Newer
Older
#include "MantidAlgorithms/CalculateCarpenterSampleCorrection.h"
#include "MantidAPI/InstrumentValidator.h"
#include "MantidAPI/Sample.h"
#include "MantidAPI/SpectrumInfo.h"
#include "MantidAPI/WorkspaceFactory.h"
#include "MantidAPI/WorkspaceGroup.h"
#include "MantidAPI/WorkspaceUnitValidator.h"
#include "MantidDataObjects/EventWorkspace.h"
#include "MantidGeometry/Instrument.h"
#include "MantidKernel/CompositeValidator.h"
#include "MantidKernel/Material.h"
#include <stdexcept>
namespace Mantid {
namespace Algorithms {
DECLARE_ALGORITHM(CalculateCarpenterSampleCorrection) // Register the class
// into the algorithm
// factory
using namespace Kernel;
using namespace API;
using Mantid::DataObjects::EventWorkspace;
using Mantid::DataObjects::EventWorkspace_sptr;
using Mantid::HistogramData::HistogramY;
using Mantid::HistogramData::Points;
using std::vector;
using namespace Mantid::PhysicalConstants;
using namespace Geometry;
// Constants required internally only, so make them static. These are
// Chebyshev expansion coefficients copied directly from Carpenter 1969 Table 1
namespace { // anonymous
static const double CHEBYSHEV[] = {
// l= 0 1 2 3 4 5 // (m,n)
0.730284, -0.249987, 0.019448, -0.000006,
0.000249, -0.000004, // (1,1)
0.848859, -0.452690, 0.056557, -0.000009,
0.000000, -0.000006, // (1,2)
1.133129, -0.749962, 0.118245, -0.000018,
-0.001345, -0.000012, // (1,3)
1.641112, -1.241639, 0.226247, -0.000045,
-0.004821, -0.000030, // (1,4)
0.848859, -0.452690, 0.056557, -0.000009,
0.000000, -0.000006, // (2,1)
1.000006, -0.821100, 0.166645, -0.012096,
0.000008, -0.000126, // (2,2)
1.358113, -1.358076, 0.348199, -0.038817,
0.000022, -0.000021, // (2,3)
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, // (2,4)
1.133129, -0.749962, 0.118245, -0.000018,
-0.001345, -0.000012, // (3,1)
1.358113, -1.358076, 0.348199, -0.038817,
0.000022, -0.000021, // (3,2)
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, // (3,3)
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, // (3,4)
1.641112, -1.241639, 0.226247, -0.000045,
-0.004821, -0.000030, // (4,1)
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, // (4,2)
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, // (4,3)
0.0, 0.0, 0.0, 0.0,
0.0, 0.0 // (4,4)
};
static const int Z_size = 36; // Caution, this must be updated if the
// algorithm is changed to use a different
// size Z array.
static const double Z_initial[] = {
1.0, 0.8488263632, 1.0, 1.358122181, 2.0, 3.104279270,
0.8488263632, 0.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.358122181, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3.104279270, 0.0, 0.0, 0.0, 0.0, 0.0};
static const double LAMBDA_REF =
1.81; ///< Wavelength that the calculations are based on
// Badly named constants, no explanation of the origin of these
// values. They appear to be used when calculating the multiple
// scattering correction factor.
static const double COEFF4 = 1.1967;
static const double COEFF5 = -0.8667;
} // end of anonymous
const std::string CalculateCarpenterSampleCorrection::name() const {
return "CalculateCarpenterSampleCorrection";
}
int CalculateCarpenterSampleCorrection::version() const { return 1; }
const std::string CalculateCarpenterSampleCorrection::category() const {
return "CorrectionFunctions\\AbsorptionCorrections";
}
/**
* Initialize the properties to default values
*/
void CalculateCarpenterSampleCorrection::init() {
// The input workspace must have an instrument and units of wavelength
auto wsValidator = boost::make_shared<CompositeValidator>();
wsValidator->add<WorkspaceUnitValidator>("Wavelength");
wsValidator->add<InstrumentValidator>();
declareProperty(make_unique<WorkspaceProperty<MatrixWorkspace>>(
"InputWorkspace", "", Direction::Input, wsValidator),
"The name of the input workspace.");
declareProperty(make_unique<WorkspaceProperty<API::WorkspaceGroup>>(
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
"OutputWorkspaceBaseName", "", Direction::Output),
"Basename of the output workspace group for corrections."
