Newer
Older
#include "MantidMDAlgorithms/SXDMDNorm.h"
#include "MantidAPI/WorkspaceValidators.h"
#include "MantidDataObjects/EventWorkspace.h"
#include "MantidMDEvents/MDEventWorkspace.h"
#include "MantidMDEvents/MDHistoWorkspace.h"
#include "MantidKernel/TimeSeriesProperty.h"
Gigg, Martyn Anthony
committed
#include "MantidKernel/VectorHelper.h"
using Mantid::Kernel::Direction;
using Mantid::API::WorkspaceProperty;
using namespace Mantid::MDEvents;
using namespace Mantid::API;
using namespace Mantid::Kernel;
//function to compare two intersections (h,k,l,Momentum) by Momentum
bool compareMomentum(const Mantid::Kernel::VMD &v1, const Mantid::Kernel::VMD &v2)
{
return (v1[3] < v2[3]);
}
}
// Register the algorithm into the AlgorithmFactory
DECLARE_ALGORITHM(SXDMDNorm)
//----------------------------------------------------------------------------------------------
SXDMDNorm::SXDMDNorm() :
m_nDims(0), m_normWS(), m_inputWS(), m_hmin(0.0f), m_hmax(0.0f),
m_kmin(0.0f), m_kmax(0.0f), m_lmin(0.0f), m_lmax(0.0f), m_hIntegrated(true),
m_kIntegrated(true), m_lIntegrated(true), m_rubw(3,3),
m_kiMin(0.0), m_kiMax(EMPTY_DBL()), m_hIdx(-1), m_kIdx(-1), m_lIdx(-1),
m_hX(), m_kX(), m_lX(), m_samplePos(), m_beamDir()
{
}
/// Algorithm's version for identification. @see Algorithm::version
int SXDMDNorm::version() const { return 1; }
/// Algorithm's category for identification. @see Algorithm::category
const std::string SXDMDNorm::category() const { return "MDAlgorithms"; }
/// Algorithm's summary for use in the GUI and help. @see Algorithm::summary
const std::string SXDMDNorm::summary() const
{
return "Calculate normalization for an MDEvent workspace for single crystal diffraction.";
}
/// Algorithm's name for use in the GUI and help. @see Algorithm::name
const std::string SXDMDNorm::name() const { return "SXDMDNorm"; }
//----------------------------------------------------------------------------------------------
/**
* Initialize the algorithm's properties.
*/
void SXDMDNorm::init()
{
declareProperty(new WorkspaceProperty<IMDEventWorkspace>("InputWorkspace","",Direction::Input),
"An input MDWorkspace.");
std::string dimChars = getDimensionChars();
// --------------- Axis-aligned properties ---------------------------------------
for (size_t i = 0; i<dimChars.size(); i++)
std::string dim(" "); dim[0] = dimChars[i];
std::string propName = "AlignedDim" + dim;
declareProperty(new PropertyWithValue<std::string>(propName,"",Direction::Input),
"Binning parameters for the " + Strings::toString(i) + "th dimension.\n"
"Enter it as a comma-separated list of values with the format: 'name,minimum,maximum,number_of_bins'. Leave blank for NONE.");
auto wsValidator = boost::make_shared<CompositeValidator>();
wsValidator->add<WorkspaceUnitValidator>("Momentum");
wsValidator->add<InstrumentValidator>();
wsValidator->add<CommonBinsValidator>();
declareProperty(new WorkspaceProperty<>("FluxWorkspace","",Direction::Input,wsValidator),
"An input workspace containing momentum dependent flux.");
declareProperty(new WorkspaceProperty<>("SolidAngleWorkspace","",Direction::Input,wsValidator->clone()),
"An input workspace containing momentum integrated vanadium (a measure of the solid angle).");
declareProperty(new WorkspaceProperty<Workspace>("OutputWorkspace","",Direction::Output),
"A name for the output data MDHistoWorkspace.");
declareProperty(new WorkspaceProperty<Workspace>("OutputNormalizationWorkspace","",Direction::Output),
"A name for the output normalization MDHistoWorkspace.");
}
//----------------------------------------------------------------------------------------------
auto outputWS = binInputWS();
setProperty<Workspace_sptr>("OutputWorkspace", outputWS);
