Newer
Older
#include "MantidQtCustomInterfaces/Indirect/ConvFit.h"
#include "MantidQtCustomInterfaces/UserInputValidator.h"
#include "MantidQtMantidWidgets/RangeSelector.h"
#include "MantidAPI/AlgorithmManager.h"
#include "MantidAPI/FunctionDomain1D.h"
#include "MantidAPI/FunctionFactory.h"
#include <QFileInfo>
#include <QMenu>
#include <qwt_plot.h>
#include <qwt_plot_curve.h>
namespace {
Mantid::Kernel::Logger g_log("ConvFit");
namespace MantidQt {
namespace CustomInterfaces {
namespace IDA {
ConvFit::ConvFit(QWidget *parent)
: IndirectDataAnalysisTab(parent), m_stringManager(NULL), m_cfTree(NULL),
m_fixedProps(), m_cfInputWS(), m_cfInputWSName(), m_confitResFileType() {
m_uiForm.setupUi(parent);
}
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
void ConvFit::setup() {
// Create Property Managers
m_stringManager = new QtStringPropertyManager();
// Create TreeProperty Widget
m_cfTree = new QtTreePropertyBrowser();
m_uiForm.properties->addWidget(m_cfTree);
// add factories to managers
m_cfTree->setFactoryForManager(m_blnManager, m_blnEdFac);
m_cfTree->setFactoryForManager(m_dblManager, m_dblEdFac);
// Create Range Selectors
auto fitRangeSelector = m_uiForm.ppPlot->addRangeSelector("ConvFitRange");
auto backRangeSelector = m_uiForm.ppPlot->addRangeSelector(
"ConvFitBackRange", MantidWidgets::RangeSelector::YSINGLE);
auto hwhmRangeSelector = m_uiForm.ppPlot->addRangeSelector("ConvFitHWHM");
backRangeSelector->setColour(Qt::darkGreen);
backRangeSelector->setRange(0.0, 1.0);
hwhmRangeSelector->setColour(Qt::red);
// Populate Property Widget
// Option to convolve members
m_properties["Convolve"] = m_blnManager->addProperty("Convolve");
m_cfTree->addProperty(m_properties["Convolve"]);
m_blnManager->setValue(m_properties["Convolve"], true);
// Max iterations option
m_properties["MaxIterations"] = m_dblManager->addProperty("Max Iterations");
m_dblManager->setDecimals(m_properties["MaxIterations"], 0);
m_dblManager->setValue(m_properties["MaxIterations"], 500);
m_cfTree->addProperty(m_properties["MaxIterations"]);
// Fitting range
m_properties["FitRange"] = m_grpManager->addProperty("Fitting Range");
m_properties["StartX"] = m_dblManager->addProperty("StartX");
m_dblManager->setDecimals(m_properties["StartX"], NUM_DECIMALS);
m_properties["EndX"] = m_dblManager->addProperty("EndX");
m_dblManager->setDecimals(m_properties["EndX"], NUM_DECIMALS);
m_properties["FitRange"]->addSubProperty(m_properties["StartX"]);
m_properties["FitRange"]->addSubProperty(m_properties["EndX"]);
m_cfTree->addProperty(m_properties["FitRange"]);
// FABADA
m_properties["FABADA"] = m_grpManager->addProperty("Bayesian");
m_properties["UseFABADA"] = m_blnManager->addProperty("Use FABADA");
m_properties["FABADA"]->addSubProperty(m_properties["UseFABADA"]);
m_properties["OutputFABADAChain"] = m_blnManager->addProperty("Output Chain");
m_properties["FABADAChainLength"] = m_dblManager->addProperty("Chain Length");
m_dblManager->setDecimals(m_properties["FABADAChainLength"], 0);
m_dblManager->setValue(m_properties["FABADAChainLength"], 10000);
m_properties["FABADAConvergenceCriteria"] =
m_dblManager->addProperty("Convergence Criteria");
m_dblManager->setValue(m_properties["FABADAConvergenceCriteria"], 0.1);
m_properties["FABADAJumpAcceptanceRate"] =
m_dblManager->addProperty("Acceptance Rate");
m_dblManager->setValue(m_properties["FABADAJumpAcceptanceRate"], 0.25);
m_cfTree->addProperty(m_properties["FABADA"]);
// Background type
m_properties["LinearBackground"] = m_grpManager->addProperty("Background");
m_properties["BGA0"] = m_dblManager->addProperty("A0");
m_dblManager->setDecimals(m_properties["BGA0"], NUM_DECIMALS);
m_properties["BGA1"] = m_dblManager->addProperty("A1");
m_dblManager->setDecimals(m_properties["BGA1"], NUM_DECIMALS);
m_properties["LinearBackground"]->addSubProperty(m_properties["BGA0"]);
m_properties["LinearBackground"]->addSubProperty(m_properties["BGA1"]);
m_cfTree->addProperty(m_properties["LinearBackground"]);
