Newer
Older
//----------------------------------------------------------------------
// Includes
//----------------------------------------------------------------------
#include "MantidAlgorithms/ConvertUnits.h"
Russell Taylor
committed
#include "MantidAPI/WorkspaceValidators.h"
#include "MantidAPI/AlgorithmFactory.h"
#include "MantidKernel/UnitFactory.h"
Russell Taylor
committed
#include "MantidDataObjects/Workspace2D.h"
Russell Taylor
committed
#include <cfloat>
#include <iostream>
namespace Mantid
{
namespace Algorithms
{
// Register with the algorithm factory
DECLARE_ALGORITHM(ConvertUnits)
using namespace Kernel;
using namespace API;
Russell Taylor
committed
using namespace DataObjects;
/// Default constructor
ConvertUnits::ConvertUnits() : Algorithm()
{
}
/// Destructor
ConvertUnits::~ConvertUnits()
{
}
/// Initialisation method
void ConvertUnits::init()
{
Russell Taylor
committed
CompositeValidator<> *wsValidator = new CompositeValidator<>;
wsValidator->add(new WorkspaceUnitValidator<>);
wsValidator->add(new HistogramValidator<>);
declareProperty(new WorkspaceProperty<API::MatrixWorkspace>("InputWorkspace","",Direction::Input,wsValidator),
"Name of the input workspace");
declareProperty(new WorkspaceProperty<API::MatrixWorkspace>("OutputWorkspace","",Direction::Output),
"Name of the output workspace, can be the same as the input" );
Russell Taylor
committed
// Extract the current contents of the UnitFactory to be the allowed values of the Target property
declareProperty("Target","",new ListValidator(UnitFactory::Instance().getKeys()),
"The name of the units to convert to (must be one of those registered in\n"
"the Unit Factory)");
declareProperty("Emode",0,new BoundedValidator<int>(0,2),
"The energy mode (0=elastic, 1=direct geometry, 2=indirect geometry,\n"
"default is elastic)");
BoundedValidator<double> *mustBePositive = new BoundedValidator<double>();
mustBePositive->setLower(0.0);
declareProperty("Efixed",0.0,mustBePositive,
"Value of fixed energy in meV : EI (emode=1) or EF (emode=2) . Must be\n"
"set if the target unit requires it (e.g. DeltaE)");
Russell Taylor
committed
declareProperty("AlignBins",false,
"Set AlignBins to true to insure that all spectra in the output workspace\n"
"have identical bin boundaries. Rebin with (with linear binning) is run,\n"
"where necessary, to ensure this (default false)");
}
/** Executes the algorithm
Russell Taylor
committed
* @throw std::runtime_error If the input workspace has not had its unit set
* @throw NotImplementedError If the input workspace contains point (not histogram) data
* @throw InstrumentDefinitionError If unable to calculate source-sample distance
*/
void ConvertUnits::exec()
{
Russell Taylor
committed
// Get the workspaces
Roman Tolchenov
committed
API::MatrixWorkspace_const_sptr inputWS = getProperty("InputWorkspace");
API::MatrixWorkspace_sptr outputWS = getProperty("OutputWorkspace");
// Check that the input workspace doesn't already have the desired unit.
// If it does, just set the output workspace to point to the input one.
