Newer
Older
#include "MantidGeometry/MDGeometry/IMDDimension.h"
#include "MantidGeometry/MDGeometry/MDGeometryXMLBuilder.h"
#include "MantidKernel/System.h"
Janik Zikovsky
committed
#include "MantidKernel/Utils.h"
#include "MantidKernel/VMD.h"
#include "MantidKernel/WarningSuppressions.h"
#include "MantidDataObjects/MDHistoWorkspace.h"
#include "MantidDataObjects/MDHistoWorkspaceIterator.h"
#include "MantidDataObjects/MDFramesToSpecialCoordinateSystem.h"
#include "MantidGeometry/MDGeometry/MDHistoDimension.h"
#include "MantidGeometry/MDGeometry/MDDimensionExtents.h"
#include "MantidAPI/IMDWorkspace.h"
#include "MantidAPI/IMDIterator.h"
#include <boost/scoped_array.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
#include <boost/optional.hpp>
Janik Zikovsky
committed
using namespace Mantid::Kernel;
Janik Zikovsky
committed
using namespace Mantid::Geometry;
using namespace Mantid::API;
namespace DataObjects {
//----------------------------------------------------------------------------------------------
/** Constructor given the 4 dimensions
* @param dimX :: X dimension binning parameters
* @param dimY :: Y dimension binning parameters
* @param dimZ :: Z dimension binning parameters
* @param dimT :: T (time) dimension binning parameters
* @param displayNormalization :: optional display normalization to use as the
* default.
MDHistoWorkspace::MDHistoWorkspace(
Mantid::Geometry::MDHistoDimension_sptr dimX,
Mantid::Geometry::MDHistoDimension_sptr dimY,
Mantid::Geometry::MDHistoDimension_sptr dimZ,
Mantid::Geometry::MDHistoDimension_sptr dimT,
Mantid::API::MDNormalization displayNormalization)
: IMDHistoWorkspace(), numDimensions(0),
m_nEventsContributed(std::numeric_limits<uint64_t>::quiet_NaN()),
m_coordSystem(None), m_displayNormalization(displayNormalization) {
std::vector<Mantid::Geometry::MDHistoDimension_sptr> dimensions;
if (dimX)
dimensions.push_back(dimX);
if (dimY)
dimensions.push_back(dimY);
if (dimZ)
dimensions.push_back(dimZ);
if (dimT)
dimensions.push_back(dimT);
this->init(dimensions);
}
//----------------------------------------------------------------------------------------------
/** Constructor given a vector of dimensions
* @param dimensions :: vector of MDHistoDimension; no limit to how many.
* @param displayNormalization :: optional display normalization to use as the
* default.
*/
MDHistoWorkspace::MDHistoWorkspace(
std::vector<Mantid::Geometry::MDHistoDimension_sptr> &dimensions,
Mantid::API::MDNormalization displayNormalization)
: IMDHistoWorkspace(), numDimensions(0), m_numEvents(NULL),
m_nEventsContributed(std::numeric_limits<uint64_t>::quiet_NaN()),
m_coordSystem(None), m_displayNormalization(displayNormalization) {
this->init(dimensions);
}
//----------------------------------------------------------------------------------------------
/** Constructor given a vector of dimensions
* @param dimensions :: vector of MDHistoDimension; no limit to how many.
* @param displayNormalization :: optional display normalization to use as the
* default.
*/
MDHistoWorkspace::MDHistoWorkspace(
std::vector<Mantid::Geometry::IMDDimension_sptr> &dimensions,
Mantid::API::MDNormalization displayNormalization)
: IMDHistoWorkspace(), numDimensions(0), m_numEvents(NULL),
m_nEventsContributed(std::numeric_limits<uint64_t>::quiet_NaN()),
m_coordSystem(None), m_displayNormalization(displayNormalization) {
this->init(dimensions);
}
//----------------------------------------------------------------------------------------------
/** Copy constructor
*
* @param other :: MDHistoWorkspace to copy from.
