"Framework/Kernel/src/DllOpen.cpp" did not exist on "5cbaae9c0a74a34ca86e330937b3933a05dedde1"
Newer
Older
Gigg, Martyn Anthony
committed
#include "MantidGeometry/Crystal/OrientedLattice.h"
Gigg, Martyn Anthony
committed
namespace Mantid {
namespace Geometry {
using Mantid::Kernel::DblMatrix;
using Mantid::Kernel::V3D;
namespace {
const double TWO_PI = 2. * M_PI;
}
/** Default constructor
@param Umatrix :: orientation matrix U. By default this will be identity matrix
*/
OrientedLattice::OrientedLattice(const DblMatrix &Umatrix) : UnitCell() {
if (Umatrix.isRotation()) {
U = Umatrix;
UB = U * getB();
} else
throw std::invalid_argument("U is not a proper rotation");
}
/** Constructor
@param _a :: lattice parameter \f$ a \f$ with \f$\alpha = \beta = \gamma =
90^\circ \f$
@param _b :: lattice parameter \f$ b \f$ with \f$\alpha = \beta = \gamma =
90^\circ \f$
@param _c :: lattice parameter \f$ c \f$ with \f$\alpha = \beta = \gamma =
90^\circ \f$
@param Umatrix :: orientation matrix U
*/
OrientedLattice::OrientedLattice(const double _a, const double _b,
const double _c, const DblMatrix &Umatrix)
: UnitCell(_a, _b, _c) {
if (Umatrix.isRotation()) {
U = Umatrix;
UB = U * getB();
} else
throw std::invalid_argument("U is not a proper rotation");
}
/** Constructor
@param _a :: lattice parameter \f$ a \f$
@param _b :: lattice parameter \f$ b \f$
@param _c :: lattice parameter \f$ c \f$
@param _alpha :: lattice parameter \f$ \alpha \f$
@param _beta :: lattice parameter \f$ \beta \f$
@param _gamma :: lattice parameter \f$ \gamma \f$
@param angleunit :: units for angle, of type #AngleUnits. Default is degrees.
@param Umatrix :: orientation matrix U
*/
OrientedLattice::OrientedLattice(const double _a, const double _b,
const double _c, const double _alpha,
const double _beta, const double _gamma,
const DblMatrix &Umatrix, const int angleunit)
: UnitCell(_a, _b, _c, _alpha, _beta, _gamma, angleunit) {
if (Umatrix.isRotation()) {
U = Umatrix;
UB = U * getB();
} else
throw std::invalid_argument("U is not a proper rotation");
}
/** UnitCell constructor
@param uc :: UnitCell
@param Umatrix :: orientation matrix U. By default this will be identity matrix
*/
OrientedLattice::OrientedLattice(const UnitCell &uc, const DblMatrix &Umatrix)
: UnitCell(uc), U(Umatrix) {
if (Umatrix.isRotation()) {
U = Umatrix;
UB = U * getB();
} else
throw std::invalid_argument("U is not a proper rotation");
}
/// Get the U matrix
/// @return U :: U orientation matrix
const DblMatrix &OrientedLattice::getU() const { return U; }
/** Get the UB matrix.
The UB Matrix uses the inelastic convention:
q = UB . (hkl)
where q is the wavevector transfer of the LATTICE (not the neutron).