Kernel::Unit_sptr inputUnit = inputWS->getAxis(0)->unit();
const std::string targetUnit = getPropertyValue("Target");
if ( inputUnit->unitID() == targetUnit )
{
g_log.information() << "Input workspace already has target unit (" << targetUnit
<< "), so just pointing the output workspace property to the input workspace." << std::endl;
setProperty("OutputWorkspace",boost::const_pointer_cast<MatrixWorkspace>(inputWS));
return;
}
// If input and output workspaces are not the same, create a new workspace for the output
Russell Taylor
committed
if (outputWS != inputWS ) outputWS = WorkspaceFactory::Instance().create(inputWS);
Russell Taylor
committed
// Set the final unit that our output workspace will have
Russell Taylor
committed
Kernel::Unit_const_sptr outputUnit = outputWS->getAxis(0)->unit() = UnitFactory::Instance().create(targetUnit);
Russell Taylor
committed
// Check whether the Y data of the input WS is dimensioned and set output WS flag to be same
Russell Taylor
committed
const bool distribution = outputWS->isDistribution(inputWS->isDistribution());
const unsigned int size = inputWS->blocksize();
Russell Taylor
committed
// Calculate the number of spectra in this workspace
const int numberOfSpectra = inputWS->size() / size;
int iprogress_step = numberOfSpectra / 100;
if (iprogress_step == 0) iprogress_step = 1;
Russell Taylor
committed
// Loop over the histograms (detector spectra)
for (int i = 0; i < numberOfSpectra; ++i) {
Russell Taylor
committed
Russell Taylor
committed
// Take the bin width dependency out of the Y & E data
if (distribution)
{
for (unsigned int j = 0; j < size; ++j)
{
const double width = std::abs( inputWS->dataX(i)[j+1] - inputWS->dataX(i)[j] );
outputWS->dataY(i)[j] = inputWS->dataY(i)[j]*width;
outputWS->dataE(i)[j] = inputWS->dataE(i)[j]*width;
}
}
else
{
// Just copy over
outputWS->dataY(i) = inputWS->dataY(i);
Russell Taylor
committed
outputWS->dataE(i) = inputWS->dataE(i);
Russell Taylor
committed
}
// Copy over the X data (no copying will happen if the two workspaces are the same)
Russell Taylor
committed
outputWS->dataX(i) = inputWS->readX(i);
{
progress( double(i)/numberOfSpectra/2 );
interruption_point();
}
Russell Taylor
committed
}
Russell Taylor
committed
// Check whether there is a quick conversion available
double factor, power;
Russell Taylor
committed
if ( inputUnit->quickConversion(*outputUnit,factor,power) )
Russell Taylor
committed
// If test fails, could also check whether a quick conversion in the opposite direction has been entered
{
convertQuickly(numberOfSpectra,outputWS,factor,power);
}
else
{
Russell Taylor
committed
convertViaTOF(numberOfSpectra,inputUnit,outputWS);
Russell Taylor
committed
}
Russell Taylor
committed
Russell Taylor
committed
// If the units conversion has flipped the ascending direction of X, reverse all the vectors
if (outputWS->dataX(0).size() && ( outputWS->dataX(0).front() > outputWS->dataX(0).back()
|| outputWS->dataX(numberOfSpectra/2).front() > outputWS->dataX(numberOfSpectra/2).back() ) )
Russell Taylor
committed
{
this->reverse(outputWS);
}
Roman Tolchenov
committed
Russell Taylor
committed
// Need to lop bins off if converting to energy transfer
/* This is an ugly test - could be made more general by testing for DBL_MAX
values at the ends of all spectra, but that would be less efficient */
if (targetUnit.find("Delta")==0) outputWS = this->removeUnphysicalBins(outputWS);
Russell Taylor
committed
// Rebin the data to common bins if requested, and if necessary
bool alignBins = getProperty("AlignBins");
Russell Taylor
committed
if (alignBins && !WorkspaceHelpers::commonBoundaries(outputWS))
Russell Taylor
committed
outputWS = this->alignBins(outputWS);
Russell Taylor
committed
// If appropriate, put back the bin width division into Y/E.
if (distribution)
{
for (int i = 0; i < numberOfSpectra; ++i) {
// There must be good case for having a 'divideByBinWidth'/'normalise' algorithm...
