Newer
Older
dataY.append(outputData.getCalculated(i));
}
IAlgorithm_sptr createWsAlg =
AlgorithmManager::Instance().create("CreateWorkspace");
createWsAlg->initialize();
createWsAlg->setChild(true);
createWsAlg->setLogging(false);
createWsAlg->setProperty("OutputWorkspace", "__GuessAnon");
createWsAlg->setProperty("NSpec", 1);
createWsAlg->setProperty("DataX", dataX.toStdVector());
createWsAlg->setProperty("DataY", dataY.toStdVector());
createWsAlg->execute();
MatrixWorkspace_sptr guessWs = createWsAlg->getProperty("OutputWorkspace");
m_uiForm.ppPlot->addSpectrum("Guess", guessWs, 0, Qt::green);
}
/**
* Fits a single spectrum to the plot
*/
void ConvFit::singleFit() {
if (!validate())
return;
m_uiForm.ckPlotGuess->setChecked(false);
CompositeFunction_sptr function =
createFunction(m_uiForm.ckTieCentres->isChecked());
// get output name
QString fitType = fitTypeString();
QString bgType = backgroundString();
g_log.error("No fit type defined.");
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
m_singleFitOutputName =
runPythonCode(
QString(
"from IndirectCommon import getWSprefix\nprint getWSprefix('") +
m_cfInputWSName + QString("')\n"))
.trimmed();
m_singleFitOutputName +=
QString("conv_") + fitType + bgType + m_uiForm.spPlotSpectrum->text();
int maxIterations =
static_cast<int>(m_dblManager->value(m_properties["MaxIterations"]));
m_singleFitAlg = AlgorithmManager::Instance().create("Fit");
m_singleFitAlg->initialize();
m_singleFitAlg->setPropertyValue("Function", function->asString());
m_singleFitAlg->setPropertyValue("InputWorkspace",
m_cfInputWSName.toStdString());
m_singleFitAlg->setProperty<int>("WorkspaceIndex",
m_uiForm.spPlotSpectrum->text().toInt());
m_singleFitAlg->setProperty<double>(
"StartX", m_dblManager->value(m_properties["StartX"]));
m_singleFitAlg->setProperty<double>(
"EndX", m_dblManager->value(m_properties["EndX"]));
m_singleFitAlg->setProperty("Output", m_singleFitOutputName.toStdString());
m_singleFitAlg->setProperty("CreateOutput", true);
m_singleFitAlg->setProperty("OutputCompositeMembers", true);
m_singleFitAlg->setProperty("ConvolveMembers", true);
m_singleFitAlg->setProperty("MaxIterations", maxIterations);
m_singleFitAlg->setProperty(
"Minimizer", minimizerString(m_singleFitOutputName).toStdString());
m_batchAlgoRunner->addAlgorithm(m_singleFitAlg);
connect(m_batchAlgoRunner, SIGNAL(batchComplete(bool)), this,
SLOT(singleFitComplete(bool)));
m_batchAlgoRunner->executeBatchAsync();
}
/**
* Handle completion of the fit algorithm for single fit.
*
* @param error If the fit algorithm failed
*/
void ConvFit::singleFitComplete(bool error) {
disconnect(m_batchAlgoRunner, SIGNAL(batchComplete(bool)), this,
SLOT(singleFitComplete(bool)));
if (error) {
showMessageBox("Fit algorithm failed.");
return;
}
// Plot the line on the mini plot
m_uiForm.ppPlot->removeSpectrum("Guess");
m_uiForm.ppPlot->addSpectrum("Fit", m_singleFitOutputName + "_Workspace", 1,
Qt::red);
IFunction_sptr outputFunc = m_singleFitAlg->getProperty("Function");
QString functionName = m_uiForm.cbFitType->currentText();
// Get params.