*/
MDHistoWorkspace::MDHistoWorkspace(const MDHistoWorkspace &other)
: IMDHistoWorkspace(other) {
// Dimensions are copied by the copy constructor of MDGeometry
this->cacheValues();
// Allocate the linear arrays
m_signals = new signal_t[m_length];
m_errorsSquared = new signal_t[m_length];
m_numEvents = new signal_t[m_length];
m_masks = new bool[m_length];
m_nEventsContributed = other.m_nEventsContributed;
this->setCoordinateSystem(other.getSpecialCoordinateSystem());
m_displayNormalization = other.displayNormalization();
// Now copy all the data
for (size_t i = 0; i < m_length; ++i) {
m_signals[i] = other.m_signals[i];
m_errorsSquared[i] = other.m_errorsSquared[i];
m_numEvents[i] = other.m_numEvents[i];
m_masks[i] = other.m_masks[i];
}
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
}
//----------------------------------------------------------------------------------------------
/** Destructor
*/
MDHistoWorkspace::~MDHistoWorkspace() {
delete[] m_signals;
delete[] m_errorsSquared;
delete[] m_numEvents;
delete[] indexMultiplier;
delete[] m_vertexesArray;
delete[] m_boxLength;
delete[] m_indexMaker;
delete[] m_indexMax;
delete[] m_origin;
delete[] m_masks;
}
//----------------------------------------------------------------------------------------------
/** Constructor helper method
* @param dimensions :: vector of MDHistoDimension; no limit to how many.
*/
void MDHistoWorkspace::init(
std::vector<Mantid::Geometry::MDHistoDimension_sptr> &dimensions) {
std::vector<IMDDimension_sptr> dim2;
for (size_t i = 0; i < dimensions.size(); i++)
dim2.push_back(boost::dynamic_pointer_cast<IMDDimension>(dimensions[i]));
this->init(dim2);
m_nEventsContributed = 0;
}
//----------------------------------------------------------------------------------------------
/** Constructor helper method
* @param dimensions :: vector of IMDDimension; no limit to how many.
*/
void MDHistoWorkspace::init(
std::vector<Mantid::Geometry::IMDDimension_sptr> &dimensions) {
MDGeometry::initGeometry(dimensions);
this->cacheValues();
// Allocate the linear arrays
m_signals = new signal_t[m_length];
m_errorsSquared = new signal_t[m_length];
m_numEvents = new signal_t[m_length];
m_masks = new bool[m_length];
// Initialize them to NAN (quickly)
signal_t nan = std::numeric_limits<signal_t>::quiet_NaN();
this->setTo(nan, nan, nan);
m_nEventsContributed = 0;
}
//----------------------------------------------------------------------------------------------
/** When all dimensions have been initialized, this caches all the necessary
* values for later use.
*/
void MDHistoWorkspace::cacheValues() {
// Copy the dimensions array
numDimensions = m_dimensions.size();
// For indexing.
if (numDimensions < 4)
indexMultiplier = new size_t[4];
else
indexMultiplier = new size_t[numDimensions];
// For quick indexing, accumulate these values
// First multiplier
indexMultiplier[0] = m_dimensions[0]->getNBins();
for (size_t d = 1; d < numDimensions; d++)
indexMultiplier[d] = indexMultiplier[d - 1] * m_dimensions[d]->getNBins();
// This is how many dense data points
m_length = indexMultiplier[numDimensions - 1];
// Now fix things for < 4 dimensions. Indices > the number of dimensions will
// be ignored (*0)
for (size_t d = numDimensions - 1; d < 4; d++)
indexMultiplier[d] = 0;
// Compute the volume of each cell.
coord_t volume = 1.0;
for (size_t i = 0; i < numDimensions; ++i)
volume *= m_dimensions[i]->getBinWidth();
m_inverseVolume = 1.0f / volume;
// Continue with the vertexes array
this->initVertexesArray();
m_nEventsContributed = 0;
}
//----------------------------------------------------------------------------------------------
/** After initialization, call this to initialize the vertexes array
* to the vertexes of the 0th box.