and |q| = 1.0/d_spacing
@return UB :: UB orientation matrix
*/
const DblMatrix &OrientedLattice::getUB() const { return UB; }
/** Sets the U matrix
@param newU :: the new U matrix
@param force :: If true, do not check that U matrix is valid
void OrientedLattice::setU(const DblMatrix &newU, const bool force) {
if (force || newU.isRotation()) {
U = newU;
UB = U * getB();
} else
throw std::invalid_argument("U is not a proper rotation");
}
/** Sets the UB matrix and recalculates lattice parameters
@param newUB :: the new UB matrix*/
void OrientedLattice::setUB(const DblMatrix &newUB) {
//check if determinant is close to 0. The 1e-10 value is arbitrary
if (std::fabs(newUB.determinant()) > 1e-10) {
UB = newUB;
DblMatrix newGstar, B;
newGstar = newUB.Tprime() * newUB;
this->recalculateFromGstar(newGstar);
B = this->getB();
B.Invert();
U = newUB * B;
} else
throw std::invalid_argument("determinant of UB is too close to 0");
}
/** Calculate the hkl corresponding to a given Q-vector
* @param Q :: Q-vector in $AA^-1 in the sample frame
* @return a V3D with H,K,L
*/
V3D OrientedLattice::hklFromQ(const V3D &Q) const {
DblMatrix UBinv = this->getUB();
UBinv.Invert();
V3D out = UBinv * Q / TWO_PI; // transform back to HKL
return out;
}
/** Calculate the hkl corresponding to a given Q-vector
* @param hkl a V3D with H,K,L
* @return Q-vector in $AA^-1 in the sample frame
*/
V3D OrientedLattice::qFromHKL(const V3D &hkl) const {
return UB * hkl * TWO_PI;
}
/** gets a vector along beam direction when goniometers are at 0. Note, this
vector is not unique, but
all vectors can be obtaineb by multiplying with a scalar
@return u :: V3D vector along beam direction*/
Kernel::V3D OrientedLattice::getuVector() const {
V3D z(0, 0, 1);
DblMatrix UBinv = UB;
UBinv.Invert();
return UBinv * z;
}
/** gets a vector in the horizontal plane, perpendicular to the beam direction
when
goniometers are at 0. Note, this vector is not unique, but all vectors can be
obtaineb by multiplying with a scalar
@return v :: V3D vector perpendicular to the beam direction, in the horizontal
plane*/
Kernel::V3D OrientedLattice::getvVector() const {
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
V3D x(1, 0, 0);
DblMatrix UBinv = UB;
UBinv.Invert();
return UBinv * x;
}
/** Set the U rotation matrix, to provide the transformation, which translate
*an
* arbitrary vector V expressed in RLU (hkl)
* into another coordinate system defined by vectors u and v, expressed in RLU
*(hkl)
* Author: Alex Buts
* @param u :: first vector of new coordinate system (in hkl units)
* @param v :: second vector of the new coordinate system
* @return the U matrix calculated
* The transformation from old coordinate system to new coordinate system is
*performed by
* the whole UB matrix
**/
const DblMatrix &OrientedLattice::setUFromVectors(const V3D &u, const V3D &v) {
const DblMatrix &BMatrix = this->getB();
V3D buVec = BMatrix * u;
V3D bvVec = BMatrix * v;
// try to make an orthonormal system
if (buVec.norm2() < 1e-10)
throw std::invalid_argument("|B.u|~0");
if (bvVec.norm2() < 1e-10)
throw std::invalid_argument("|B.v|~0");
buVec.normalize(); // 1st unit vector, along Bu
V3D bwVec = buVec.cross_prod(bvVec);
if (bwVec.normalize() < 1e-5)
throw std::invalid_argument(
"u and v are parallel"); // 3rd unit vector, perpendicular to Bu,Bv
bvVec = bwVec.cross_prod(
buVec); // 2nd unit vector, perpendicular to Bu, in the Bu,Bv plane
DblMatrix tau(3, 3), lab(3, 3), U(3, 3);
/*lab = U tau
/ 0 1 0 \ /bu[0] bv[0] bw[0]\
| 0 0 1 | = U |bu[1] bv[1] bw[1]|
\ 1 0 0 / \bu[2] bv[2] bw[2]/
Janik Zikovsky
committed
*/
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
lab[0][1] = 1.;
lab[1][2] = 1.;
lab[2][0] = 1.;
tau[0][0] = buVec[0];
tau[0][1] = bvVec[0];
tau[0][2] = bwVec[0];
tau[1][0] = buVec[1];
tau[1][1] = bvVec[1];
tau[1][2] = bwVec[1];
tau[2][0] = buVec[2];
tau[2][1] = bvVec[2];
tau[2][2] = bwVec[2];
tau.Invert();
U = lab * tau;
this->setU(U);
return getU();
}
/** Save the object to an open NeXus file.