for (unsigned int j = 0; j < size; ++j)
{
const double width = std::abs( outputWS->dataX(i)[j+1] - outputWS->dataX(i)[j] );
Roman Tolchenov
committed
outputWS->dataY(i)[j] = outputWS->dataY(i)[j]/width;
outputWS->dataE(i)[j] = outputWS->dataE(i)[j]/width;
Russell Taylor
committed
}
}
}
Russell Taylor
committed
Russell Taylor
committed
setProperty("OutputWorkspace",outputWS);
return;
Russell Taylor
committed
}
/** Convert the workspace units according to a simple output = a * (input^b) relationship
Russell Taylor
committed
* @param numberOfSpectra The number of Spectra
* @param outputWS the output workspace
* @param factor the conversion factor a to apply
* @param power the Power b to apply to the conversion
*/
Roman Tolchenov
committed
void ConvertUnits::convertQuickly(const int& numberOfSpectra, API::MatrixWorkspace_sptr outputWS, const double& factor, const double& power)
Russell Taylor
committed
{
Russell Taylor
committed
// See if the workspace has common bins - if so the X vector can be common
// First a quick check using the validator
CommonBinsValidator<> sameBins;
Steve Williams
committed
if ( sameBins.isValid(outputWS) == "" )
Russell Taylor
committed
{
// Only do the full check if the quick one passes
if ( WorkspaceHelpers::commonBoundaries(outputWS) )
{
// Calculate the new (common) X values
std::vector<double>::iterator iter;
for (iter = outputWS->dataX(0).begin(); iter != outputWS->dataX(0).end(); ++iter)
{
*iter = factor * std::pow(*iter,power);
}
// If this is a Workspace2D then loop over the other spectra passing in the pointer
Workspace2D_sptr WS2D = boost::dynamic_pointer_cast<Workspace2D>(outputWS);
if (WS2D)
{
Histogram1D::RCtype xVals;
xVals.access() = outputWS->dataX(0);
for (int j = 1; j < numberOfSpectra; ++j)
{
WS2D->setX(j,xVals);
if ( j % 100 == 0)
{
progress( 0.5 + double(j)/numberOfSpectra/2 );
interruption_point();
}
Russell Taylor
committed
}
}
return;
}
}
// If we get to here then the bins weren't aligned and each spectrum is unique
Russell Taylor
committed
// Loop over the histograms (detector spectra)
Russell Taylor
committed
for (int k = 0; k < numberOfSpectra; ++k) {
Russell Taylor
committed
std::vector<double>::iterator it;
Russell Taylor
committed
for (it = outputWS->dataX(k).begin(); it != outputWS->dataX(k).end(); ++it)
Russell Taylor
committed
{
*it = factor * std::pow(*it,power);
}
}
Russell Taylor
committed
return;
Russell Taylor
committed
}
/** Convert the workspace units using TOF as an intermediate step in the conversion
Russell Taylor
committed
* @param numberOfSpectra The number of Spectra
Russell Taylor
committed
* @param fromUnit The unit of the input workspace
* @param outputWS The output workspace
Russell Taylor
committed
*/
Roman Tolchenov
committed
void ConvertUnits::convertViaTOF(const int& numberOfSpectra, Kernel::Unit_const_sptr fromUnit, API::MatrixWorkspace_sptr outputWS)
Russell Taylor
committed
{
// Get a pointer to the instrument contained in the workspace
IInstrument_const_sptr instrument = outputWS->getInstrument();
Russell Taylor
committed
Russell Taylor
committed
// Get the unit object for each workspace
Russell Taylor
committed
Kernel::Unit_const_sptr outputUnit = outputWS->getAxis(0)->unit();
Russell Taylor
committed
// Get the distance between the source and the sample (assume in metres)
Russell Taylor
committed
Geometry::IObjComponent_const_sptr source = instrument->getSource();
Geometry::IObjComponent_const_sptr sample = instrument->getSample();