* Will be used by getVertexesArray()
* */
void MDHistoWorkspace::initVertexesArray() {
size_t nd = numDimensions;
// How many vertices does one box have? 2^nd, or bitwise shift left 1 by nd
// bits
size_t numVertices = 1 << numDimensions;
// Allocate the array of the right size
m_vertexesArray = new coord_t[nd * numVertices];
// For each vertex, increase an integeer
for (size_t i = 0; i < numVertices; ++i) {
// Start point index in the output array;
size_t outIndex = i * nd;
// Coordinates of the vertex
for (size_t d = 0; d < nd; d++) {
// Use a bit mask to look at each bit of the integer we are iterating
// through.
size_t mask = 1 << d;
if ((i & mask) > 0) {
// Bit is 1, use the max of the dimension
m_vertexesArray[outIndex + d] = m_dimensions[d]->getX(1);
} else {
// Bit is 0, use the min of the dimension
m_vertexesArray[outIndex + d] = m_dimensions[d]->getX(0);
}
} // (for each dimension)
// Now set the m_boxLength and origin
m_boxLength = new coord_t[nd];
m_origin = new coord_t[nd];
for (size_t d = 0; d < nd; d++) {
m_boxLength[d] = m_dimensions[d]->getX(1) - m_dimensions[d]->getX(0);
m_origin[d] = m_dimensions[d]->getX(0);
// The index calculator
m_indexMax = new size_t[numDimensions];
for (size_t d = 0; d < nd; d++)
m_indexMax[d] = m_dimensions[d]->getNBins();
m_indexMaker = new size_t[numDimensions];
Utils::NestedForLoop::SetUpIndexMaker(numDimensions, m_indexMaker,
m_indexMax);
}
//----------------------------------------------------------------------------------------------
/** Sets all signals/errors in the workspace to the given values
*
* @param signal :: signal value to set
* @param errorSquared :: error (squared) value to set
* @param numEvents :: the number of events in each bin.
*/
void MDHistoWorkspace::setTo(signal_t signal, signal_t errorSquared,
signal_t numEvents) {
for (size_t i = 0; i < m_length; i++) {
m_signals[i] = signal;
m_errorsSquared[i] = errorSquared;
m_numEvents[i] = numEvents;
m_masks[i] = false; // Not masked by default;
m_nEventsContributed += uint64_t(numEvents);
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
}
//----------------------------------------------------------------------------------------------
/** Apply an implicit function to each point; if false, set to the given value.
*
* @param function :: the implicit function to apply
* @param signal :: signal value to set when function evaluates to false
* @param errorSquared :: error value to set when function evaluates to false
*/
void MDHistoWorkspace::applyImplicitFunction(
Mantid::Geometry::MDImplicitFunction *function, signal_t signal,
signal_t errorSquared) {
if (numDimensions < 3)
throw std::invalid_argument("Need 3 dimensions for ImplicitFunction.");
Mantid::coord_t coord[3];
for (size_t x = 0; x < m_dimensions[0]->getNBins(); x++) {
coord[0] = m_dimensions[0]->getX(x);
for (size_t y = 0; y < m_dimensions[1]->getNBins(); y++) {
coord[1] = m_dimensions[1]->getX(y);
for (size_t z = 0; z < m_dimensions[2]->getNBins(); z++) {
coord[2] = m_dimensions[2]->getX(z);
if (!function->isPointContained(coord)) {
m_signals[x + indexMultiplier[0] * y + indexMultiplier[1] * z] =
signal;
m_errorsSquared[x + indexMultiplier[0] * y + indexMultiplier[1] * z] =
errorSquared;
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
}
//----------------------------------------------------------------------------------------------
/** For the volume at the given linear index,
* Return the vertices of every corner of the box, as
* a bare array of length numVertices * nd
*
* @param linearIndex :: index into the workspace. Same as for
*getSignalAt(index)
* @param[out] numVertices :: returns the number of vertices in the array.
* @return the bare array. This should be deleted by the caller!