* @param file :: open NeXus file
* @param group :: name of the group to create
*/
void OrientedLattice::saveNexus(::NeXus::File *file,
const std::string &group) const {
file->makeGroup(group, "NXcrystal", 1);
file->writeData("unit_cell_a", this->a());
file->writeData("unit_cell_b", this->b());
file->writeData("unit_cell_c", this->c());
file->writeData("unit_cell_alpha", this->alpha());
file->writeData("unit_cell_beta", this->beta());
file->writeData("unit_cell_gamma", this->gamma());
// Save the UB matrix
std::vector<double> ub = this->UB.getVector();
std::vector<int> dims(2, 3); // 3x3 matrix
file->writeData("orientation_matrix", ub, dims);
file->closeGroup();
}
/** Load the object from an open NeXus file.
* @param file :: open NeXus file
* @param group :: name of the group to open
*/
void OrientedLattice::loadNexus(::NeXus::File *file, const std::string &group) {
file->openGroup(group, "NXcrystal");
std::vector<double> ub;
file->readData("orientation_matrix", ub);
// Turn into a matrix
DblMatrix ubMat(ub);
// This will set the lattice parameters and the U matrix:
this->setUB(ubMat);
file->closeGroup();
}
/**
Get the UB matrix corresponding to the real space edge vectors a,b,c.
The inverse of the matrix with vectors a,b,c as rows will be stored in UB.
@param UB A 3x3 matrix that will be set to the UB matrix.
@param a_dir The real space edge vector for side a of the unit cell
@param b_dir The real space edge vector for side b of the unit cell
@param c_dir The real space edge vector for side c of the unit cell
@return true if UB was set to the new matrix and false if UB could not be
set since the matrix with a,b,c as rows could not be inverted.
*/
bool OrientedLattice::GetUB(DblMatrix &UB, const V3D &a_dir, const V3D &b_dir,
const V3D &c_dir) {
if (UB.numRows() != 3 || UB.numCols() != 3) {
throw std::invalid_argument("Find_UB(): UB matrix NULL or not 3X3");
UB.setRow(0, a_dir);
UB.setRow(1, b_dir);
UB.setRow(2, c_dir);
try {
UB.Invert();
} catch (...) {
return false;
return true;
}
/**
Get the real space edge vectors a,b,c corresponding to the UB matrix.
The rows of the inverse of the matrix with will be stored in a_dir,
b_dir, c_dir.
@param UB A 3x3 matrix containing a UB matrix.
@param a_dir Will be set to the real space edge vector for side a
of the unit cell
@param b_dir Will be set to the real space edge vector for side b
of the unit cell
@param c_dir Will be set to the real space edge vector for side c
of the unit cell
@return true if the inverse of the matrix UB could be found and the
a_dir, b_dir and c_dir vectors have been set to the rows of
UB inverse.
*/
bool OrientedLattice::GetABC(const DblMatrix &UB, V3D &a_dir, V3D &b_dir,
V3D &c_dir) {
if (UB.numRows() != 3 || UB.numCols() != 3) {
throw std::invalid_argument("GetABC(): UB matrix NULL or not 3X3");
Janik Zikovsky
committed
DblMatrix UB_inverse(UB);
try {
UB_inverse.Invert();
} catch (...) {
return false;
a_dir(UB_inverse[0][0], UB_inverse[0][1], UB_inverse[0][2]);
b_dir(UB_inverse[1][0], UB_inverse[1][1], UB_inverse[1][2]);
c_dir(UB_inverse[2][0], UB_inverse[2][1], UB_inverse[2][2]);
return true;
}
} // Namespace Geometry
} // Namespace Mantid