"Absorption suffix = '_abs'. "
"Multiple Scattering suffix = '_ms'. ");
declareProperty("AttenuationXSection", 2.8, "Coefficient 1, absorption cross "
"section / 1.81 if not set with "
"SetSampleMaterial");
declareProperty("ScatteringXSection", 5.1, "Coefficient 3, total scattering "
"cross section if not set with "
"SetSampleMaterial");
declareProperty("SampleNumberDensity", 0.0721,
"Coefficient 2, density if not set with SetSampleMaterial");
declareProperty("CylinderSampleRadius", 0.3175, "Sample radius, in cm");
declareProperty("Absorption", true,
"If True then calculates the absorption correction.",
Direction::Input);
declareProperty(
"MultipleScattering", true,
"If True then calculates the multiple scattering correction.",
Direction::Input);
}
/**
* Execute the algorithm
*/
void CalculateCarpenterSampleCorrection::exec() {
// common information
MatrixWorkspace_sptr inputWksp = getProperty("InputWorkspace");
double radius = getProperty("CylinderSampleRadius");
double coeff1 = getProperty("AttenuationXSection");
double coeff2 = getProperty("SampleNumberDensity");
double coeff3 = getProperty("ScatteringXSection");
const bool absOn = getProperty("Absorption");
const bool msOn = getProperty("MultipleScattering");
const Material &sampleMaterial = inputWksp->sample().getMaterial();
if (sampleMaterial.totalScatterXSection(LAMBDA_REF) != 0.0) {
g_log.information() << "Using material \"" << sampleMaterial.name()
<< "\" from workspace\n";
if (std::abs(coeff1 - 2.8) < std::numeric_limits<double>::epsilon())
coeff1 = sampleMaterial.absorbXSection(LAMBDA_REF) / LAMBDA_REF;
if ((std::abs(coeff2 - 0.0721) < std::numeric_limits<double>::epsilon()) &&
(!isEmpty(sampleMaterial.numberDensity())))
coeff2 = sampleMaterial.numberDensity();
if (std::abs(coeff3 - 5.1) < std::numeric_limits<double>::epsilon())
coeff3 = sampleMaterial.totalScatterXSection(LAMBDA_REF);
} else // Save input in Sample with wrong atomic number and name
{
NeutronAtom neutron(static_cast<uint16_t>(EMPTY_DBL()),
static_cast<uint16_t>(0), 0.0, 0.0, coeff3, 0.0, coeff3,
coeff1);
auto shape = boost::shared_ptr<IObject>(
inputWksp->sample().getShape().cloneWithMaterial(
Material("SetInMultipleScattering", neutron, coeff2)));
inputWksp->mutableSample().setShape(shape);
}
g_log.debug() << "radius=" << radius << " coeff1=" << coeff1
<< " coeff2=" << coeff2 << " coeff3=" << coeff3 << "\n";
// geometry stuff
const int64_t NUM_HIST =
static_cast<int64_t>(inputWksp->getNumberHistograms());
Instrument_const_sptr instrument = inputWksp->getInstrument();
if (instrument == nullptr)
throw std::runtime_error(
"Failed to find instrument attached to InputWorkspace");
IComponent_const_sptr source = instrument->getSource();
IComponent_const_sptr sample = instrument->getSample();
if (source == nullptr)
throw std::runtime_error(
"Failed to find source in the instrument for InputWorkspace");
if (sample == nullptr)
throw std::runtime_error(
"Failed to find sample in the instrument for InputWorkspace");
// Initialize progress reporting.