* */
coord_t *MDHistoWorkspace::getVertexesArray(size_t linearIndex,
size_t &numVertices) const {
// How many vertices does one box have? 2^nd, or bitwise shift left 1 by nd
// bits
numVertices = (size_t)(1) << numDimensions; // Cast avoids warning about
// result of 32-bit shift
// implicitly converted to 64 bits
// on MSVC
// Index into each dimension. Built from the linearIndex.
size_t dimIndexes[10];
Utils::NestedForLoop::GetIndicesFromLinearIndex(
numDimensions, linearIndex, m_indexMaker, m_indexMax, dimIndexes);
// The output vertexes coordinates
coord_t *out = new coord_t[numDimensions * numVertices];
for (size_t i = 0; i < numVertices; ++i) {
size_t outIndex = i * numDimensions;
// Offset the 0th box by the position of this linear index, in each
// dimension
for (size_t d = 0; d < numDimensions; d++)
out[outIndex + d] = m_vertexesArray[outIndex + d] +
m_boxLength[d] * static_cast<coord_t>(dimIndexes[d]);
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
return out;
}
//----------------------------------------------------------------------------------------------
/** Return the position of the center of a bin at a given position
*
* @param linearIndex :: linear index into the workspace
* @return VMD vector of the center position
*/
Mantid::Kernel::VMD MDHistoWorkspace::getCenter(size_t linearIndex) const {
// Index into each dimension. Built from the linearIndex.
size_t dimIndexes[10];
Utils::NestedForLoop::GetIndicesFromLinearIndex(
numDimensions, linearIndex, m_indexMaker, m_indexMax, dimIndexes);
// The output vertexes coordinates
VMD out(numDimensions);
// Offset the 0th box by the position of this linear index, in each dimension,
// plus a half
for (size_t d = 0; d < numDimensions; d++)
out[d] = m_vertexesArray[d] +
m_boxLength[d] * (static_cast<coord_t>(dimIndexes[d]) + 0.5f);
return out;
}
//----------------------------------------------------------------------------------------------
/** Get the signal at a particular coordinate in the workspace.
*
* @param coords :: numDimensions-sized array of the coordinates to look at
* @param normalization : Normalisation to use.
* @return the (normalized) signal at a given coordinates.
* NaN if outside the range of this workspace
*/
signal_t MDHistoWorkspace::getSignalAtCoord(
const coord_t *coords,
const Mantid::API::MDNormalization &normalization) const {
size_t linearIndex = this->getLinearIndexAtCoord(coords);
if (linearIndex < m_length) {
// What is our normalization factor?
switch (normalization) {
case NoNormalization:
return m_signals[linearIndex];
case VolumeNormalization:
return m_signals[linearIndex] * m_inverseVolume;
case NumEventsNormalization:
return m_signals[linearIndex] / m_numEvents[linearIndex];
// Should not reach here
return m_signals[linearIndex];
} else
return std::numeric_limits<signal_t>::quiet_NaN();
}
//----------------------------------------------------------------------------------------------
/** Get the linear index into the histo array at these coordinates
*
* @param coords :: ND-sized array of coordinates
* @return the linear index, or size_t(-1) if out of range.
*/
size_t MDHistoWorkspace::getLinearIndexAtCoord(const coord_t *coords) const {
// Build up the linear index, dimension by dimension
size_t linearIndex = 0;
for (size_t d = 0; d < numDimensions; d++) {
coord_t x = coords[d] - m_origin[d];
size_t ix = size_t(x / m_boxLength[d]);
if (ix >= m_indexMax[d] || (x < 0))
return size_t(-1);
linearIndex += ix * m_indexMaker[d];
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
return linearIndex;
}
//----------------------------------------------------------------------------------------------
/** Create IMDIterators from this MDHistoWorkspace
*
* @param suggestedNumCores :: split the iterators into this many cores (if
*threadsafe)
* @param function :: implicit function to limit range. NOT owned by this method
*call.