QMap<QString, double> parameters;
std::vector<std::string> parNames = outputFunc->getParameterNames();
std::vector<double> parVals;
QStringList params = getFunctionParameters(functionName);
for (size_t i = 0; i < parNames.size(); ++i)
parVals.push_back(outputFunc->getParameter(parNames[i]));
for (size_t i = 0; i < parNames.size(); ++i)
parameters[QString(parNames[i].c_str())] = parVals[i];
// Populate Tree widget with values
// Background should always be f0
m_dblManager->setValue(m_properties["BGA0"], parameters["f0.A0"]);
m_dblManager->setValue(m_properties["BGA1"], parameters["f0.A1"]);
int fitTypeIndex = m_uiForm.cbFitType->currentIndex();
int funcIndex = 0;
int subIndex = 0;
// check if we're using a temperature correction
if (m_uiForm.ckTempCorrection->isChecked() &&
!m_uiForm.leTempCorrection->text().isEmpty()) {
subIndex++;
}
bool usingDeltaFunc = m_blnManager->value(m_properties["UseDeltaFunc"]);
// If using a delta function with any fit type or using two Lorentzians
bool usingCompositeFunc =
((usingDeltaFunc && fitTypeIndex > 0) || fitTypeIndex == 2);
QString prefBase = "f1.f1.";
if (usingDeltaFunc) {
QString key = prefBase;
if (usingCompositeFunc) {
key += "f0.";
m_dblManager->setValue(m_properties["DeltaHeight"], parameters[key]);
funcIndex++;
QString pref = prefBase;
if (usingCompositeFunc) {
pref += "f" + QString::number(funcIndex) + ".f" +
QString::number(subIndex) + ".";
} else {
pref += "f" + QString::number(subIndex) + ".";
}
if (fitTypeIndex == 1 || fitTypeIndex == 2) {
functionName = "Lorentzian 1";
for (auto it = params.begin(); it != params.end() - 3; ++it) {
QString functionParam = functionName + "." + *it;
QString paramValue = pref + *it;
m_dblManager->setValue(m_properties[functionParam],
parameters[paramValue]);
}
funcIndex++;
pref = prefBase;
pref += "f" + QString::number(funcIndex) + ".f" +
QString::number(subIndex) + ".";
functionName = "Lorentzian 2";
for (auto it = params.begin() + 3; it != params.end(); ++it) {
QString functionParam = functionName + "." + *it;
QString paramValue = pref + *it;
m_dblManager->setValue(m_properties[functionParam],
parameters[paramValue]);
}
} else {
for (auto it = params.begin(); it != params.end(); ++it) {
QString functionParam = functionName + "." + *it;
QString paramValue = pref + *it;
m_dblManager->setValue(m_properties[functionParam],
parameters[paramValue]);
}
m_pythonExportWsName = "";
}
/**
* Handles the user entering a new minimum spectrum index.
*
* Prevents the user entering an overlapping spectra range.
*
* @param value Minimum spectrum index
*/
void ConvFit::specMinChanged(int value) {
m_uiForm.spSpectraMax->setMinimum(value);
}
/**
* Handles the user entering a new maximum spectrum index.
*
* Prevents the user entering an overlapping spectra range.
*
* @param value Maximum spectrum index
*/
void ConvFit::specMaxChanged(int value) {
m_uiForm.spSpectraMin->setMaximum(value);
}
void ConvFit::minChanged(double val) {
m_dblManager->setValue(m_properties["StartX"], val);
}
void ConvFit::maxChanged(double val) {
m_dblManager->setValue(m_properties["EndX"], val);
}
void ConvFit::hwhmChanged(double val) {
const double peakCentre =
m_dblManager->value(m_properties["Lorentzian 1.PeakCentre"]);
// Always want FWHM to display as positive.