Progress prog(this, 0.0, 1.0, NUM_HIST);
EventWorkspace_sptr inputWkspEvent =
boost::dynamic_pointer_cast<EventWorkspace>(inputWksp);
// Create the new correction workspaces
MatrixWorkspace_sptr absWksp =
createOutputWorkspace(inputWksp, "Attenuation factor");
MatrixWorkspace_sptr msWksp =
createOutputWorkspace(inputWksp, "Multiple scattering factor");
// now do the correction
const auto &spectrumInfo = inputWksp->spectrumInfo();
PARALLEL_FOR_IF(Kernel::threadSafe(*absWksp, *msWksp))
for (int64_t index = 0; index < NUM_HIST; ++index) {
PARALLEL_START_INTERUPT_REGION
if (!spectrumInfo.hasDetectors(index))
throw std::runtime_error("Failed to find detector");
if (spectrumInfo.isMasked(index))
continue;
const double tth_rad = spectrumInfo.twoTheta(index);
// absorption
if (absOn) {
absWksp->setSharedX(index, inputWksp->sharedX(index));
const auto lambdas = inputWksp->points(index);
auto &y = absWksp->mutableY(index);
calculate_abs_correction(tth_rad, radius, coeff1, coeff2, coeff3, lambdas,
y);
}
// multiple scattering
if (msOn) {
msWksp->setSharedX(index, inputWksp->sharedX(index));
const auto lambdas = inputWksp->points(index);
auto &y = msWksp->mutableY(index);
calculate_ms_correction(tth_rad, radius, coeff1, coeff2, coeff3, lambdas,
y);
}
prog.report();
PARALLEL_END_INTERUPT_REGION
}
PARALLEL_CHECK_INTERUPT_REGION
absWksp->setDistribution(true);
absWksp->setYUnit("");
absWksp->setYUnitLabel("Attenuation factor");
msWksp->setDistribution(true);
msWksp->setYUnit("");
msWksp->setYUnitLabel("Multiple scattering factor");
// Group and output workspaces we calculated
const std::string group_prefix = getPropertyValue("OutputWorkspaceBaseName");
auto outputGroup = boost::make_shared<API::WorkspaceGroup>();
if (absOn) {
absWksp = setUncertainties(absWksp);
std::string ws_name = group_prefix + std::string("_abs");
AnalysisDataService::Instance().addOrReplace(ws_name, absWksp);
outputGroup->addWorkspace(absWksp);
} else {
deleteWorkspace(absWksp);
}
if (msOn) {
msWksp = setUncertainties(msWksp);
std::string ws_name = group_prefix + std::string("_ms");
AnalysisDataService::Instance().addOrReplace(ws_name, msWksp);
outputGroup->addWorkspace(msWksp);
} else {
deleteWorkspace(msWksp);
}
setProperty("OutputWorkspaceBaseName", outputGroup);
}
namespace { // anonymous namespace
// Set up the Z table for the specified two theta angle (in degrees).
vector<double> createZ(const double angle_rad) {
vector<double> Z(Z_initial, Z_initial + Z_size);
const double theta_rad = angle_rad * .5;
int l, J;
double sum;
for (int i = 1; i <= 4; i++) {
for (int j = 1; j <= 4; j++) {
int iplusj = i + j;
if (iplusj <= 5) {
l = 0;
J = 1 + l + 6 * (i - 1) + 6 * 4 * (j - 1);
sum = CHEBYSHEV[J - 1];
for (l = 1; l <= 5; l++) {
J = 1 + l + 6 * (i - 1) + 6 * 4 * (j - 1);
sum = sum + CHEBYSHEV[J - 1] * cos(l * theta_rad);
}
J = 1 + i + 6 * j;
Z[J - 1] = sum;
}
}
}
return Z;
}
/**
* Evaluate the AttFac function for a given sigir and sigsr.
*/
double AttFac(const double sigir, const double sigsr, const vector<double> &Z) {
double facti = 1.0;
double att = 0.0;
for (size_t i = 0; i <= 5; i++) {
double facts = 1.0;
for (size_t j = 0; j <= 5; j++) {
if (i + j <= 5) {
size_t J = 1 + i + 6 * j; // TODO J defined in terms of j?
att = att + Z[J - 1] * facts * facti;
facts = -facts * sigsr / static_cast<double>(j + 1);
}
}
facti = -facti * sigir / static_cast<double>(i + 1);
}
return att;
}
double calculate_abs_factor(const double radius, const double Q2,
const double sigsct, const vector<double> &Z,
const double wavelength) {
const double sigabs = Q2 * wavelength;
const double sigir = (sigabs + sigsct) * radius;
/**
* By setting the incident and scattered cross sections to be equal
* we implicitly assume elastic scattering because in general these will
* vary with neutron energy.