// Delta Function
m_properties["DeltaFunction"] = m_grpManager->addProperty("Delta Function");
m_properties["UseDeltaFunc"] = m_blnManager->addProperty("Use");
m_properties["DeltaHeight"] = m_dblManager->addProperty("Height");
m_dblManager->setDecimals(m_properties["DeltaHeight"], NUM_DECIMALS);
m_properties["DeltaFunction"]->addSubProperty(m_properties["UseDeltaFunc"]);
m_cfTree->addProperty(m_properties["DeltaFunction"]);
m_uiForm.leTempCorrection->setValidator(new QDoubleValidator(m_parentWidget));
// Connections
connect(fitRangeSelector, SIGNAL(minValueChanged(double)), this,
SLOT(minChanged(double)));
connect(fitRangeSelector, SIGNAL(maxValueChanged(double)), this,
SLOT(maxChanged(double)));
connect(backRangeSelector, SIGNAL(minValueChanged(double)), this,
SLOT(backgLevel(double)));
connect(hwhmRangeSelector, SIGNAL(minValueChanged(double)), this,
SLOT(hwhmChanged(double)));
connect(hwhmRangeSelector, SIGNAL(maxValueChanged(double)), this,
SLOT(hwhmChanged(double)));
connect(m_dblManager, SIGNAL(valueChanged(QtProperty *, double)), this,
SLOT(updateRS(QtProperty *, double)));
connect(m_blnManager, SIGNAL(valueChanged(QtProperty *, bool)), this,
SLOT(checkBoxUpdate(QtProperty *, bool)));
connect(m_uiForm.ckTempCorrection, SIGNAL(toggled(bool)),
m_uiForm.leTempCorrection, SLOT(setEnabled(bool)));
// Update guess curve when certain things happen
connect(m_dblManager, SIGNAL(propertyChanged(QtProperty *)), this,
SLOT(plotGuess()));
connect(m_uiForm.cbFitType, SIGNAL(currentIndexChanged(int)), this,
SLOT(plotGuess()));
connect(m_uiForm.ckPlotGuess, SIGNAL(stateChanged(int)), this,
SLOT(plotGuess()));
// Have FWHM Range linked to Fit Start/End Range
connect(fitRangeSelector, SIGNAL(rangeChanged(double, double)),
hwhmRangeSelector, SLOT(setRange(double, double)));
hwhmRangeSelector->setRange(-1.0, 1.0);
hwhmUpdateRS(0.02);
typeSelection(m_uiForm.cbFitType->currentIndex());
bgTypeSelection(m_uiForm.cbBackground->currentIndex());
// Replot input automatically when file / spec no changes
connect(m_uiForm.spPlotSpectrum, SIGNAL(valueChanged(int)), this,
SLOT(updatePlot()));
connect(m_uiForm.dsSampleInput, SIGNAL(dataReady(const QString &)), this,
SLOT(newDataLoaded(const QString &)));
connect(m_uiForm.dsSampleInput, SIGNAL(dataReady(const QString &)), this,
SLOT(extendResolutionWorkspace()));
connect(m_uiForm.dsResInput, SIGNAL(dataReady(const QString &)), this,
SLOT(extendResolutionWorkspace()));
connect(m_uiForm.spSpectraMin, SIGNAL(valueChanged(int)), this,
SLOT(specMinChanged(int)));
connect(m_uiForm.spSpectraMax, SIGNAL(valueChanged(int)), this,
SLOT(specMaxChanged(int)));
connect(m_uiForm.cbFitType, SIGNAL(currentIndexChanged(int)), this,
SLOT(typeSelection(int)));
connect(m_uiForm.cbBackground, SIGNAL(currentIndexChanged(int)), this,
SLOT(bgTypeSelection(int)));
connect(m_uiForm.pbSingleFit, SIGNAL(clicked()), this, SLOT(singleFit()));
// Context menu
m_cfTree->setContextMenuPolicy(Qt::CustomContextMenu);
connect(m_cfTree, SIGNAL(customContextMenuRequested(const QPoint &)), this,
SLOT(fitContextMenu(const QPoint &)));
// Tie
connect(m_uiForm.cbFitType, SIGNAL(currentIndexChanged(QString)),
SLOT(showTieCheckbox(QString)));
showTieCheckbox(m_uiForm.cbFitType->currentText());
// Update fit parameters in browser when function is selected
connect(m_uiForm.cbFitType, SIGNAL(currentIndexChanged(QString)), this,
SLOT(fitFunctionSelected(const QString &)));
fitFunctionSelected(m_uiForm.cbFitType->currentText());
/**
* Converts data into a python script which prodcues the output workspace
*/
void ConvFit::run() {
if (m_cfInputWS == NULL) {
g_log.error("No workspace loaded");
return;
}
QString fitType = fitTypeString();
QString bgType = backgroundString();
if (fitType == "") {
g_log.error("No fit type defined");
}
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
bool useTies = m_uiForm.ckTieCentres->isChecked();
QString ties = (useTies ? "True" : "False");