* @return MDHistoWorkspaceIterator vector
*/
std::vector<Mantid::API::IMDIterator *> MDHistoWorkspace::createIterators(
size_t suggestedNumCores,
Mantid::Geometry::MDImplicitFunction *function) const {
size_t numCores = suggestedNumCores;
if (!this->threadSafe())
numCores = 1;
size_t numElements = this->getNPoints();
if (numCores > numElements)
numCores = numElements;
if (numCores < 1)
numCores = 1;
// Create one iterator per core, splitting evenly amongst spectra
std::vector<IMDIterator *> out;
for (size_t i = 0; i < numCores; i++) {
size_t begin = (i * numElements) / numCores;
size_t end = ((i + 1) * numElements) / numCores;
if (end > numElements)
end = numElements;
// Clone the MDImplicitFunction if necessary.
Mantid::Geometry::MDImplicitFunction *clonedFunction = function;
if (function)
clonedFunction = new Mantid::Geometry::MDImplicitFunction(*function);
out.push_back(
new MDHistoWorkspaceIterator(this, clonedFunction, begin, end));
Janik Zikovsky
committed
}
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
return out;
}
//----------------------------------------------------------------------------------------------
/** Return the memory used, in bytes */
size_t MDHistoWorkspace::getMemorySize() const {
return m_length * (sizeOfElement());
}
//----------------------------------------------------------------------------------------------
/// @return a vector containing a copy of the signal data in the workspace.
std::vector<signal_t> MDHistoWorkspace::getSignalDataVector() const {
// TODO: Make this more efficient if needed.
std::vector<signal_t> out;
out.resize(m_length, 0.0);
for (size_t i = 0; i < m_length; ++i)
out[i] = m_signals[i];
// This copies again! :(
return out;
}
/// @return a vector containing a copy of the error data in the workspace.
std::vector<signal_t> MDHistoWorkspace::getErrorDataVector() const {
// TODO: Make this more efficient if needed.
std::vector<signal_t> out;
out.resize(m_length, 0.0);
for (size_t i = 0; i < m_length; ++i)
out[i] = m_errorsSquared[i];
// This copies again! :(
return out;
}
/** @return true if the point is within the workspace (including the max edges)
* */
bool pointInWorkspace(const MDHistoWorkspace *ws, const VMD &point) {
for (size_t d = 0; d < ws->getNumDims(); d++) {
IMDDimension_const_sptr dim = ws->getDimension(d);
if ((point[d] < dim->getMinimum()) || (point[d] > dim->getMaximum()))
return false;
Janik Zikovsky
committed
}
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
return true;
}
//----------------------------------------------------------------------------------------------
/** Obtain coordinates for a line plot through a MDWorkspace.
* Cross the workspace from start to end points, recording the signal along the
*line.
* Sets the x,y vectors to the histogram bin boundaries and counts
*
* @param start :: coordinates of the start point of the line
* @param end :: coordinates of the end point of the line
* @param normalize :: how to normalize the signal
* @param x :: is set to the boundaries of the bins, relative to start of the
*line.
* @param y :: is set to the normalized signal for each bin. Length = length(x)
*- 1
* @param e :: error vector for each bin.
*/
void MDHistoWorkspace::getLinePlot(const Mantid::Kernel::VMD &start,
const Mantid::Kernel::VMD &end,
Mantid::API::MDNormalization normalize,
std::vector<coord_t> &x,
std::vector<signal_t> &y,
std::vector<signal_t> &e) const {
size_t nd = this->getNumDims();
if (start.getNumDims() != nd)
throw std::runtime_error("Start point must have the same number of "
"dimensions as the workspace.");
if (end.getNumDims() != nd)
throw std::runtime_error(
"End point must have the same number of dimensions as the workspace.");
x.clear();
y.clear();
e.clear();
// Unit-vector of the direction
VMD dir = end - start;
coord_t length = dir.normalize();
// Vector with +1 where direction is positive, -1 where negative
#define sgn(x) ((x < 0) ? -1.0f : ((x > 0.) ? 1.0f : 0.0f))
VMD dirSign(nd);
for (size_t d = 0; d < nd; d++) {
dirSign[d] = sgn(dir[d]);
Janik Zikovsky
committed
}
size_t BADINDEX = size_t(-1);
// Dimensions of the workspace
boost::scoped_array<size_t> index(new size_t[nd]);
boost::scoped_array<size_t> numBins(new size_t[nd]);
for (size_t d = 0; d < nd; d++) {
IMDDimension_const_sptr dim = this->getDimension(d);
index[d] = BADINDEX;
numBins[d] = dim->getNBins();
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
// Ordered list of boundaries in position-along-the-line coordinates
std::set<coord_t> boundaries;
// Start with the start/end points, if they are within range.