const double hwhm = std::fabs(val - peakCentre);
// Update the property
auto hwhmRangeSelector = m_uiForm.ppPlot->getRangeSelector("ConvFitHWHM");
hwhmRangeSelector->blockSignals(true);
m_dblManager->setValue(m_properties["Lorentzian 1.FWHM"], hwhm * 2);
hwhmRangeSelector->blockSignals(false);
}
void ConvFit::backgLevel(double val) {
m_dblManager->setValue(m_properties["BGA0"], val);
}
void ConvFit::updateRS(QtProperty *prop, double val) {
auto fitRangeSelector = m_uiForm.ppPlot->getRangeSelector("ConvFitRange");
auto backRangeSelector =
m_uiForm.ppPlot->getRangeSelector("ConvFitBackRange");
if (prop == m_properties["StartX"]) {
fitRangeSelector->setMinimum(val);
} else if (prop == m_properties["EndX"]) {
fitRangeSelector->setMaximum(val);
} else if (prop == m_properties["BGA0"]) {
backRangeSelector->setMinimum(val);
} else if (prop == m_properties["Lorentzian 1.FWHM"]) {
hwhmUpdateRS(val);
} else if (prop == m_properties["Lorentzian 1.PeakCentre"]) {
hwhmUpdateRS(m_dblManager->value(m_properties["Lorentzian 1.FWHM"]));
}
}
void ConvFit::hwhmUpdateRS(double val) {
const double peakCentre =
m_dblManager->value(m_properties["Lorentzian 1.PeakCentre"]);
auto hwhmRangeSelector = m_uiForm.ppPlot->getRangeSelector("ConvFitHWHM");
hwhmRangeSelector->setMinimum(peakCentre - val / 2);
hwhmRangeSelector->setMaximum(peakCentre + val / 2);
}
void ConvFit::checkBoxUpdate(QtProperty *prop, bool checked) {
UNUSED_ARG(checked);
if (prop == m_properties["UseDeltaFunc"])
updatePlotOptions();
else if (prop == m_properties["UseFABADA"]) {
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
if (checked) {
// FABADA needs a much higher iteration limit
m_dblManager->setValue(m_properties["MaxIterations"], 20000);
m_properties["FABADA"]->addSubProperty(m_properties["OutputFABADAChain"]);
m_properties["FABADA"]->addSubProperty(m_properties["FABADAChainLength"]);
m_properties["FABADA"]->addSubProperty(
m_properties["FABADAConvergenceCriteria"]);
m_properties["FABADA"]->addSubProperty(
m_properties["FABADAJumpAcceptanceRate"]);
} else {
m_dblManager->setValue(m_properties["MaxIterations"], 500);
m_properties["FABADA"]->removeSubProperty(
m_properties["OutputFABADAChain"]);
m_properties["FABADA"]->removeSubProperty(
m_properties["FABADAChainLength"]);
m_properties["FABADA"]->removeSubProperty(
m_properties["FABADAConvergenceCriteria"]);
m_properties["FABADA"]->removeSubProperty(
m_properties["FABADAJumpAcceptanceRate"]);
void ConvFit::fitContextMenu(const QPoint &) {
QtBrowserItem *item(NULL);
item = m_cfTree->currentItem();
// is it a fit property ?
QtProperty *prop = item->property();
if (prop == m_properties["StartX"] || prop == m_properties["EndX"])
return;
// is it already fixed?
bool fixed = prop->propertyManager() != m_dblManager;
if (fixed && prop->propertyManager() != m_stringManager)
return;
// Create the menu
QMenu *menu = new QMenu("ConvFit", m_cfTree);
QAction *action;
if (!fixed) {
action = new QAction("Fix", m_parentWidget);
connect(action, SIGNAL(triggered()), this, SLOT(fixItem()));
} else {
action = new QAction("Remove Fix", m_parentWidget);
connect(action, SIGNAL(triggered()), this, SLOT(unFixItem()));
// Show the menu
menu->popup(QCursor::pos());
}
void ConvFit::fixItem() {
QtBrowserItem *item = m_cfTree->currentItem();
// Determine what the property is.
QtProperty *prop = item->property();
QtProperty *fixedProp = m_stringManager->addProperty(prop->propertyName());
QtProperty *fprlbl = m_stringManager->addProperty("Fixed");
fixedProp->addSubProperty(fprlbl);
m_stringManager->setValue(fixedProp, prop->valueText());
item->parent()->property()->addSubProperty(fixedProp);
m_fixedProps[fixedProp] = prop;
item->parent()->property()->removeSubProperty(prop);
}
void ConvFit::unFixItem() {
QtBrowserItem *item = m_cfTree->currentItem();
QtProperty *prop = item->property();
if (prop->subProperties().empty()) {
item = item->parent();
prop = item->property();
}
item->parent()->property()->addSubProperty(m_fixedProps[prop]);
item->parent()->property()->removeSubProperty(prop);
m_fixedProps.remove(prop);
QtProperty *proplbl = prop->subProperties()[0];
delete proplbl;
delete prop;
}
void ConvFit::showTieCheckbox(QString fitType) {
m_uiForm.ckTieCentres->setVisible(fitType == "Two Lorentzians");
}
/**
* Gets a list of parameters for a given fit function.