createNormalizationWS(*outputWS);
setProperty("OutputNormalizationWorkspace", m_normWS);
// Check for other dimensions if we could measure anything in the original data
bool skipNormalization = false;
const std::vector<coord_t> otherValues = getValuesFromOtherDimensions(skipNormalization);
const auto affineTrans = findIntergratedDimensions(otherValues, skipNormalization);
cacheDimensionXValues();
calculateNormalization(otherValues, affineTrans);
g_log.warning("Binning limits are outside the limits of the MDWorkspace. Not applying normalization.");
/**
* Set up starting values for cached variables
*/
void SXDMDNorm::cacheInputs()
{
m_inputWS = getProperty("InputWorkspace");
if( inputEnergyMode() != "Elastic" )
{
throw std::invalid_argument("Invalid energy transfer mode. Algorithm currently only supports elastic data.");
}
// Min/max dimension values
const auto hdim(m_inputWS->getDimension(0)), kdim(m_inputWS->getDimension(1)),
ldim(m_inputWS->getDimension(2));
m_hmin = hdim->getMinimum();
m_kmin = kdim->getMinimum();
m_lmin = ldim->getMinimum();
m_hmax = hdim->getMaximum();
m_kmax = kdim->getMaximum();
m_lmax = ldim->getMaximum();
const auto & exptInfoZero = *(m_inputWS->getExperimentInfo(0));
auto source = exptInfoZero.getInstrument()->getSource();
auto sample = exptInfoZero.getInstrument()->getSample();
if(source == NULL || sample == NULL)
{
throw Kernel::Exception::InstrumentDefinitionError("Instrument not sufficiently defined: failed to get source and/or sample");
}
m_samplePos = sample->getPos();
m_beamDir = m_samplePos - source->getPos();
m_beamDir.normalize();
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/**
* Currently looks for the ConvertToMD algorithm in the history
* @return A string donating the energy transfer mode of the input workspace
*/
std::string SXDMDNorm::inputEnergyMode() const
{
const auto & hist = m_inputWS->getHistory();
const size_t nalgs = hist.size();
const auto & lastAlgorithm = hist.lastAlgorithm();
std::string emode("");
if(lastAlgorithm->name() == "ConvertToMD")
{
emode = lastAlgorithm->getPropertyValue("dEAnalysisMode");
}
else if ( (lastAlgorithm->name() == "Load" || hist.lastAlgorithm()->name() == "LoadMD") &&
hist.getAlgorithmHistory(nalgs - 2)->name() == "ConvertToMD" )
{
//get dEAnalysisMode
PropertyHistories histvec = hist.getAlgorithmHistory(nalgs - 2)->getProperties();
for(auto it = histvec.begin(); it != histvec.end(); ++it)
{
if((*it)->name() == "dEAnalysisMode")
{
emode = (*it)->value();
break;
}
}
}
else
{
throw std::invalid_argument("The last algorithm in the history of the input workspace is not ConvertToMD");
}
return emode;
}
* Runs the BinMD algorithm on the input to provide the output workspace
* All slicing algorithm properties are passed along
* @return MDHistoWorkspace as a result of the binning
MDHistoWorkspace_sptr SXDMDNorm::binInputWS()
const auto & props = getProperties();
IAlgorithm_sptr binMD = createChildAlgorithm("BinMD", 0.0, 0.3);
binMD->setPropertyValue("AxisAligned","1");
for(auto it = props.begin(); it != props.end(); ++it)
const auto & propName = (*it)->name();
if(propName != "FluxWorkspace" && propName != "SolidAngleWorkspace" &&
propName != "OutputNormalizationWorkspace")
{
binMD->setPropertyValue(propName,(*it)->value());
}
binMD->executeAsChildAlg();
Workspace_sptr outputWS = binMD->getProperty("OutputWorkspace");
return boost::dynamic_pointer_cast<MDHistoWorkspace>(outputWS);
}
/**
* Create & cached the normalization workspace
* @param dataWS The binned workspace that will be used for the data
*/
void SXDMDNorm::createNormalizationWS(const MDHistoWorkspace &dataWS)
{
// Copy the MDHisto workspace, and change signals and errors to 0.
