Newer
Older
#include "MantidDataHandling/LoadSampleShape.h"
#include "MantidAPI/AnalysisDataService.h"
#include "MantidAPI/FileProperty.h"
#include "MantidAPI/InstrumentValidator.h"
#include "MantidAPI/WorkspaceFactory.h"
#include "MantidAPI/MatrixWorkspace.h"
#include "MantidAPI/MatrixWorkspace_fwd.h"
#include "MantidGeometry/Instrument.h"
#include "MantidKernel/CompositeValidator.h"
#include "MantidKernel/EnabledWhenProperty.h"
#include "MantidKernel/Exception.h"
#include <Poco/File.h>
namespace Mantid {
namespace DataHandling {
// Register the algorithm into the algorithm factory
DECLARE_ALGORITHM(LoadSampleShape)
using namespace Kernel;
using namespace API;
using namespace Geometry;
bool areEqualVertices(Kernel::V3D const &v1, Kernel::V3D const &v2) {
Kernel::V3D diff = v1 - v2;
return diff.norm() < 1e-9;
}
// Read, check and ignore line in STL file. Return true if line is read
bool readSTLLine(std::ifstream &file, std::string const &type) {
std::string line;
if (getline(file, line)) {
boost::trim(line);
if (line.size() < type.size() || line.substr(0, type.size()) != type) {
// Before throwing, check for endsolid statment
std::string type2 = "endsolid";
if (line.size() < type2.size() || line.substr(0, type2.size()) != type2) {
throw std::runtime_error("Expected STL line begining with " + type +
" or " + type2);
} else {
return false; // ends reading at endsolid
return true; // expected line read, then ignored
} else {
return false; // end of file
}
}
/* Reads vertex from STL file and returns true if vertex is found */
bool readSTLVertex(std::ifstream &file, V3D &vertex) {
std::string line;
if (getline(file, line)) {
boost::trim(line);
std::vector<std::string> tokens;
boost::split(tokens, line, boost::is_any_of(" "), boost::token_compress_on);
if (tokens.size() == 4 && tokens[0] == "vertex") {
vertex.setX(boost::lexical_cast<double>(tokens[1]));
vertex.setY(boost::lexical_cast<double>(tokens[2]));
vertex.setZ(boost::lexical_cast<double>(tokens[3]));
return true;
} else {
throw std::runtime_error("Error on reading STL vertex");
/* Reads triangle for STL file and returns true if triangle is found */
bool readSTLTriangle(std::ifstream &file, V3D &v1, V3D &v2, V3D &v3) {
if (readSTLLine(file, "facet") && readSTLLine(file, "outer loop")) {
bool ok = (readSTLVertex(file, v1) && readSTLVertex(file, v2) &&
readSTLVertex(file, v3));
if (!ok) {
throw std::runtime_error("Error on reading STL triangle");
} else {
return false; // End of file
}
return readSTLLine(file, "endloop") && readSTLLine(file, "endfacet");
}
// Adds vertex to list if distinct and returns index to vertex added or equal
uint16_t addSTLVertex(V3D &vertex, std::vector<V3D> &vertices) {
for (uint16_t i = 0; i < vertices.size(); ++i) {
if (areEqualVertices(vertex, vertices[i])) {
return i;
}
vertices.push_back(vertex);
uint16_t index = static_cast<uint16_t>(vertices.size() - 1);
if (index != vertices.size() - 1) {
throw std::runtime_error("Too many vertices in solid");
}
return index;
}
std::unique_ptr<MeshObject> readSTLMeshObject(std::ifstream &file) {
std::vector<uint16_t> triangleIndices;
std::vector<V3D> vertices;
V3D t1, t2, t3;
while (readSTLTriangle(file, t1, t2, t3)) {
// Add triangle if all 3 vertices are distinct
if (!areEqualVertices(t1, t2) && !areEqualVertices(t1, t3) &&
!areEqualVertices(t2, t3)) {
triangleIndices.push_back(addSTLVertex(t1, vertices));
triangleIndices.push_back(addSTLVertex(t2, vertices));
triangleIndices.push_back(addSTLVertex(t3, vertices));
}
// Use efficient constructor of MeshObject
std::unique_ptr<MeshObject> retVal = std::unique_ptr<MeshObject>(
new MeshObject(std::move(triangleIndices), std::move(vertices),
Mantid::Kernel::Material()));
return retVal;
}
std::unique_ptr<Geometry::MeshObject> readSTLSolid(std::ifstream &file,
std::string &name) {
// Read Solid name
// We expect line after trimming to be "solid "+name.
std::string line;
if (getline(file, line)) {
boost::trim(line);
if (line.size() < 5 || line.substr(0, 5) != "solid") {
throw std::runtime_error("Expected start of solid");
} else {
name = line.substr(6, std::string::npos);
}
// Read Solid shape
return readSTLMeshObject(file);
}
return nullptr;
}
void LoadSampleShape::init() {
auto wsValidator = boost::make_shared<API::InstrumentValidator>();
;
// input workspace
declareProperty(
make_unique<WorkspaceProperty<>>("InputWorkspace", "", Direction::Input,
wsValidator),
"The name of the workspace containing the instrument to add the shape");
// shape file
const std::vector<std::string> extensions{".stl"};
make_unique<FileProperty>("Filename", "", FileProperty::Load, extensions),
"The path name of the file containing the shape.");
declareProperty(make_unique<WorkspaceProperty<>>("OutputWorkspace", "",
Direction::Output),
"The name of the workspace that will contain the loaded shape of the sample");
/**
* Return the confidence with with this algorithm can load the file
* @param descriptor A descriptor for the file
* @returns An integer specifying the confidence level. 0 indicates it will not
* be used
*/
int LoadSampleShape::confidence(Kernel::FileDescriptor &descriptor) const {
const std::string &filePath = descriptor.filename();
const size_t filenameLength = filePath.size();
// Avoid some known file types that have different loaders
int confidence(0);
if (filePath.compare(filenameLength - 4, 4, ".stl") == 0) {
confidence = 90;
}
return confidence;
}
void LoadSampleShape::exec() {
MatrixWorkspace_const_sptr inputWS = getProperty("InputWorkspace");
MatrixWorkspace_sptr outputWS = getProperty("OutputWorkspace");
if (inputWS != outputWS) {
outputWS = inputWS->clone();
}
std::string filename = getProperty("Filename");
std::ifstream file(filename.c_str());
if (!file) {
g_log.error("Unable to open file: " + filename);
throw Exception::FileError("Unable to open file: ", filename);
}
std::string solidName = "";
boost::shared_ptr<MeshObject> shape = nullptr;
} catch (std::exception &) {
throw Exception::FileError(
"Failed to recognize this file as a valid STL file: ", filename);
Sample &sample = outputWS->mutableSample();
// Set output workspace
setProperty("OutputWorkspace", outputWS);
} // end DataHandling namespace
} // end MantidNamespace