspace", outputName);
alg->setProperty("StartX", 0.1);
alg->setProperty("EndX", 10.);
alg->setProperty(
"myFunction",
"name=UserFunction,Formula=A*cos(omega*x+phi),A=10,omega=3.0,phi=0.0");
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
TS_ASSERT_THROWS_NOTHING(alg->execute());
TS_ASSERT(alg->isExecuted());
MatrixWorkspace_sptr outWS = alg->getProperty("OutputWorkspace");
// First spectrum
// Test some X values
TS_ASSERT_DELTA(outWS->x(0)[10], 2.000, 0.0001);
TS_ASSERT_DELTA(outWS->x(0)[19], 3.800, 0.0001);
TS_ASSERT_DELTA(outWS->x(0)[49], 9.800, 0.0001);
// Test some Y values
TS_ASSERT_DELTA(outWS->y(0)[10], -7.8056, 0.0001);
TS_ASSERT_DELTA(outWS->y(0)[19], 9.6880, 0.0001);
TS_ASSERT_DELTA(outWS->y(0)[49], 3.9431, 0.0001);
// Test some E values
TS_ASSERT_DELTA(outWS->e(0)[10], 0.0006, 0.0001);
TS_ASSERT_DELTA(outWS->e(0)[19], 0.0014, 0.0001);
TS_ASSERT_DELTA(outWS->e(0)[49], 0.0216, 0.0001);
// Second spectrum
// Test some X values
TS_ASSERT_DELTA(outWS->x(1)[10], 2.000, 0.0001);
TS_ASSERT_DELTA(outWS->x(1)[19], 3.800, 0.0001);
TS_ASSERT_DELTA(outWS->x(1)[49], 9.800, 0.0001);
// Test some Y values
TS_ASSERT_DELTA(outWS->y(1)[10], -7.8056, 0.0001);
TS_ASSERT_DELTA(outWS->y(1)[19], 9.6880, 0.0001);
TS_ASSERT_DELTA(outWS->y(1)[49], 3.9431, 0.0001);
// Test some E values
TS_ASSERT_DELTA(outWS->e(1)[10], 0.0006, 0.0001);
TS_ASSERT_DELTA(outWS->e(1)[19], 0.0014, 0.0001);
TS_ASSERT_DELTA(outWS->e(1)[49], 0.0216, 0.0001);
}
void test_SpectrumList() {
auto ws = createWorkspace(2, 50);
// First, run the algorithm without specifying any spectrum
IAlgorithm_sptr alg1 =
AlgorithmManager::Instance().create("CalculateAsymmetry");
alg1->initialize();
alg1->setChild(true);
alg1->setProperty("InputWorkspace", ws);
alg1->setPropertyValue("OutputWorkspace", outputName);
alg1->setProperty("StartX", 0.1);
alg1->setProperty("EndX", 0.9);
alg1->setProperty(
"myFunction",
"name=UserFunction,Formula=A*cos(omega*x+phi),A=10,omega=3.0,phi=0.0");
TS_ASSERT_THROWS_NOTHING(alg1->execute());
TS_ASSERT(alg1->isExecuted());
MatrixWorkspace_sptr out1 = alg1->getProperty("OutputWorkspace");
// Then run the algorithm on the second spectrum only
IAlgorithm_sptr alg2 =
AlgorithmManager::Instance().create("CalculateAsymmetry");
alg2->initialize();
alg2->setChild(true);
alg2->setProperty("InputWorkspace", ws);
alg2->setPropertyValue("OutputWorkspace", outputName);
alg2->setPropertyValue("Spectra", "1");
alg2->setProperty("StartX", 0.1);
alg2->setProperty("EndX", 0.9);
alg2->setProperty(
"myFunction",
"name=UserFunction,Formula=A*cos(omega*x+phi),A=10,omega=3.0,phi=0.0");
TS_ASSERT_THROWS_NOTHING(alg2->execute());
TS_ASSERT(alg2->isExecuted());
MatrixWorkspace_sptr out2 = alg2->getProperty("OutputWorkspace");
// Both output workspaces should have 2 spectra
TS_ASSERT_EQUALS(out1->getNumberHistograms(), ws->getNumberHistograms());
TS_ASSERT_EQUALS(out2->getNumberHistograms(), ws->getNumberHistograms());
// Compare results, they should match for the selected spectrum
TS_ASSERT_EQUALS(out1->x(1).rawData(), out2->x(1).rawData());
TS_ASSERT_EQUALS(out1->y(1).rawData(), out2->y(1).rawData());
TS_ASSERT_EQUALS(out1->e(1).rawData(), out2->e(1).rawData());
// Compare non-selected spectra, the should match the input ones
TS_ASSERT_EQUALS(ws->x(0).rawData(), out2->x(0).rawData());
TS_ASSERT_EQUALS(ws->y(0).rawData(), out2->y(0).rawData());
TS_ASSERT_EQUALS(ws->e(0).rawData(), out2->e(0).rawData());
}
void test_yUnitLabel() {
auto ws = createWorkspace(4, 50);
IAlgorithm_sptr alg =
AlgorithmManager::Instance().create("CalculateAsymmetry");
alg->initialize();
alg->setChild(true);
alg->setProperty("InputWorkspace", ws);
alg->setPropertyValue("OutputWorkspace", outputName);
alg->setProperty("StartX", 0.1);
alg->setProperty("EndX", 0.9);
alg->setProperty("OutputWorkspace", outputName);