m_normWS = boost::make_shared<MDHistoWorkspace>(dataWS);
m_normWS->setTo(0.,0.,0.);
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
}
/**
* Retrieve logged values from non-HKL dimensions
* @param skipNormalization [InOut] Updated to false if any values are outside range measured by input workspace
* @return A vector of values from other dimensions to be include in normalized MD position calculation
*/
std::vector<coord_t> SXDMDNorm::getValuesFromOtherDimensions(bool &skipNormalization) const
{
const auto & runZero = m_inputWS->getExperimentInfo(0)->run();
std::vector<coord_t> otherDimValues;
for(size_t i = 3; i < m_inputWS->getNumDims(); i++)
{
const auto dimension = m_inputWS->getDimension(i);
float dimMin = static_cast<float>(dimension->getMinimum());
float dimMax = static_cast<float>(dimension->getMaximum());
auto *dimProp = \
dynamic_cast<Kernel::TimeSeriesProperty<double> *>(runZero.getProperty(dimension->getName()));
if (dimProp)
{
coord_t value = static_cast<coord_t>(dimProp->firstValue());
otherDimValues.push_back(value);
//in the original MD data no time was spent measuring between dimMin and dimMax
if (value < dimMin || value > dimMax)
{
skipNormalization = true;
}
}
}
return otherDimValues;
}
/**
* Checks the normalization workspace against the indices of the original dimensions.
* If not found, the corresponding dimension is integrated
* @param otherDimValues Values from non-HKL dimensions
* @param skipNormalization [InOut] Sets the flag true if normalization values are outside of original inputs
* @return Affine trasform matrix
Kernel::Matrix<coord_t> SXDMDNorm::findIntergratedDimensions(const std::vector<coord_t> &otherDimValues,
bool &skipNormalization)
// Get indices of the original dimensions in the output workspace,
// and if not found, the corresponding dimension is integrated
Kernel::Matrix<coord_t> affineMat = m_normWS->getTransformFromOriginal(0)->makeAffineMatrix();
const size_t nrm1 = affineMat.numRows() - 1;
const size_t ncm1 = affineMat.numCols() - 1;
for( size_t row = 0; row < nrm1; row++ ) //affine matrix, ignore last row
const auto dimen = m_normWS->getDimension(row);
const auto dimMin(dimen->getMinimum()), dimMax(dimen->getMaximum());
if(affineMat[row][0] == 1.)
m_hIntegrated = false;
m_hIdx = row;
if(m_hmin < dimMin) m_hmin = dimMin;
if(m_hmax > dimMax) m_hmax = dimMax;
if(m_hmin > dimMax || m_hmax < dimMin)
{
skipNormalization = true;
}
}
if(affineMat[row][1] == 1.)
{
m_kIntegrated = false;
m_kIdx = row;
if(m_kmin < dimMin) m_kmin = dimMin;
if(m_kmax > dimMax) m_kmax = dimMax;
if(m_kmin > dimMax || m_kmax < dimMin)
{
skipNormalization = true;
}
}
if(affineMat[row][2] == 1.)
{
m_lIntegrated = false;
m_lIdx = row;
if(m_lmin < dimMin) m_lmin = dimMin;
if(m_lmax > dimMax) m_lmax = dimMax;
if(m_lmin > dimMax || m_lmax < dimMin)
{
skipNormalization = true;
}
for(size_t col = 3; col < ncm1; col++) //affine matrix, ignore last column
{
if(affineMat[row][col] == 1.)