CompositeFunction_sptr func = createFunction(useTies);
std::string function = std::string(func->asString());
QString stX = m_properties["StartX"]->valueText();
QString enX = m_properties["EndX"]->valueText();
QString specMin = m_uiForm.spSpectraMin->text();
QString specMax = m_uiForm.spSpectraMax->text();
int maxIterations =
static_cast<int>(m_dblManager->value(m_properties["MaxIterations"]));
QString pyInput = "from IndirectDataAnalysis import confitSeq\n"
"input = '" +
m_cfInputWSName + "'\n"
"func = r'" +
QString::fromStdString(function) + "'\n"
"startx = " +
stX + "\n"
"endx = " +
enX + "\n"
"plot = '" +
m_uiForm.cbPlotType->currentText() + "'\n"
"ties = " +
ties + "\n"
"specMin = " +
specMin + "\n"
"specMax = " +
specMax + "\n"
"max_iterations = " +
QString::number(maxIterations) + "\n"
"minimizer = '" +
minimizerString("$outputname_$wsindex") + "'\n"
"save = " +
(m_uiForm.ckSave->isChecked() ? "True\n" : "False\n");
if (m_blnManager->value(m_properties["Convolve"]))
pyInput += "convolve = True\n";
else
pyInput += "convolve = False\n";
QString temperature = m_uiForm.leTempCorrection->text();
bool useTempCorrection =
(!temperature.isEmpty() && m_uiForm.ckTempCorrection->isChecked());
if (useTempCorrection) {
pyInput += "temp=" + temperature + "\n";
} else {
pyInput += "temp=None\n";
}
pyInput += "bg = '" + bgType + "'\n"
"ftype = '" +
fitType +
"'\n"
"rws = confitSeq(input, func, startx, endx, ftype, bg, temp, "
"specMin, specMax, convolve, max_iterations=max_iterations, "
"minimizer=minimizer, Plot=plot, Save=save)\n"
"AddSampleLog(Workspace=rws, LogName='res_workspace', LogText='" +
m_uiForm.dsResInput->getCurrentDataName() + "')\n"
"print rws\n";
QString pyOutput = runPythonCode(pyInput);
// Set the result workspace for Python script export
m_pythonExportWsName = pyOutput.toStdString();
updatePlot();
}
/**
* Runs algorithm.
*
* @param plot Enable/disable plotting
* @param save Enable/disable saving
*/
if (m_batchAlgoRunner->queueLength() > 0)
return;
// Fit function to use
QString functionName = m_uiForm.cbFitType->currentText();
if (functionName.compare("One Lorentzian") == 0) {
functionName = "Lorentzian";
if (functionName.compare("Two Lorentzian") == 0) {
// Implement two peak lorentzian behaviour
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
}
QString functionString = "name=" + functionName;
// Build function string
QStringList parameters = getFunctionParameters(functionName);
for (auto it = parameters.begin(); it != parameters.end(); ++it) {
QString parameterName = *it;
// Get the value form double manager
QString name = "parameter_" + *it;
double value = m_dblManager->value(m_properties[name]);
QString parameterValue = QString::number(value);
functionString += "," + parameterName + "=" + parameterValue;
}
QString sample = m_uiForm.dsSampleInput->getCurrentDataName();
QString outputName =
getWorkspaceBasename(sample) + "_" + functionName + "_fit";
// Setup fit algorithm
m_fitAlg = AlgorithmManager::Instance().create("Fit");
m_fitAlg->initialize();
m_fitAlg->setProperty("Function", functionString.toStdString());
m_fitAlg->setProperty("InputWorkspace", sample.toStdString());
m_fitAlg->setProperty("IgnoreInvalidData", true);
m_fitAlg->setProperty("StartX", m_dblManager->value(m_properties["StartX"]));
m_fitAlg->setProperty("EndX", m_dblManager->value(m_properties["EndX"]));
m_fitAlg->setProperty("CreateOutput", true);
m_fitAlg->setProperty("Output", outputName.toStdString());
// Debugging -----------TO BE REMOVED
std::string fs = functionString.toStdString();
std::string smple = sample.toStdString();
double sx = m_dblManager->value(m_properties["StartX"]);
double ex = m_dblManager->value(m_properties["EndX"]);
std::string on = outputName.toStdString();
std::string funcString = functionString.toStdString();
m_batchAlgoRunner->addAlgorithm(m_fitAlg);
m_batchAlgoRunner->executeBatchAsync();
/**
* Validates the user's inputs in the ConvFit tab.