alg->setProperty(
"myFunction",
"name=UserFunction,Formula=A*cos(omega*x+phi),A=10,omega=3.0,phi=0.0");
TS_ASSERT_THROWS_NOTHING(alg->execute());
TS_ASSERT(alg->isExecuted())
MatrixWorkspace_sptr result = alg->getProperty("OutputWorkspace");
TS_ASSERT(result);
TS_ASSERT_EQUALS(result->YUnitLabel(), "Asymmetry");
}
IAlgorithm_sptr alg =
AlgorithmManager::Instance().create("CalculateAsymmetry");
alg->initialize();
alg->setChild(true);
alg->setProperty("InputWorkspace", ws);
alg->setPropertyValue("OutputWorkspace", outputName);
alg->setProperty("OutputWorkspace", outputName);
alg->setProperty(
"myFunction",
"name=UserFunction,Formula=A*cos(omega*x+phi),A=10,omega=3.0,phi=0.0");
TS_ASSERT_THROWS_NOTHING(alg->execute());
TS_ASSERT(alg->isExecuted())
}
void test_noRange() {
auto ws = createWorkspace(4, 50);
IAlgorithm_sptr alg =
AlgorithmManager::Instance().create("CalculateAsymmetry");
alg->initialize();
alg->setChild(true);
alg->setProperty("InputWorkspace", ws);
alg->setPropertyValue("OutputWorkspace", outputName);
alg->setProperty("OutputWorkspace", outputName);
alg->setProperty(
"myFunction",
"name=UserFunction,Formula=A*cos(omega*x+phi),A=10,omega=3.0,phi=0.0");
TS_ASSERT_THROWS_NOTHING(alg->execute());
TS_ASSERT(alg->isExecuted())
}
IAlgorithm_sptr alg =
AlgorithmManager::Instance().create("CalculateAsymmetry");
alg->initialize();
alg->setChild(true);
alg->setProperty("InputWorkspace", ws);
alg->setPropertyValue("OutputWorkspace", outputName);
alg->setProperty("startX", 0.9);
alg->setProperty("EndX", 0.1);
alg->setProperty("OutputWorkspace", outputName);
alg->setProperty(
"myFunction",
"name=UserFunction,Formula=A*cos(omega*x+phi),A=10,omega=3.0,phi=0.0");
TS_ASSERT_THROWS_NOTHING(alg->execute());
TS_ASSERT(alg->isExecuted())
}
void test_NoMyFunction() {
auto ws = createWorkspace(1, 50);
IAlgorithm_sptr alg =
AlgorithmManager::Instance().create("CalculateAsymmetry");
alg->initialize();
alg->setChild(true);
alg->setProperty("InputWorkspace", ws);
alg->setPropertyValue("OutputWorkspace", outputName);
alg->setProperty("StartX", 0.1);
alg->setProperty("EndX", 10.);
TS_ASSERT_THROWS_NOTHING(alg->execute());
TS_ASSERT(alg->isExecuted());
MatrixWorkspace_sptr outWS = alg->getProperty("OutputWorkspace");
// First spectrum
// Test some X values
TS_ASSERT_DELTA(outWS->x(0)[10], 2.000, 0.0001);
TS_ASSERT_DELTA(outWS->x(0)[19], 3.800, 0.0001);
TS_ASSERT_DELTA(outWS->x(0)[49], 9.800, 0.0001);
// Test some Y values
TS_ASSERT_DELTA(outWS->y(0)[10], -7.8056, 0.0001);
TS_ASSERT_DELTA(outWS->y(0)[19], 9.6880, 0.0001);
TS_ASSERT_DELTA(outWS->y(0)[49], 3.9431, 0.0001);
// Test some E values
TS_ASSERT_DELTA(outWS->e(0)[10], 0.0006, 0.0001);
TS_ASSERT_DELTA(outWS->e(0)[19], 0.0014, 0.0001);
TS_ASSERT_DELTA(outWS->e(0)[49], 0.0216, 0.0001);
}
class CalculateAsymmetryTestPerformance : public CxxTest::TestSuite {
public:
// This pair of boilerplate methods prevent the suite being created statically
// This means the constructor isn't called when running other tests
static CalculateAsymmetryTestPerformance *createSuite() {
return new CalculateAsymmetryTestPerformance();
}
static void destroySuite(CalculateAsymmetryTestPerformance *suite) {
AnalysisDataService::Instance().clear();
delete suite;
}
CalculateAsymmetryTestPerformance() { FrameworkManager::Instance(); }
void setUp() override { input = createWorkspace(1000, 100); }
void testExec2D() {
CalculateAsymmetry alg;
alg.initialize();
alg.setProperty("InputWorkspace", input);
alg.setPropertyValue("OutputWorkspace", "output");
alg.setProperty("StartX", 0.1);
alg.setProperty("EndX", 10.);
alg.setProperty(
"myFunction",
"name=UserFunction,Formula=A*cos(omega*x+phi),A=10,omega=3.0,phi=0.0");
alg.execute();
}
private:
MatrixWorkspace_sptr input;
};
#endif /*ESTIMATEASYMMETRYFROMCOUNTSTEST_H_*/