{
double val = otherDimValues.at(col - 3);
if(val > dimMax || val < dimMin)
{
skipNormalization = true;
}
}
}
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
/**
* Stores the X values from each H,K,L dimension as member variables
*/
void SXDMDNorm::cacheDimensionXValues()
{
auto &hDim = *m_normWS->getDimension(m_hIdx);
m_hX.resize(hDim.getNBins());
for(size_t i = 0; i < m_hX.size(); ++i)
{
m_hX[i] = hDim.getX(i);
}
auto &kDim = *m_normWS->getDimension(m_kIdx);
m_kX.resize( kDim.getNBins() );
for(size_t i = 0; i < m_kX.size(); ++i)
{
m_kX[i] = kDim.getX(i);
}
auto &lDim = *m_normWS->getDimension(m_lIdx);
m_lX.resize( lDim.getNBins() );
for(size_t i = 0; i < m_lX.size(); ++i)
{
m_lX[i] = lDim.getX(i);
}
}
/**
* Computed the normalization for the input workspace. Results are stored in m_normWS
* @param otherValues
* @param affineTrans
*/
void SXDMDNorm::calculateNormalization(const std::vector<coord_t> &otherValues,
const Kernel::Matrix<coord_t> &affineTrans)
{
API::MatrixWorkspace_const_sptr fluxMatrixWS = getProperty("FluxWorkspace");
auto fluxEventWS = boost::dynamic_pointer_cast<const DataObjects::EventWorkspace>(fluxMatrixWS);
m_kiMin = fluxEventWS->getEventXMin();
m_kiMax = fluxEventWS->getEventXMax();
API::MatrixWorkspace_const_sptr solidAngleWS = getProperty("SolidAngleWorkspace");
const auto & exptInfoZero = *(m_normWS->getExperimentInfo(0));
typedef Kernel::PropertyWithValue<std::vector<double> > VectorDoubleProperty;
auto *rubwLog = dynamic_cast<VectorDoubleProperty*>(exptInfoZero.getLog("RUBW_MATRIX"));
if(!rubwLog)
{
throw std::runtime_error("Wokspace does not contain a log entry for the RUBW matrix."
"Cannot continue.");
}
else
{
Kernel::DblMatrix rubwValue((*rubwLog)()); //includes the 2*pi factor but not goniometer for now :)
m_rubw = exptInfoZero.run().getGoniometerMatrix()*rubwValue;
m_rubw.Invert();
}
const double protonCharge = exptInfoZero.run().getProtonCharge();
auto instrument = exptInfoZero.getInstrument();
std::vector<detid_t> detIDs = instrument->getDetectorIDs(true);
// Prune out those that are part of a group and simply leave the head of the group
detIDs = removeGroupedIDs(exptInfoZero, detIDs);
// Mappings
const int64_t ndets = static_cast<int64_t>(detIDs.size());
const detid2index_map fluxDetToIdx = fluxEventWS->getDetectorIDToWorkspaceIndexMap();
const detid2index_map solidAngDetToIdx = solidAngleWS->getDetectorIDToWorkspaceIndexMap();
auto *prog = new API::Progress(this, 0.3, 1.0, ndets);
PARALLEL_FOR1(fluxEventWS)
for(int64_t i = 0; i < ndets; i++)
{
PARALLEL_START_INTERUPT_REGION
const auto detID = detIDs[i];
double theta(0.0), phi(0.0);
auto spectrum = getThetaPhi(detID, exptInfoZero, theta, phi);
if(spectrum->isMonitor() || spectrum->isMasked()) continue;
// Intersections
auto intersections = calculateIntersections(theta, phi);
if(intersections.empty()) continue;
//calculate indices
//add to the correct signal at that particular index
size_t wsIdx = fluxDetToIdx.find(detID)->second;