* @return If the validation was successful
*/
bool ConvFit::validate() {
UserInputValidator uiv;
uiv.checkDataSelectorIsValid("Sample", m_uiForm.dsSampleInput);
uiv.checkDataSelectorIsValid("Resolution", m_uiForm.dsResInput);
auto range = std::make_pair(m_dblManager->value(m_properties["StartX"]),
m_dblManager->value(m_properties["EndX"]));
uiv.checkValidRange("Fitting Range", range);
// Enforce the rule that at least one fit is needed; either a delta function,
// one or two lorentzian functions,
// or both. (The resolution function must be convolved with a model.)
if (m_uiForm.cbFitType->currentIndex() == 0 &&
!m_blnManager->value(m_properties["UseDeltaFunc"]))
uiv.addErrorMessage("No fit function has been selected.");
QString error = uiv.generateErrorMessage();
showMessageBox(error);
return error.isEmpty();
}
/**
* Reads in settings files
* @param settings The name of the QSettings object to retrieve data from
*/
void ConvFit::loadSettings(const QSettings &settings) {
m_uiForm.dsSampleInput->readSettings(settings.group());
m_uiForm.dsResInput->readSettings(settings.group());
}
/**
* Called when new data has been loaded by the data selector.
*
* Configures ranges for spin boxes before raw plot is done.
*
* @param wsName Name of new workspace loaded
*/
void ConvFit::newDataLoaded(const QString wsName) {
m_cfInputWSName = wsName;
m_cfInputWS = AnalysisDataService::Instance().retrieveWS<MatrixWorkspace>(
m_cfInputWSName.toStdString());
int maxSpecIndex = static_cast<int>(m_cfInputWS->getNumberHistograms()) - 1;
m_uiForm.spPlotSpectrum->setMaximum(maxSpecIndex);
m_uiForm.spPlotSpectrum->setMinimum(0);
m_uiForm.spPlotSpectrum->setValue(0);
m_uiForm.spSpectraMin->setMaximum(maxSpecIndex);
m_uiForm.spSpectraMin->setMinimum(0);
m_uiForm.spSpectraMax->setMaximum(maxSpecIndex);
m_uiForm.spSpectraMax->setMinimum(0);
m_uiForm.spSpectraMax->setValue(maxSpecIndex);
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
/**
* Create a resolution workspace with the same number of histograms as in the
* sample.
*
* Needed to allow DiffSphere and DiffRotDiscreteCircle fit functions to work as
* they need
* to have the WorkspaceIndex attribute set.
*/
void ConvFit::extendResolutionWorkspace() {
if (m_cfInputWS && m_uiForm.dsResInput->isValid()) {
const QString resWsName = m_uiForm.dsResInput->getCurrentDataName();
API::BatchAlgorithmRunner::AlgorithmRuntimeProps appendProps;
appendProps["InputWorkspace1"] = "__ConvFit_Resolution";
size_t numHist = m_cfInputWS->getNumberHistograms();
for (size_t i = 0; i < numHist; i++) {
IAlgorithm_sptr appendAlg =
AlgorithmManager::Instance().create("AppendSpectra");
appendAlg->initialize();
appendAlg->setProperty("InputWorkspace2", resWsName.toStdString());
appendAlg->setProperty("OutputWorkspace", "__ConvFit_Resolution");
if (i == 0) {
appendAlg->setProperty("InputWorkspace1", resWsName.toStdString());
m_batchAlgoRunner->addAlgorithm(appendAlg);
} else {
m_batchAlgoRunner->addAlgorithm(appendAlg, appendProps);
m_batchAlgoRunner->executeBatchAsync();
}
}
namespace {
////////////////////////////
// Anon Helper functions. //
////////////////////////////
/**
* Takes an index and a name, and constructs a single level parameter name
* for use with function ties, etc.