* @return List fo parameters
*/
QStringList ConvFit::getFunctionParameters(QString functionName) {
QStringList parameters;
if (functionName.compare("Two Lorentzians") == 0) {
functionName = "Lorentzian";
IFunction_sptr func =
FunctionFactory::Instance().createFunction(functionName.toStdString());
for (size_t i = 0; i < func->nParams(); i++) {
parameters << QString::fromStdString(func->parameterName(i));
if (functionName.compare("One Lorentzian") == 0) {
functionName = "Lorentzian";
if (functionName.compare("Zero Lorentzians") == 0) {
parameters.append("Zero");
} else {
IFunction_sptr func =
FunctionFactory::Instance().createFunction(functionName.toStdString());
for (size_t i = 0; i < func->nParams(); i++) {
parameters << QString::fromStdString(func->parameterName(i));
}
return parameters;
}
/**
* Handles a new fit function being selected.
* @param functionName Name of new fit function
*/
void ConvFit::fitFunctionSelected(const QString &functionName) {
// remove previous parameters from tree
m_cfTree->removeProperty(m_properties["FitFunction1"]);
m_cfTree->removeProperty(m_properties["FitFunction2"]);
m_uiForm.ckPlotGuess->setChecked(false);
m_uiForm.ckTieCentres->setChecked(false);
// Add new parameter elements
int fitFunctionIndex = m_uiForm.cbFitType->currentIndex();
QStringList parameters = getFunctionParameters(functionName);
// Two Loremtzians Fit
if (fitFunctionIndex == 2) {
m_properties["FitFunction1"] = m_grpManager->addProperty("Lorentzian 1");
m_cfTree->addProperty(m_properties["FitFunction1"]);
m_properties["FitFunction2"] = m_grpManager->addProperty("Lorentzian 2");
m_cfTree->addProperty(m_properties["FitFunction2"]);
} else {
m_properties["FitFunction1"] = m_grpManager->addProperty(functionName);
m_cfTree->addProperty(m_properties["FitFunction1"]);
}
// No fit function parameters required for Zero
if (parameters[0].compare("Zero") != 0) {
// Two Lorentzians Fit
if (fitFunctionIndex == 2) {
for (auto it = parameters.begin(); it != parameters.end(); ++it) {
if (count == 3) {
propName = "Lorentzian 2";
}
QString name = propName + "." + *it;
m_properties[name] = m_dblManager->addProperty(*it);
if (QString(*it).compare("FWHM") == 0) {
m_dblManager->setValue(m_properties[name], 0.0175);
} else {
m_dblManager->setValue(m_properties[name], 0.0);
}
if (QString(*it).compare("Amplitude") == 0 ||
QString(*it).compare("Intensity") == 0) {
m_dblManager->setValue(m_properties[name], 1.0);
}
m_dblManager->setDecimals(m_properties[name], NUM_DECIMALS);
if (count < 3) {
m_properties["FitFunction1"]->addSubProperty(m_properties[name]);
} else {
m_properties["FitFunction2"]->addSubProperty(m_properties[name]);
}
count++;
}
} else {
if (fitFunctionIndex == 1) {
propName = "Lorentzian 1";
} else {
propName = functionName;
}
for (auto it = parameters.begin(); it != parameters.end(); ++it) {
QString name = propName + "." + *it;
m_properties[name] = m_dblManager->addProperty(*it);
if (QString(*it).compare("FWHM") == 0) {
m_dblManager->setValue(m_properties[name], 0.0175);
} else {
m_dblManager->setValue(m_properties[name], 0.0);
}
if (QString(*it).compare("Amplitude") == 0 ||
QString(*it).compare("Intensity") == 0) {
m_dblManager->setValue(m_properties[name], 1.0);
}
m_dblManager->setDecimals(m_properties[name], NUM_DECIMALS);
m_properties["FitFunction1"]->addSubProperty(m_properties[name]);
}
}
}
}
/**
* Populates the plot combobox
*/
void ConvFit::updatePlotOptions() {
m_uiForm.cbPlotType->clear();
const bool deltaFunction = m_blnManager->value(m_properties["UseDeltaFunc"]);
const int fitFunctionType = m_uiForm.cbFitType->currentIndex();
QStringList plotOptions;
plotOptions << "None";
if (deltaFunction && fitFunctionType < 3) {
plotOptions << "Height";
}
QStringList params = QStringList();
if (fitFunctionType != 2) {
params = getFunctionParameters(m_uiForm.cbFitType->currentText());
} else {
params = getFunctionParameters(QString("One Lorentzian"));
}
if (fitFunctionType != 0) {
plotOptions.append(params);
}
if (fitFunctionType != 0 || deltaFunction) {
plotOptions << "All";
}
m_uiForm.cbPlotType->addItems(plotOptions);
}
} // namespace IDA
} // namespace CustomInterfaces