const auto &events = fluxEventWS->getEventList(wsIdx).getWeightedEventsNoTime();
if(events.empty()) continue;
//get iterator to the first event that has momentum >= (*intersections.begin())[3]
auto eventStart = events.begin();
const auto & firstIntersectTime = intersections.front()[3];
while(eventStart->tof() < firstIntersectTime) ++eventStart;
Gigg, Martyn Anthony
committed
// Get solid angle for this contribution
double solid = solidAngleWS->readY(solidAngDetToIdx.find(detID)->second)[0]*protonCharge;
Gigg, Martyn Anthony
committed
// Compute final position in HKL
const size_t vmdDims = intersections.front().size();
// pre-allocate for efficiency and copy non-hkl dim values into place
std::vector<coord_t> pos(vmdDims + otherValues.size());
std::copy(otherValues.begin(), otherValues.end(), pos.begin() + vmdDims);
for (auto it = intersections.begin() + 1; it != intersections.end(); ++it)
{
Gigg, Martyn Anthony
committed
const auto & curIntSec = *it;
const auto & prevIntSec = *(it-1);
// the full vector isn't used so compute only what is necessary
Gigg, Martyn Anthony
committed
double delta = curIntSec[3] - prevIntSec[3];
if(delta < 1e-07) continue; // Assume zero contribution if difference is small
// Average between two intersections for final position
std::transform(curIntSec.getBareArray(), curIntSec.getBareArray() + vmdDims,
prevIntSec.getBareArray(), pos.begin(),
VectorHelper::SimpleAverage<coord_t>());
std::vector<coord_t> posNew = affineTrans*pos;
size_t linIndex = m_normWS->getLinearIndexAtCoord(posNew.data());
if(linIndex == size_t(-1)) continue;
Gigg, Martyn Anthony
committed
double signal = 0.;
while(eventStart->tof() < (*it)[3])
Gigg, Martyn Anthony
committed
if (eventStart == events.end())
break;
signal += (*eventStart).weight();
++eventStart;
}
signal *= solid;
Gigg, Martyn Anthony
committed
PARALLEL_CRITICAL(updateMD)
{
signal += m_normWS->getSignalAt(linIndex);
m_normWS->setSignalAt(linIndex, signal);
}
}
prog->report();
PARALLEL_END_INTERUPT_REGION
}
PARALLEL_CHECK_INTERUPT_REGION
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
delete prog;
}
/**
* Checks for IDs that are actually part of the same group and just keeps one from the group.
* For a 1:1 map, none will be removed.
* @param exptInfo An ExperimentInfo object that defines the grouping
* @param detIDs A list of existing IDs
* @return A new list of IDs
*/
std::vector<detid_t> SXDMDNorm::removeGroupedIDs(const ExperimentInfo &exptInfo, const std::vector<detid_t> &detIDs)
{
const size_t ntotal = detIDs.size();
std::vector<detid_t> singleIDs;
singleIDs.reserve(ntotal/2); // reserve half. In the case of 1:1 it will double to the correct size once
for(auto iter = detIDs.begin(); iter != detIDs.end(); ++iter)
{
const auto & members = exptInfo.getGroupMembers(*iter);
singleIDs.push_back(members.front());
}
return singleIDs;
}
/**
* Get the theta and phi angles for the given ID. If the detector was part of a group,
* as defined in the ExperimentInfo object, then the theta/phi are for the whole set.