double l1;
Russell Taylor
committed
try
{
Russell Taylor
committed
l1 = source->getDistance(*sample);
g_log.debug() << "Source-sample distance: " << l1 << std::endl;
Russell Taylor
committed
}
catch (Exception::NotFoundError e)
{
g_log.error("Unable to calculate source-sample distance");
Russell Taylor
committed
throw Exception::InstrumentDefinitionError("Unable to calculate source-sample distance", outputWS->getTitle());
}
Russell Taylor
committed
const int notFailed = -99;
int failedDetectorIndex = notFailed;
// Not doing anything with the Y vector in to/fromTOF yet, so just pass empty vector
std::vector<double> emptyVec;
Russell Taylor
committed
// Loop over the histograms (detector spectra)
for (int i = 0; i < numberOfSpectra; ++i) {
Russell Taylor
committed
Russell Taylor
committed
/// @todo No implementation for any of these in the geometry yet so using properties
const int emode = getProperty("Emode");
const double efixed = getProperty("Efixed");
/// @todo Don't yet consider hold-off (delta)
const double delta = 0.0;
Russell Taylor
committed
try {
Russell Taylor
committed
// Now get the detector object for this histogram
Geometry::IDetector_const_sptr det = outputWS->getDetector(i);
// Get the sample-detector distance for this detector (in metres)
Russell Taylor
committed
double l2, twoTheta;
if ( ! det->isMonitor() )
{
Russell Taylor
committed
l2 = det->getDistance(*sample);
Russell Taylor
committed
// The scattering angle for this detector (in radians).
Russell Taylor
committed
twoTheta = outputWS->detectorTwoTheta(det);
Russell Taylor
committed
}
Russell Taylor
committed
else // If this is a monitor then make l2 = source-detector distance, l1=0 and twoTheta=0
Russell Taylor
committed
{
Russell Taylor
committed
l2 = det->getDistance(*source);
Russell Taylor
committed
l2 = l2-l1;
Russell Taylor
committed
twoTheta = 0.0;
Russell Taylor
committed
// Energy transfer is meaningless for a monitor, so set l2 to 0.
if (outputUnit->unitID().find("Delta")==0) l2 = 0.0;
Russell Taylor
committed
}
if (failedDetectorIndex != notFailed)
{
g_log.information() << "Unable to calculate sample-detector[" << failedDetectorIndex << "-" << i-1 << "] distance. Zeroing spectrum." << std::endl;
failedDetectorIndex = notFailed;
}
Russell Taylor
committed
// Convert the input unit to time-of-flight
Russell Taylor
committed
fromUnit->toTOF(outputWS->dataX(i),emptyVec,l1,l2,twoTheta,emode,efixed,delta);
// Convert from time-of-flight to the desired unit
Russell Taylor
committed
outputUnit->fromTOF(outputWS->dataX(i),emptyVec,l1,l2,twoTheta,emode,efixed,delta);
Russell Taylor
committed
} catch (Exception::NotFoundError e) {
// Get to here if exception thrown when calculating distance to detector
if (failedDetectorIndex == notFailed)
{
failedDetectorIndex = i;
}
outputWS->dataX(i).assign(outputWS->dataX(i).size(),0.0);
outputWS->dataY(i).assign(outputWS->dataY(i).size(),0.0);
outputWS->dataE(i).assign(outputWS->dataE(i).size(),0.0);
}
if ( i % 100 == 0)
{
progress( 0.5 + double(i)/numberOfSpectra/2 );
interruption_point();
}
} // loop over spectra
Russell Taylor
committed
if (failedDetectorIndex != notFailed)
{
g_log.information() << "Unable to calculate sample-detector[" << failedDetectorIndex << "-" << numberOfSpectra-1 << "] distance. Zeroing spectrum." << std::endl;
}
Russell Taylor
committed
}
Russell Taylor
committed
/// Calls Rebin as a sub-algorithm to align the bins
