Skip to content
Snippets Groups Projects
CalculateCarpenterSampleCorrection.cpp 16.5 KiB
Newer Older
#include "MantidAlgorithms/CalculateCarpenterSampleCorrection.h"
#include "MantidAPI/InstrumentValidator.h"
#include "MantidAPI/Sample.h"
#include "MantidAPI/SpectrumInfo.h"
#include "MantidAPI/WorkspaceFactory.h"
#include "MantidAPI/WorkspaceGroup.h"
#include "MantidAPI/WorkspaceUnitValidator.h"
#include "MantidDataObjects/EventWorkspace.h"
#include "MantidGeometry/Instrument.h"
#include "MantidKernel/CompositeValidator.h"
#include "MantidKernel/Material.h"

#include <stdexcept>

namespace Mantid {
namespace Algorithms {
DECLARE_ALGORITHM(CalculateCarpenterSampleCorrection) // Register the class
                                                      // into the algorithm
                                                      // factory

using namespace Kernel;
using namespace API;
using Mantid::DataObjects::EventWorkspace;
using Mantid::DataObjects::EventWorkspace_sptr;
using Mantid::HistogramData::HistogramY;
using Mantid::HistogramData::Points;
using std::vector;
using namespace Mantid::PhysicalConstants;
using namespace Geometry;

// Constants required internally only, so make them static. These are
// Chebyshev expansion coefficients copied directly from Carpenter 1969 Table 1
namespace { // anonymous
static const double CHEBYSHEV[] = {
McDonnell, Marshall's avatar
McDonnell, Marshall committed
    // l= 0       1         2          3         4          5       // (m,n)
    0.730284,  -0.249987, 0.019448, -0.000006,
    0.000249,  -0.000004, // (1,1)
    0.848859,  -0.452690, 0.056557, -0.000009,
    0.000000,  -0.000006, // (1,2)
    1.133129,  -0.749962, 0.118245, -0.000018,
    -0.001345, -0.000012, // (1,3)
    1.641112,  -1.241639, 0.226247, -0.000045,
    -0.004821, -0.000030, // (1,4)
    0.848859,  -0.452690, 0.056557, -0.000009,
    0.000000,  -0.000006, // (2,1)
    1.000006,  -0.821100, 0.166645, -0.012096,
    0.000008,  -0.000126, // (2,2)
    1.358113,  -1.358076, 0.348199, -0.038817,
    0.000022,  -0.000021, // (2,3)
    0.0,       0.0,       0.0,      0.0,
    0.0,       0.0, // (2,4)
    1.133129,  -0.749962, 0.118245, -0.000018,
    -0.001345, -0.000012, // (3,1)
    1.358113,  -1.358076, 0.348199, -0.038817,
    0.000022,  -0.000021, // (3,2)
    0.0,       0.0,       0.0,      0.0,
    0.0,       0.0, // (3,3)
    0.0,       0.0,       0.0,      0.0,
    0.0,       0.0, // (3,4)
    1.641112,  -1.241639, 0.226247, -0.000045,
    -0.004821, -0.000030, // (4,1)
    0.0,       0.0,       0.0,      0.0,
    0.0,       0.0, // (4,2)
    0.0,       0.0,       0.0,      0.0,
    0.0,       0.0, // (4,3)
    0.0,       0.0,       0.0,      0.0,
    0.0,       0.0 // (4,4)
};

static const int Z_size = 36; // Caution, this must be updated if the
                              // algorithm is changed to use a different
                              // size Z array.
static const double Z_initial[] = {
McDonnell, Marshall's avatar
McDonnell, Marshall committed
    1.0,          0.8488263632, 1.0, 1.358122181, 2.0, 3.104279270,
    0.8488263632, 0.0,          0.0, 0.0,         0.0, 0.0,
    1.0,          0.0,          0.0, 0.0,         0.0, 0.0,
    1.358122181,  0.0,          0.0, 0.0,         0.0, 0.0,
    2.0,          0.0,          0.0, 0.0,         0.0, 0.0,
    3.104279270,  0.0,          0.0, 0.0,         0.0, 0.0};

static const double LAMBDA_REF =
    1.81; ///< Wavelength that the calculations are based on
// Badly named constants, no explanation of the origin of these
// values. They appear to be used when calculating the multiple
// scattering correction factor.
static const double COEFF4 = 1.1967;
static const double COEFF5 = -0.8667;
} // end of anonymous

const std::string CalculateCarpenterSampleCorrection::name() const {
  return "CalculateCarpenterSampleCorrection";
}

int CalculateCarpenterSampleCorrection::version() const { return 1; }

const std::string CalculateCarpenterSampleCorrection::category() const {
  return "CorrectionFunctions\\AbsorptionCorrections";
}