* @param detID A reference to a single ID
* @param exptInfo A reference to the ExperimentInfo that defines that spectrum->detector mapping
* @param theta [Output] Set to the theta angle for the detector (set)
* @param phi [Output] Set to the phi angle for the detector (set)
* @return A poiner to the Detector object for this spectrum as a whole
* (may be a single pixel or group)
*/
Geometry::IDetector_const_sptr
SXDMDNorm::getThetaPhi(const detid_t detID,
const ExperimentInfo &exptInfo,
double &theta, double &phi)
{
const auto spectrum = exptInfo.getDetectorByID(detID);
theta = spectrum->getTwoTheta(m_samplePos, m_beamDir);
phi = spectrum->getPhi();
return spectrum;
/**
* Calculate the points of intersection for the given detector with cuboid surrounding the
* detector position in HKL
* @param theta Polar angle withd detector
* @param phi Azimuthal angle with detector
* @return A list of intersections in HKL space
*/
std::vector<Kernel::VMD> SXDMDNorm::calculateIntersections(const double theta, const double phi)
V3D q(-sin(theta)*cos(phi), -sin(theta)*sin(phi), 1.-cos(theta));
double hStart = q.X()*m_kiMin, hEnd = q.X()*m_kiMax;
double kStart = q.Y()*m_kiMin, kEnd = q.Y()*m_kiMax;
double lStart = q.Z()*m_kiMin, lEnd = q.Z()*m_kiMax;
double eps = 1e-7;
auto hNBins = m_hX.size();
auto kNBins = m_kX.size();
auto lNBins = m_lX.size();
std::vector<Kernel::VMD> intersections;
intersections.reserve(hNBins + kNBins + lNBins + 8);
//calculate intersections with planes perpendicular to h
double fmom=(m_kiMax-m_kiMin)/(hEnd-hStart);
double fk=(kEnd-kStart)/(hEnd-hStart);
double fl=(lEnd-lStart)/(hEnd-hStart);
for(size_t i = 0;i<hNBins;i++)
{
double hi = m_hX[i];
if((hi>=m_hmin)&&(hi<=m_hmax) && ((hStart-hi)*(hEnd-hi)<0))
// if hi is between hStart and hEnd, then ki and li will be between kStart, kEnd and lStart, lEnd and momi will be between m_kiMin and KnincidemtmMax
double ki = fk*(hi-hStart)+kStart;
double li = fl*(hi-hStart)+lStart;
if ((ki>=m_kmin)&&(ki<=m_kmax)&&(li>=m_lmin)&&(li<=m_lmax))
double momi = fmom*(hi-hStart)+m_kiMin;
Mantid::Kernel::VMD v(hi,ki,li,momi);
intersections.push_back(v);
double momhMin = fmom*(m_hmin-hStart)+m_kiMin;
if ((momhMin>m_kiMin)&&(momhMin<m_kiMax))
double khmin = fk*(m_hmin-hStart)+kStart;
double lhmin = fl*(m_hmin-hStart)+lStart;
if((khmin>=m_kmin)&&(khmin<=m_kmax)&&(lhmin>=m_lmin)&&(lhmin<=m_lmax))
Mantid::Kernel::VMD v(m_hmin,khmin,lhmin,momhMin);
double momhMax = fmom*(m_hmax-hStart)+m_kiMin;
if ((momhMax>m_kiMin)&&(momhMax<m_kiMax))
double khmax = fk*(m_hmax-hStart)+kStart;
double lhmax = fl*(m_hmax-hStart)+lStart;
if((khmax>=m_kmin)&&(khmax<=m_kmax)&&(lhmax>=m_lmin)&&(lhmax<=m_lmax))
Mantid::Kernel::VMD v(m_hmax,khmax,lhmax,momhMax);
intersections.push_back(v);
}
}
}
//calculate intersections with planes perpendicular to k
if (fabs(kStart-kEnd)>eps)
{
double fmom=(m_kiMax-m_kiMin)/(kEnd-kStart);
double fh=(hEnd-hStart)/(kEnd-kStart);
double fl=(lEnd-lStart)/(kEnd-kStart);