*
* @param index :: the index of the function in the first level.
* @param name :: the name of the parameter inside the function.
*
* @returns the constructed function parameter name.
*/
std::string createParName(size_t index, const std::string &name = "") {
std::stringstream prefix;
prefix << "f" << index << "." << name;
return prefix.str();
}
/**
* Takes an index, a sub index and a name, and constructs a double level
* (nested) parameter name for use with function ties, etc.
*
* @param index :: the index of the function in the first level.
* @param subIndex :: the index of the function in the second level.
* @param name :: the name of the parameter inside the function.
*
* @returns the constructed function parameter name.
*/
std::string createParName(size_t index, size_t subIndex,
const std::string &name = "") {
std::stringstream prefix;
prefix << "f" << index << ".f" << subIndex << "." << name;
return prefix.str();
}
}
/**
* Creates a function to carry out the fitting in the "ConvFit" tab. The
* function consists of various sub functions, with the following structure:
*
* Composite
* |
* +-- LinearBackground
* +-- Convolution
* |
* +-- Resolution
* +-- Model (AT LEAST one delta function or one/two lorentzians.)
* |
* +-- DeltaFunction (yes/no)
* +-- ProductFunction
* |
* +-- Lorentzian 1
*(yes/no)
* +-- Temperature
*Correction
* +-- ProductFunction
* |
* +-- Lorentzian 2
*(yes/no)
* +-- Temperature
*Correction
* +-- ProductFunction
* |
* +-- InelasticDiffSphere
*(yes/no)
* +-- Temperature
*Correction
* +-- ProductFunction
* |
* +--
*InelasticDiffRotDiscreteCircle
* +-- Temperature
*Correction
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
*
* @param tieCentres :: whether to tie centres of the two lorentzians.
*
* @returns the composite fitting function.
*/
CompositeFunction_sptr ConvFit::createFunction(bool tieCentres) {
auto conv = boost::dynamic_pointer_cast<CompositeFunction>(
FunctionFactory::Instance().createFunction("Convolution"));
CompositeFunction_sptr comp(new CompositeFunction);
IFunction_sptr func;
size_t index = 0;
// -------------------------------------
// --- Composite / Linear Background ---
// -------------------------------------
func = FunctionFactory::Instance().createFunction("LinearBackground");
comp->addFunction(func);
const int bgType =
m_uiForm.cbBackground
->currentIndex(); // 0 = Fixed Flat, 1 = Fit Flat, 2 = Fit all
if (bgType == 0 || !m_properties["BGA0"]->subProperties().isEmpty()) {
comp->tie("f0.A0", m_properties["BGA0"]->valueText().toStdString());
} else {
func->setParameter("A0", m_properties["BGA0"]->valueText().toDouble());
if (bgType != 2) {
comp->tie("f0.A1", "0.0");
} else {
if (!m_properties["BGA1"]->subProperties().isEmpty()) {
comp->tie("f0.A1", m_properties["BGA1"]->valueText().toStdString());
} else {
func->setParameter("A1", m_properties["BGA1"]->valueText().toDouble());
// --------------------------------------------
// --- Composite / Convolution / Resolution ---
// --------------------------------------------
func = FunctionFactory::Instance().createFunction("Resolution");
conv->addFunction(func);
// add resolution file
IFunction::Attribute attr("__ConvFit_Resolution");
func->setAttribute("Workspace", attr);
// --------------------------------------------------------
// --- Composite / Convolution / Model / Delta Function ---
// --------------------------------------------------------
CompositeFunction_sptr model(new CompositeFunction);
bool useDeltaFunc = m_blnManager->value(m_properties["UseDeltaFunc"]);
if (useDeltaFunc) {
func = FunctionFactory::Instance().createFunction("DeltaFunction");
index = model->addFunction(func);
std::string parName = createParName(index);
populateFunction(func, model, m_properties["DeltaFunction"], parName,
false);
}
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
// ------------------------------------------------------------
// --- Composite / Convolution / Model / Temperature Factor ---
// ------------------------------------------------------------
// create temperature correction function to multiply with the lorentzians
IFunction_sptr tempFunc;
QString temperature = m_uiForm.leTempCorrection->text();
bool useTempCorrection =
(!temperature.isEmpty() && m_uiForm.ckTempCorrection->isChecked());