Roman Tolchenov
committed
API::MatrixWorkspace_sptr ConvertUnits::alignBins(API::MatrixWorkspace_sptr workspace)
Russell Taylor
committed
{
// Create a Rebin child algorithm
IAlgorithm_sptr childAlg = createSubAlgorithm("Rebin");
Roman Tolchenov
committed
childAlg->setProperty<MatrixWorkspace_sptr>("InputWorkspace", workspace);
Russell Taylor
committed
childAlg->setProperty<std::vector<double> >("params",this->calculateRebinParams(workspace));
// Now execute the sub-algorithm. Catch and log any error
try
{
childAlg->execute();
}
Russell Taylor
committed
{
g_log.error("Unable to successfully run Rebinning sub-algorithm");
throw;
}
if ( ! childAlg->isExecuted() )
{
g_log.error("Unable to successfully run Rebinning sub-algorithm");
throw std::runtime_error("Unable to successfully run Rebinning sub-algorithm");
}
else
{
return childAlg->getProperty("OutputWorkspace");
}
}
/// The Rebin parameters should cover the full range of the converted unit, with the same number of bins
Roman Tolchenov
committed
const std::vector<double> ConvertUnits::calculateRebinParams(const API::MatrixWorkspace_const_sptr workspace) const
Russell Taylor
committed
{
// Need to loop round and find the full range
double XMin = DBL_MAX, XMax = DBL_MIN;
const int numSpec = workspace->getNumberHistograms();
for (int i = 0; i < numSpec; ++i)
{
try {
Russell Taylor
committed
Geometry::IDetector_const_sptr det = workspace->getDetector(i);
Russell Taylor
committed
if ( !det->isMasked() )
Russell Taylor
committed
{
const std::vector<double> &XData = workspace->readX(i);
Russell Taylor
committed
if ( XData.front() < XMin ) XMin = XData.front();
if ( XData.back() > XMax ) XMax = XData.back();
}
} catch (Exception::NotFoundError) {} //Do nothing
}
const double step = ( XMax - XMin ) / workspace->blocksize();
std::vector<double> retval;
retval.push_back(XMin);
retval.push_back(step);
retval.push_back(XMax);
return retval;
}
Roman Tolchenov
committed
void ConvertUnits::reverse(API::MatrixWorkspace_sptr WS)
Roman Tolchenov
committed
{
Russell Taylor
committed
const int numberOfSpectra = WS->getNumberHistograms();
Roman Tolchenov
committed
// Only do the full check if the quick one passes
if ( WorkspaceHelpers::commonBoundaries(WS) )
Roman Tolchenov
committed
{
std::reverse(WS->dataX(0).begin(),WS->dataX(0).end());
Russell Taylor
committed
std::reverse(WS->dataY(0).begin(),WS->dataY(0).end());
std::reverse(WS->dataE(0).begin(),WS->dataE(0).end());
Roman Tolchenov
committed
// If this is a Workspace2D then loop over the other spectra passing in the pointer
Workspace2D_sptr WS2D = boost::dynamic_pointer_cast<Workspace2D>(WS);
if (WS2D)
{
Histogram1D::RCtype xVals;
xVals.access() = WS->dataX(0);
for (int j = 1; j < numberOfSpectra; ++j)
{
WS2D->setX(j,xVals);
std::reverse(WS->dataY(j).begin(),WS->dataY(j).end());
std::reverse(WS->dataE(j).begin(),WS->dataE(j).end());
Russell Taylor
committed
if ( j % 100 == 0) interruption_point();
Roman Tolchenov
committed
}
}
}
else
{
Russell Taylor
committed
for (int j = 0; j < numberOfSpectra; ++j)
{
std::reverse(WS->dataX(j).begin(),WS->dataX(j).end());
std::reverse(WS->dataY(j).begin(),WS->dataY(j).end());
std::reverse(WS->dataE(j).begin(),WS->dataE(j).end());
if ( j % 100 == 0) interruption_point();
}
Roman Tolchenov
committed
}
}
Russell Taylor
committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
/** Unwieldy method which removes bins which lie in a physically inaccessible region.