/**
 * Initialize the properties to default values
 */
void CalculateCarpenterSampleCorrection::init() {
  // The input workspace must have an instrument and units of wavelength
  auto wsValidator = boost::make_shared<CompositeValidator>();
  wsValidator->add<WorkspaceUnitValidator>("Wavelength");
  wsValidator->add<InstrumentValidator>();

McDonnell, Marshall's avatar
McDonnell, Marshall committed
  declareProperty(make_unique<WorkspaceProperty<MatrixWorkspace>>(
                      "InputWorkspace", "", Direction::Input, wsValidator),
                  "The name of the input workspace.");
McDonnell, Marshall's avatar
McDonnell, Marshall committed
  declareProperty(make_unique<WorkspaceProperty<API::WorkspaceGroup>>(
                      "OutputWorkspaceBaseName", "", Direction::Output),
                  "Basename of the output workspace group for corrections."
                  "Absorption suffix = '_abs'. "
                  "Multiple Scattering suffix = '_ms'. ");
  declareProperty("AttenuationXSection", 2.8, "Coefficient 1, absorption cross "
                                              "section / 1.81 if not set with "
                                              "SetSampleMaterial");
  declareProperty("ScatteringXSection", 5.1, "Coefficient 3, total scattering "
                                             "cross section if not set with "
                                             "SetSampleMaterial");
  declareProperty("SampleNumberDensity", 0.0721,
                  "Coefficient 2, density if not set with SetSampleMaterial");
  declareProperty("CylinderSampleRadius", 0.3175, "Sample radius, in cm");
  declareProperty("Absorption", true,
                  "If True then calculates the absorption correction.",
                  Direction::Input);
  declareProperty(
      "MultipleScattering", true,
      "If True then calculates the  multiple scattering correction.",
      Direction::Input);
}

/**
 * Execute the algorithm
 */
void CalculateCarpenterSampleCorrection::exec() {
  // common information
  MatrixWorkspace_sptr inputWksp = getProperty("InputWorkspace");
  double radius = getProperty("CylinderSampleRadius");
  double coeff1 = getProperty("AttenuationXSection");
  double coeff2 = getProperty("SampleNumberDensity");
  double coeff3 = getProperty("ScatteringXSection");
  const bool absOn = getProperty("Absorption");
  const bool msOn = getProperty("MultipleScattering");
  const Material &sampleMaterial = inputWksp->sample().getMaterial();
  if (sampleMaterial.totalScatterXSection(LAMBDA_REF) != 0.0) {
    g_log.information() << "Using material \"" << sampleMaterial.name()
                        << "\" from workspace\n";
    if (std::abs(coeff1 - 2.8) < std::numeric_limits<double>::epsilon())
      coeff1 = sampleMaterial.absorbXSection(LAMBDA_REF) / LAMBDA_REF;
    if ((std::abs(coeff2 - 0.0721) < std::numeric_limits<double>::epsilon()) &&
        (!isEmpty(sampleMaterial.numberDensity())))
      coeff2 = sampleMaterial.numberDensity();
    if (std::abs(coeff3 - 5.1) < std::numeric_limits<double>::epsilon())
      coeff3 = sampleMaterial.totalScatterXSection(LAMBDA_REF);
  } else // Save input in Sample with wrong atomic number and name
  {
    NeutronAtom neutron(static_cast<uint16_t>(EMPTY_DBL()),
                        static_cast<uint16_t>(0), 0.0, 0.0, coeff3, 0.0, coeff3,
                        coeff1);
    auto shape = boost::shared_ptr<IObject>(
        inputWksp->sample().getShape().cloneWithMaterial(
            Material("SetInMultipleScattering", neutron, coeff2)));
    inputWksp->mutableSample().setShape(shape);
  }
  g_log.debug() << "radius=" << radius << " coeff1=" << coeff1
                << " coeff2=" << coeff2 << " coeff3=" << coeff3 << "\n";

  // geometry stuff
  const int64_t NUM_HIST =
      static_cast<int64_t>(inputWksp->getNumberHistograms());
  Instrument_const_sptr instrument = inputWksp->getInstrument();
  if (instrument == nullptr)
    throw std::runtime_error(
        "Failed to find instrument attached to InputWorkspace");
  IComponent_const_sptr source = instrument->getSource();
  IComponent_const_sptr sample = instrument->getSample();
  if (source == nullptr)
    throw std::runtime_error(
        "Failed to find source in the instrument for InputWorkspace");
  if (sample == nullptr)
    throw std::runtime_error(
        "Failed to find sample in the instrument for InputWorkspace");

  // Initialize progress reporting.
  Progress prog(this, 0.0, 1.0, NUM_HIST);

  EventWorkspace_sptr inputWkspEvent =
      boost::dynamic_pointer_cast<EventWorkspace>(inputWksp);