**/
const double sigsr = sigir;
return AttFac(sigir, sigsr, Z);
}
double calculate_ms_factor(const double radius, const double Q2,
const double sigsct, const vector<double> &Z,
const double wavelength) {
const double sigabs = Q2 * wavelength;
const double sigir = (sigabs + sigsct) * radius;
/**
* By setting the incident and scattered cross sections to be equal
* we implicitly assume elastic scattering because in general these will
* vary with neutron energy.
**/
const double sigsr = sigir;
const double delta = COEFF4 * sigir + COEFF5 * sigir * sigir;
const double deltp = (delta * sigsct) / (sigsct + sigabs);
double temp = AttFac(sigir, sigsr, Z);
return (deltp / temp);
}
} // namespace
/**
* This method will change the values in the y_val array to correct for
* multiple scattering absorption. Parameter total_path is in meters, and
* the sample radius is in cm.
*
* @param angle_deg :: The scattering angle (two theta) in degrees
* @param radius :: The sample rod radius in cm
* @param coeff1 :: The absorption cross section / 1.81
* @param coeff2 :: The density
* @param coeff3 :: The total scattering cross section
* @param wavelength :: Array of wavelengths at bin boundaries
* (or bin centers) for the spectrum, in Angstroms
* @param y_val :: The spectrum values
*/
void CalculateCarpenterSampleCorrection::calculate_abs_correction(
const double angle_deg, const double radius, const double coeff1,
const double coeff2, const double coeff3, const Points &wavelength,
HistogramY &y_val) {
const size_t NUM_Y = y_val.size();
bool is_histogram = false;
if (wavelength.size() == NUM_Y + 1)
is_histogram = true;
else if (wavelength.size() == NUM_Y)
is_histogram = false;
else
throw std::runtime_error("Data is neither historgram or density");
// initialize Z array for this angle
vector<double> Z = createZ(angle_deg);
const double Q2 = coeff1 * coeff2;
const double sigsct = coeff2 * coeff3;
for (size_t j = 0; j < NUM_Y; j++) {
double wl_val = wavelength[j];
if (is_histogram) // average with next value
wl_val = .5 * (wl_val + wavelength[j + 1]);
y_val[j] = calculate_abs_factor(radius, Q2, sigsct, Z, wl_val);
}
}
void CalculateCarpenterSampleCorrection::calculate_ms_correction(
const double angle_deg, const double radius, const double coeff1,
const double coeff2, const double coeff3, const Points &wavelength,
HistogramY &y_val) {
const size_t NUM_Y = y_val.size();
bool is_histogram = false;
if (wavelength.size() == NUM_Y + 1)
is_histogram = true;
else if (wavelength.size() == NUM_Y)
is_histogram = false;
else
throw std::runtime_error("Data is neither historgram or density");
// initialize Z array for this angle
vector<double> Z = createZ(angle_deg);
const double Q2 = coeff1 * coeff2;
const double sigsct = coeff2 * coeff3;
for (size_t j = 0; j < NUM_Y; j++) {
double wl_val = wavelength[j];
if (is_histogram) // average with next value
wl_val = .5 * (wl_val + wavelength[j + 1]);
y_val[j] = calculate_ms_factor(radius, Q2, sigsct, Z, wl_val);
}
}
MatrixWorkspace_sptr CalculateCarpenterSampleCorrection::createOutputWorkspace(
const MatrixWorkspace_sptr &inputWksp, const std::string ylabel) const {
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
MatrixWorkspace_sptr outputWS =
WorkspaceFactory::Instance().create(inputWksp);
// The algorithm computes the signal values at bin centres so they should
// be treated as a distribution
outputWS->setDistribution(true);
outputWS->setYUnit("");
outputWS->setYUnitLabel(ylabel);
return outputWS;
}
MatrixWorkspace_sptr CalculateCarpenterSampleCorrection::setUncertainties(
MatrixWorkspace_sptr workspace) {
auto alg = this->createChildAlgorithm("SetUncertainties");
alg->initialize();
alg->setProperty("InputWorkspace", workspace);
alg->execute();
return alg->getProperty("OutputWorkspace");
}
void CalculateCarpenterSampleCorrection::deleteWorkspace(
MatrixWorkspace_sptr workspace) {
auto alg = this->createChildAlgorithm("DeleteWorkspace");
alg->initialize();
alg->setChild(true);
alg->setLogging(false);
alg->setProperty("Workspace", workspace);
alg->execute();
}
} // namespace Algorithm
} // namespace Mantid