// -----------------------------------------------------
// --- Composite / Convolution / Model / Lorentzians ---
// -----------------------------------------------------
std::string prefix1;
std::string prefix2;
int fitTypeIndex = m_uiForm.cbFitType->currentIndex();
// Add 1st Lorentzian
if (fitTypeIndex == 1 || fitTypeIndex == 2) {
// if temperature not included then product is lorentzian * 1
// create product function for temp * lorentzian
auto product = boost::dynamic_pointer_cast<CompositeFunction>(
FunctionFactory::Instance().createFunction("ProductFunction"));
if (useTempCorrection) {
createTemperatureCorrection(product);
func = FunctionFactory::Instance().createFunction("Lorentzian");
subIndex = product->addFunction(func);
index = model->addFunction(product);
prefix1 = createParName(index, subIndex);
populateFunction(func, model, m_properties["Lorentzian1"], prefix1, false);
}
// Add 2nd Lorentzian
if (fitTypeIndex == 2) {
// if temperature not included then product is lorentzian * 1
// create product function for temp * lorentzian
auto product = boost::dynamic_pointer_cast<CompositeFunction>(
FunctionFactory::Instance().createFunction("ProductFunction"));
if (useTempCorrection) {
createTemperatureCorrection(product);
func = FunctionFactory::Instance().createFunction("Lorentzian");
subIndex = product->addFunction(func);
index = model->addFunction(product);
prefix2 = createParName(index, subIndex);
populateFunction(func, model, m_properties["Lorentzian2"], prefix2, false);
}
// -------------------------------------------------------------
// --- Composite / Convolution / Model / InelasticDiffSphere ---
// -------------------------------------------------------------
if (fitTypeIndex == 3) {
auto product = boost::dynamic_pointer_cast<CompositeFunction>(
FunctionFactory::Instance().createFunction("ProductFunction"));
if (useTempCorrection) {
createTemperatureCorrection(product);
func = FunctionFactory::Instance().createFunction("InelasticDiffSphere");
subIndex = product->addFunction(func);
index = model->addFunction(product);
prefix2 = createParName(index, subIndex);
populateFunction(func, model, m_properties["DiffSphere"], prefix2, false);
}
// ------------------------------------------------------------------------
// --- Composite / Convolution / Model / InelasticDiffRotDiscreteCircle ---
// ------------------------------------------------------------------------
if (fitTypeIndex == 4) {
auto product = boost::dynamic_pointer_cast<CompositeFunction>(
FunctionFactory::Instance().createFunction("ProductFunction"));
if (useTempCorrection) {
createTemperatureCorrection(product);
func = FunctionFactory::Instance().createFunction(
"InelasticDiffRotDiscreteCircle");
subIndex = product->addFunction(func);
index = model->addFunction(product);
prefix2 = createParName(index, subIndex);
populateFunction(func, model, m_properties["DiffRotDiscreteCircle"],
prefix2, false);
conv->addFunction(model);
comp->addFunction(conv);
// Tie PeakCentres together
if (tieCentres) {
std::string tieL = prefix1 + "PeakCentre";
std::string tieR = prefix2 + "PeakCentre";
model->tie(tieL, tieR);
comp->applyTies();
return comp;
}
/**
* Creates the correction for the temperature
*/
void ConvFit::createTemperatureCorrection(CompositeFunction_sptr product) {
// create temperature correction function to multiply with the lorentzians
IFunction_sptr tempFunc;
QString temperature = m_uiForm.leTempCorrection->text();
// create user function for the exponential correction
// (x*temp) / 1-exp(-(x*temp))
tempFunc = FunctionFactory::Instance().createFunction("UserFunction");
// 11.606 is the conversion factor from meV to K
std::string formula = "((x*11.606)/Temp) / (1 - exp(-((x*11.606)/Temp)))";
IFunction::Attribute att(formula);
tempFunc->setAttribute("Formula", att);
tempFunc->setParameter("Temp", temperature.toDouble());
product->addFunction(tempFunc);
product->tie("f0.Temp", temperature.toStdString());
product->applyTies();
}
/**
* Obtains the instrument resolution from the provided workspace
* @param workspaceName The name of the workspaces which holds the instrument
* resolution
* @return The resolution of the instrument. returns 0 if no resolution data
* could be found
*/