for(size_t i = 0;i<kNBins;i++)
{
double ki = m_kX[i];
if ((ki>=m_kmin)&&(ki<=m_kmax)&&((kStart-ki)*(kEnd-ki)<0))
// if ki is between kStart and kEnd, then hi and li will be between hStart, hEnd and lStart, lEnd
double hi = fh*(ki-kStart)+hStart;
double li = fl*(ki-kStart)+lStart;
if ((hi>=m_hmin)&&(hi<=m_hmax)&&(li>=m_lmin)&&(li<=m_lmax))
double momi = fmom*(ki-kStart)+m_kiMin;
Mantid::Kernel::VMD v(hi,ki,li,momi);
intersections.push_back(v);
double momkMin = fmom*(m_kmin-kStart)+m_kiMin;
if ((momkMin>m_kiMin)&&(momkMin<m_kiMax))
double hkmin = fh*(m_kmin-kStart)+hStart;
double lkmin = fl*(m_kmin-kStart)+lStart;
if((hkmin>=m_hmin)&&(hkmin<=m_hmax)&&(lkmin>=m_lmin)&&(lkmin<=m_lmax))
Mantid::Kernel::VMD v(hkmin,m_kmin,lkmin,momkMin);
double momkMax = fmom*(m_kmax-kStart)+m_kiMin;
if ((momkMax>m_kiMin)&&(momkMax<m_kiMax))
double hkmax = fh*(m_kmax-kStart)+hStart;
double lkmax = fl*(m_kmax-kStart)+lStart;
if((hkmax>=m_hmin)&&(hkmax<=m_hmax)&&(lkmax>=m_lmin)&&(lkmax<=m_lmax))
Mantid::Kernel::VMD v(hkmax,m_kmax,lkmax,momkMax);
intersections.push_back(v);
}
}
}
//calculate intersections with planes perpendicular to l
if (fabs(lStart-lEnd)>eps)
{
double fmom=(m_kiMax-m_kiMin)/(lEnd-lStart);
double fh=(hEnd-hStart)/(lEnd-lStart);
double fk=(kEnd-kStart)/(lEnd-lStart);
{
for(size_t i = 0;i<lNBins;i++)
{
double li = m_lX[i];
if ((li>=m_lmin)&&(li<=m_lmax)&&((lStart-li)*(lEnd-li)<0))
// if li is between lStart and lEnd, then hi and ki will be between hStart, hEnd and kStart, kEnd
double hi = fh*(li-lStart)+hStart;
double ki = fk*(li-lStart)+kStart;
if ((hi>=m_hmin)&&(hi<=m_hmax)&&(ki>=m_kmin)&&(ki<=m_kmax))
double momi = fmom*(li-lStart)+m_kiMin;
Mantid::Kernel::VMD v(hi,ki,li,momi);
intersections.push_back(v);
double momlMin = fmom*(m_lmin-lStart)+m_kiMin;
if ((momlMin>m_kiMin)&&(momlMin<m_kiMax))
double hlmin = fh*(m_lmin-lStart)+hStart;
double klmin = fk*(m_lmin-lStart)+kStart;
if((hlmin>=m_hmin)&&(hlmin<=m_hmax)&&(klmin>=m_kmin)&&(klmin<=m_kmax))
Mantid::Kernel::VMD v(hlmin,klmin,m_lmin,momlMin);
double momlMax = fmom*(m_lmax-lStart)+m_kiMin;
if ((momlMax>m_kiMin)&&(momlMax<m_kiMax))
double hlmax = fh*(m_lmax-lStart)+hStart;
double klmax = fk*(m_lmax-lStart)+kStart;
if((hlmax>=m_hmin)&&(hlmax<=m_hmax)&&(klmax>=m_kmin)&&(klmax<=m_kmax))
Mantid::Kernel::VMD v(hlmax,klmax,m_lmax,momlMax);
if ((hStart>=m_hmin)&&(hStart<=m_hmax)&&(kStart>=m_kmin)&&(kStart<=m_kmax)&&(lStart>=m_lmin)&&(lStart<=m_lmax))
Mantid::Kernel::VMD v(hStart,kStart,lStart,m_kiMin);
if ((hEnd>=m_hmin)&&(hEnd<=m_hmax)&&(kEnd>=m_kmin)&&(kEnd<=m_kmax)&&(lEnd>=m_lmin)&&(lEnd<=m_lmax))
Mantid::Kernel::VMD v(hEnd,kEnd,lEnd,m_kiMax);
intersections.push_back(v);
}
//sort intersections by momentum
typedef std::vector<Mantid::Kernel::VMD>::iterator IterType;
std::stable_sort<IterType,bool (*)(const Mantid::Kernel::VMD&,const Mantid::Kernel::VMD&)>(intersections.begin(),intersections.end(),compareMomentum);
return intersections;
}
} // namespace MDAlgorithms