  // Create the new correction workspaces
  MatrixWorkspace_sptr absWksp =
      createOutputWorkspace(inputWksp, "Attenuation factor");
  MatrixWorkspace_sptr msWksp =
      createOutputWorkspace(inputWksp, "Multiple scattering factor");

  // now do the correction
  const auto &spectrumInfo = inputWksp->spectrumInfo();
  PARALLEL_FOR_IF(Kernel::threadSafe(*absWksp, *msWksp))
  for (int64_t index = 0; index < NUM_HIST; ++index) {
    PARALLEL_START_INTERUPT_REGION
    if (!spectrumInfo.hasDetectors(index))
      throw std::runtime_error("Failed to find detector");
    if (spectrumInfo.isMasked(index))
      continue;
    const double tth_rad = spectrumInfo.twoTheta(index);

    // absorption
    if (absOn) {
      absWksp->setSharedX(index, inputWksp->sharedX(index));
      const auto lambdas = inputWksp->points(index);
      auto &y = absWksp->mutableY(index);
      calculate_abs_correction(tth_rad, radius, coeff1, coeff2, coeff3, lambdas,
                               y);
    }

    // multiple scattering
    if (msOn) {
      msWksp->setSharedX(index, inputWksp->sharedX(index));
      const auto lambdas = inputWksp->points(index);
      auto &y = msWksp->mutableY(index);
      calculate_ms_correction(tth_rad, radius, coeff1, coeff2, coeff3, lambdas,
                              y);
    }

    prog.report();
    PARALLEL_END_INTERUPT_REGION
  }
  PARALLEL_CHECK_INTERUPT_REGION

  absWksp->setDistribution(true);
  absWksp->setYUnit("");
  absWksp->setYUnitLabel("Attenuation factor");

  msWksp->setDistribution(true);
  msWksp->setYUnit("");
  msWksp->setYUnitLabel("Multiple scattering factor");

  // Group and output workspaces we calculated
  const std::string group_prefix = getPropertyValue("OutputWorkspaceBaseName");
  auto outputGroup = boost::make_shared<API::WorkspaceGroup>();
  if (absOn) {
    absWksp = setUncertainties(absWksp);
    std::string ws_name = group_prefix + std::string("_abs");
    AnalysisDataService::Instance().addOrReplace(ws_name, absWksp);
    outputGroup->addWorkspace(absWksp);
  } else {
    deleteWorkspace(absWksp);
  }

  if (msOn) {
    msWksp = setUncertainties(msWksp);
    std::string ws_name = group_prefix + std::string("_ms");
    AnalysisDataService::Instance().addOrReplace(ws_name, msWksp);
    outputGroup->addWorkspace(msWksp);
  } else {
    deleteWorkspace(msWksp);
  }

  setProperty("OutputWorkspaceBaseName", outputGroup);
}

namespace { // anonymous namespace
// Set up the Z table for the specified two theta angle (in degrees).
vector<double> createZ(const double angle_rad) {
  vector<double> Z(Z_initial, Z_initial + Z_size);

  const double theta_rad = angle_rad * .5;
  int l, J;
  double sum;

  for (int i = 1; i <= 4; i++) {
    for (int j = 1; j <= 4; j++) {
      int iplusj = i + j;
      if (iplusj <= 5) {
        l = 0;
        J = 1 + l + 6 * (i - 1) + 6 * 4 * (j - 1);
        sum = CHEBYSHEV[J - 1];

        for (l = 1; l <= 5; l++) {
          J = 1 + l + 6 * (i - 1) + 6 * 4 * (j - 1);
          sum = sum + CHEBYSHEV[J - 1] * cos(l * theta_rad);
        }
        J = 1 + i + 6 * j;
        Z[J - 1] = sum;
      }
    }
  }
  return Z;
}

/**
 * Evaluate the AttFac function for a given sigir and sigsr.
 */
double AttFac(const double sigir, const double sigsr, const vector<double> &Z) {
  double facti = 1.0;
  double att = 0.0;

  for (size_t i = 0; i <= 5; i++) {
    double facts = 1.0;
    for (size_t j = 0; j <= 5; j++) {
      if (i + j <= 5) {
        size_t J = 1 + i + 6 * j; // TODO J defined in terms of j?
        att = att + Z[J - 1] * facts * facti;
        facts = -facts * sigsr / static_cast<double>(j + 1);
      }
    }
    facti = -facti * sigir / static_cast<double>(i + 1);
  }
  return att;
}

double calculate_abs_factor(const double radius, const double Q2,
                            const double sigsct, const vector<double> &Z,
                            const double wavelength) {

  const double sigabs = Q2 * wavelength;
  const double sigir = (sigabs + sigsct) * radius;
  /**
  * By setting the incident and scattered cross sections to be equal
  * we implicitly assume elastic scattering because in general these will
  * vary with neutron energy.
  **/
  const double sigsr = sigir;