double ConvFit::getInstrumentResolution(std::string workspaceName) {
using namespace Mantid::API;
double resolution = 0.0;
try {
Mantid::Geometry::Instrument_const_sptr inst =
AnalysisDataService::Instance()
.retrieveWS<MatrixWorkspace>(workspaceName)
->getInstrument();
std::vector<std::string> analysers = inst->getStringParameter("analyser");
if (analysers.empty()) {
g_log.warning("Could not load instrument resolution from parameter file");
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
std::string analyser = analysers[0];
std::string idfDirectory =
Mantid::Kernel::ConfigService::Instance().getString(
"instrumentDefinition.directory");
// If the analyser component is not already in the data file then load it
// from the parameter file
if (inst->getComponentByName(analyser)
->getNumberParameter("resolution")
.size() == 0) {
std::string reflection = inst->getStringParameter("reflection")[0];
IAlgorithm_sptr loadParamFile =
AlgorithmManager::Instance().create("LoadParameterFile");
loadParamFile->initialize();
loadParamFile->setProperty("Workspace", workspaceName);
loadParamFile->setProperty(
"Filename", idfDirectory + inst->getName() + "_" + analyser + "_" +
reflection + "_Parameters.xml");
loadParamFile->execute();
if (!loadParamFile->isExecuted()) {
g_log.warning("Could not load parameter file, ensure instrument "
"directory is in data search paths.");
return 0.0;
}
inst = AnalysisDataService::Instance()
.retrieveWS<MatrixWorkspace>(workspaceName)
->getInstrument();
}
resolution =
inst->getComponentByName(analyser)->getNumberParameter("resolution")[0];
} catch (Mantid::Kernel::Exception::NotFoundError &e) {
UNUSED_ARG(e);
g_log.warning("Could not load instrument resolution from parameter file");
resolution = 0.0;
* Creates a Lorentz peak
* @param name The name of the Lorentz peak (1 or 2)
* @return The QTProperty that represents the lorentz peak
*/
QtProperty *ConvFit::createLorentzian(const QString &name) {
QtProperty *lorentzGroup = m_grpManager->addProperty(name);
m_properties[name + ".Amplitude"] = m_dblManager->addProperty("Amplitude");
// m_dblManager->setRange(m_properties[name+".Amplitude"], 0.0, 1.0); // 0 <
// Amplitude < 1
m_properties[name + ".PeakCentre"] = m_dblManager->addProperty("PeakCentre");
m_properties[name + ".FWHM"] = m_dblManager->addProperty("FWHM");
m_dblManager->setDecimals(m_properties[name + ".Amplitude"], NUM_DECIMALS);
m_dblManager->setDecimals(m_properties[name + ".PeakCentre"], NUM_DECIMALS);
m_dblManager->setDecimals(m_properties[name + ".FWHM"], NUM_DECIMALS);
m_dblManager->setValue(m_properties[name + ".FWHM"], 0.02);
lorentzGroup->addSubProperty(m_properties[name + ".Amplitude"]);
lorentzGroup->addSubProperty(m_properties[name + ".PeakCentre"]);
lorentzGroup->addSubProperty(m_properties[name + ".FWHM"]);
return lorentzGroup;
}
* Populates the properties of a function with given values
* @param func The function currently being added to the composite
* @param comp A composite function of the previously called functions
* @param group The QtProperty representing the fit type
* @param pref The index of the functions eg. (f0.f1)
* @param tie Bool to state if parameters are to be tied together
*/
void ConvFit::populateFunction(IFunction_sptr func, IFunction_sptr comp,
QtProperty *group, const std::string &pref,
bool tie) {
// Get subproperties of group and apply them as parameters on the function
// object
QList<QtProperty *> props = group->subProperties();
for (int i = 0; i < props.size(); i++) {
if (tie || !props[i]->subProperties().isEmpty()) {
std::string name = pref + props[i]->propertyName().toStdString();
std::string value = props[i]->valueText().toStdString();
comp->tie(name, value);
} else {
std::string propName = props[i]->propertyName().toStdString();
double propValue = props[i]->valueText().toDouble();
if (propValue) {
if (func->hasAttribute(propName))
func->setAttributeValue(propName, propValue);
else
func->setParameter(propName, propValue);
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
/**
* Generate a string to describe the fit type selected by the user.
* Used when naming the resultant workspaces.
*
* Assertions used to guard against any future changes that dont take
* workspace naming into account.
*
* @returns the generated QString.