* This presently only occurs in conversions to energy transfer, where the initial
* unit conversion sets them to +/-DBL_MAX. This method removes those bins, leading
* to a workspace which is smaller than the input one.
* As presently implemented, it unfortunately requires testing for and knowledge of
* aspects of the particular units conversion instead of keeping all that in the
* units class. It could be made more general, but that would be less efficient.
* @param workspace The workspace after initial unit conversion
* @return The workspace after bins have been removed
*/
API::MatrixWorkspace_sptr ConvertUnits::removeUnphysicalBins(const Mantid::API::MatrixWorkspace_const_sptr workspace)
{
MatrixWorkspace_sptr result;
// If this is a Workspace2D, get the spectra axes for copying in the spectraNo later
Axis *specAxis = NULL, *outAxis = NULL;
if (workspace->axes() > 1) specAxis = workspace->getAxis(1);
const int numSpec = workspace->getNumberHistograms();
const int emode = getProperty("Emode");
if (emode==1)
{
// First the easy case of direct instruments, where all spectra will need the
// same number of bins removed
const MantidVec& X0 = workspace->readX(0);
MantidVec::const_iterator start = std::lower_bound(X0.begin(),X0.end(),-1.0e-10*DBL_MAX);
MantidVec::difference_type bins = X0.end() - start;
MantidVec::difference_type first = start - X0.begin();
result = WorkspaceFactory::Instance().create(workspace,numSpec,bins,bins-1);
if (specAxis) outAxis = result->getAxis(1);
for (int i = 0; i < numSpec; ++i)
{
const MantidVec& X = workspace->readX(i);
const MantidVec& Y = workspace->readY(i);
const MantidVec& E = workspace->readE(i);
result->dataX(i).assign(X.begin()+first,X.end());
result->dataY(i).assign(Y.begin()+first,Y.end());
result->dataE(i).assign(E.begin()+first,E.end());
if (specAxis) outAxis->spectraNo(i) = specAxis->spectraNo(i);
}
}
else if (emode==2)
{
// Now the indirect instruments. In this case we could want to keep a different
// number of bins in each spectrum because, in general L2 is different for each
// one.
// Thus, we first need to loop to find largest 'good' range
Russell Taylor
committed
std::vector<MantidVec::difference_type> lastBins(numSpec);
int maxBins = 0;
for (int i = 0; i < numSpec; ++i)
{
const MantidVec& X = workspace->readX(i);
MantidVec::const_iterator end = std::lower_bound(X.begin(),X.end(),1.0e-10*DBL_MAX);
MantidVec::difference_type bins = end - X.begin();
lastBins[i] = bins;
if (bins > maxBins) maxBins = bins;
}
g_log.debug() << maxBins << std::endl;
Russell Taylor
committed
// Now create an output workspace large enough for the longest 'good' range
result = WorkspaceFactory::Instance().create(workspace,numSpec,maxBins,maxBins-1);
if (specAxis) outAxis = result->getAxis(1);
// Next, loop again copying in the correct range for each spectrum
for (int j = 0; j < numSpec; ++j)
{
const MantidVec& X = workspace->readX(j);
const MantidVec& Y = workspace->readY(j);
const MantidVec& E = workspace->readE(j);
MantidVec& Xnew = result->dataX(j);
MantidVec& Ynew = result->dataY(j);
MantidVec& Enew = result->dataE(j);
int k;
for (k = 0; k < lastBins[j]-1; ++k)
{
Xnew[k] = X[k];
Ynew[k] = Y[k];
Enew[k] = E[k];
}
Russell Taylor
committed
// If necessary, add on some fake values to the end of the X array (Y&E will be zero)
if (k < maxBins)
{
for (int l=k; l < maxBins; ++l)
{
Xnew[l] = X[k]+1+l-k;
}
}
if (specAxis) outAxis->spectraNo(j) = specAxis->spectraNo(j);
}
}
return result;
}
} // namespace Algorithm
} // namespace Mantid