  return AttFac(sigir, sigsr, Z);
}

double calculate_ms_factor(const double radius, const double Q2,
                           const double sigsct, const vector<double> &Z,
                           const double wavelength) {

  const double sigabs = Q2 * wavelength;
  const double sigir = (sigabs + sigsct) * radius;
  /**
  * By setting the incident and scattered cross sections to be equal
  * we implicitly assume elastic scattering because in general these will
  * vary with neutron energy.
  **/
  const double sigsr = sigir;

  const double delta = COEFF4 * sigir + COEFF5 * sigir * sigir;
  const double deltp = (delta * sigsct) / (sigsct + sigabs);

  double temp = AttFac(sigir, sigsr, Z);
  return (deltp / temp);
}

} // namespace

/**
 *  This method will change the values in the y_val array to correct for
 *  multiple scattering absorption. Parameter total_path is in meters, and
 *  the sample radius is in cm.
 *
 *  @param angle_deg ::   The scattering angle (two theta) in degrees
 *  @param radius ::      The sample rod radius in cm
 *  @param coeff1 ::      The absorption cross section / 1.81
 *  @param coeff2 ::      The density
 *  @param coeff3 ::      The total scattering cross section
 *  @param wavelength ::          Array of wavelengths at bin boundaries
    *                     (or bin centers) for the spectrum, in Angstroms
 *  @param y_val ::       The spectrum values
 */
void CalculateCarpenterSampleCorrection::calculate_abs_correction(
    const double angle_deg, const double radius, const double coeff1,
    const double coeff2, const double coeff3, const Points &wavelength,
    HistogramY &y_val) {

  const size_t NUM_Y = y_val.size();
  bool is_histogram = false;
  if (wavelength.size() == NUM_Y + 1)
    is_histogram = true;
  else if (wavelength.size() == NUM_Y)
    is_histogram = false;
  else
    throw std::runtime_error("Data is neither historgram or density");

  // initialize Z array for this angle
  vector<double> Z = createZ(angle_deg);

  const double Q2 = coeff1 * coeff2;
  const double sigsct = coeff2 * coeff3;

  for (size_t j = 0; j < NUM_Y; j++) {
    double wl_val = wavelength[j];
    if (is_histogram) // average with next value
      wl_val = .5 * (wl_val + wavelength[j + 1]);

    y_val[j] = calculate_abs_factor(radius, Q2, sigsct, Z, wl_val);
  }
}

void CalculateCarpenterSampleCorrection::calculate_ms_correction(
    const double angle_deg, const double radius, const double coeff1,
    const double coeff2, const double coeff3, const Points &wavelength,
    HistogramY &y_val) {

  const size_t NUM_Y = y_val.size();
  bool is_histogram = false;
  if (wavelength.size() == NUM_Y + 1)
    is_histogram = true;
  else if (wavelength.size() == NUM_Y)
    is_histogram = false;
  else
    throw std::runtime_error("Data is neither historgram or density");

  // initialize Z array for this angle
  vector<double> Z = createZ(angle_deg);

  const double Q2 = coeff1 * coeff2;
  const double sigsct = coeff2 * coeff3;

  for (size_t j = 0; j < NUM_Y; j++) {
    double wl_val = wavelength[j];
    if (is_histogram) // average with next value
      wl_val = .5 * (wl_val + wavelength[j + 1]);

    y_val[j] = calculate_ms_factor(radius, Q2, sigsct, Z, wl_val);
  }
}

MatrixWorkspace_sptr CalculateCarpenterSampleCorrection::createOutputWorkspace(
    const MatrixWorkspace_sptr &inputWksp, const std::string ylabel) const {
  MatrixWorkspace_sptr outputWS =
      WorkspaceFactory::Instance().create(inputWksp);
  // The algorithm computes the signal values at bin centres so they should
  // be treated as a distribution
  outputWS->setDistribution(true);
  outputWS->setYUnit("");
  outputWS->setYUnitLabel(ylabel);
  return outputWS;
}

MatrixWorkspace_sptr CalculateCarpenterSampleCorrection::setUncertainties(
    MatrixWorkspace_sptr workspace) {
  auto alg = this->createChildAlgorithm("SetUncertainties");
  alg->initialize();
  alg->setProperty("InputWorkspace", workspace);
  alg->execute();
  return alg->getProperty("OutputWorkspace");
}

void CalculateCarpenterSampleCorrection::deleteWorkspace(
    MatrixWorkspace_sptr workspace) {
  auto alg = this->createChildAlgorithm("DeleteWorkspace");
  alg->initialize();
  alg->setChild(true);
  alg->setLogging(false);
  alg->setProperty("Workspace", workspace);
  alg->execute();
}

} // namespace Algorithm
} // namespace Mantid