*/
QString ConvFit::fitTypeString() const {
QString fitType("");
if (m_blnManager->value(m_properties["UseDeltaFunc"]))
fitType += "Delta";
switch (m_uiForm.cbFitType->currentIndex()) {
case 0:
break;
case 1:
fitType += "1L";
break;
case 2:
fitType += "2L";
break;
case 3:
fitType += "DS";
break;
case 4:
fitType += "DC";
break;
/**
* Generate a string to describe the background selected by the user.
* Used when naming the resultant workspaces.
*
* Assertions used to guard against any future changes that dont take
* workspace naming into account.
*
* @returns the generated QString.
*/
QString ConvFit::backgroundString() const {
switch (m_uiForm.cbBackground->currentIndex()) {
case 0:
return "FixF_s";
case 1:
return "FitF_s";
case 2:
return "FitL_s";
default:
return "";
/**
* Generates a string that defines the fitting minimizer based on the user
* options.
*
* @return Minimizer as a string
*/
QString ConvFit::minimizerString(QString outputName) const {
QString minimizer = "Levenberg-Marquardt";
if (m_blnManager->value(m_properties["UseFABADA"])) {
minimizer = "FABADA";
int chainLength = static_cast<int>(
m_dblManager->value(m_properties["FABADAChainLength"]));
minimizer += ",ChainLength=" + QString::number(chainLength);
double convergenceCriteria =
m_dblManager->value(m_properties["FABADAConvergenceCriteria"]);
minimizer += ",ConvergenceCriteria=" + QString::number(convergenceCriteria);
double jumpAcceptanceRate =
m_dblManager->value(m_properties["FABADAJumpAcceptanceRate"]);
minimizer += ",JumpAcceptanceRate=" + QString::number(jumpAcceptanceRate);
minimizer += ",PDF=" + outputName + "_PDF";
if (m_blnManager->value(m_properties["OutputFABADAChain"]))
minimizer += ",Chains=" + outputName + "_Chain";
}
/**
* Changes property tree appearance based on Fit Type
* @param index A reference to the Fit Type (0-4)
*/
void ConvFit::typeSelection(int index) {
m_uiForm.ckPlotGuess->setEnabled(index < 3);
m_properties["UseDeltaFunc"]->setEnabled(index < 3);
}
/**
* Add/Remove sub property 'BGA1' from background based on Background type
* @param index A reference to the Background type
void ConvFit::bgTypeSelection(int index) {
if (index == 2) {
m_properties["LinearBackground"]->addSubProperty(m_properties["BGA1"]);
} else {
m_properties["LinearBackground"]->removeSubProperty(m_properties["BGA1"]);
/**
* Updates the plot in the gui window
void ConvFit::updatePlot() {
using Mantid::Kernel::Exception::NotFoundError;
if (!m_cfInputWS) {
g_log.error("No workspace loaded, cannot create preview plot.");
return;
const bool plotGuess = m_uiForm.ckPlotGuess->isChecked();
m_uiForm.ckPlotGuess->setChecked(false);
int specNo = m_uiForm.spPlotSpectrum->text().toInt();
m_uiForm.ppPlot->clear();
m_uiForm.ppPlot->addSpectrum("Sample", m_cfInputWS, specNo);
try {
const QPair<double, double> curveRange =
m_uiForm.ppPlot->getCurveRange("Sample");
const std::pair<double, double> range(curveRange.first, curveRange.second);
m_uiForm.ppPlot->getRangeSelector("ConvFitRange")
->setRange(range.first, range.second);
m_uiForm.ckPlotGuess->setChecked(plotGuess);
} catch (std::invalid_argument &exc) {
showMessageBox(exc.what());
// Default FWHM to resolution of instrument
double resolution = getInstrumentResolution(m_cfInputWSName.toStdString());
if (resolution > 0) {
m_dblManager->setValue(m_properties["Lorentzian 1.FWHM"], resolution);
m_dblManager->setValue(m_properties["Lorentzian 2.FWHM"], resolution);
// If there is a result plot then plot it
if (AnalysisDataService::Instance().doesExist(m_pythonExportWsName)) {
WorkspaceGroup_sptr outputGroup =
AnalysisDataService::Instance().retrieveWS<WorkspaceGroup>(
m_pythonExportWsName);
if (specNo >= static_cast<int>(outputGroup->size()))
MatrixWorkspace_sptr ws = boost::dynamic_pointer_cast<MatrixWorkspace>(
outputGroup->getItem(specNo));
if (ws)
m_uiForm.ppPlot->addSpectrum("Fit", ws, 1, Qt::red);
}
}