if (pointInWorkspace(this, start))
boundaries.insert(0.0f);
if (pointInWorkspace(this, end))
boundaries.insert(length);
// Next, we go through each dimension and see where the bin boundaries
// intersect the line.
for (size_t d = 0; d < nd; d++) {
IMDDimension_const_sptr dim = this->getDimension(d);
coord_t lineStartX = start[d];
if (dir[d] != 0.0) {
for (size_t i = 0; i <= dim->getNBins(); i++) {
// Position in this coordinate
coord_t thisX = dim->getX(i);
// Position along the line. Is this between the start and end of it?
coord_t linePos = (thisX - lineStartX) / dir[d];
if (linePos >= 0 && linePos <= length) {
// Full position
VMD pos = start + (dir * linePos);
// This is a boundary if the line point is inside the workspace
if (pointInWorkspace(this, pos))
boundaries.insert(linePos);
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
if (boundaries.empty()) {
// Nothing at all!
// Make a single bin with NAN
x.push_back(0);
x.push_back(length);
y.push_back(std::numeric_limits<signal_t>::quiet_NaN());
e.push_back(std::numeric_limits<signal_t>::quiet_NaN());
return;
} else {
// Get the first point
std::set<coord_t>::iterator it;
it = boundaries.begin();
coord_t lastLinePos = *it;
VMD lastPos = start + (dir * lastLinePos);
x.push_back(lastLinePos);
++it;
for (; it != boundaries.end(); ++it) {
// This is our current position along the line
coord_t linePos = *it;
x.push_back(linePos);
// This is the full position at this boundary
VMD pos = start + (dir * linePos);
// Position in the middle of the bin
VMD middle = (pos + lastPos) * 0.5;
// Find the signal in this bin
size_t linearIndex = this->getLinearIndexAtCoord(middle.getBareArray());
if (linearIndex < m_length) {
// What is our normalization factor?
signal_t normalizer = 1.0;
switch (normalize) {
case NoNormalization:
break;
case VolumeNormalization:
normalizer = m_inverseVolume;
break;
case NumEventsNormalization:
normalizer = 1.0 / m_numEvents[linearIndex];
break;
}
// And add the normalized signal/error to the list too
auto signal = this->getSignalAt(linearIndex) * normalizer;
if (boost::math::isinf(signal)) {
// The plotting library (qwt) doesn't like infs.
signal = std::numeric_limits<signal_t>::quiet_NaN();
}
y.push_back(signal);
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
e.push_back(this->getErrorAt(linearIndex) * normalizer);
// Save the position for next bin
lastPos = pos;
} else {
// Invalid index. This shouldn't happen
y.push_back(std::numeric_limits<signal_t>::quiet_NaN());
e.push_back(std::numeric_limits<signal_t>::quiet_NaN());
}
} // for each unique boundary
} // if there is at least one point
} // (end function)
//==============================================================================================
//============================== ARITHMETIC OPERATIONS
//=========================================
//==============================================================================================
//----------------------------------------------------------------------------------------------
/** Check if the two workspace's sizes match (for comparison or
*element-by-element operation
*
* @param other :: the workspace to compare to
* @param operation :: descriptive string (for the error message)
* @throw an error if they don't match
*/
void MDHistoWorkspace::checkWorkspaceSize(const MDHistoWorkspace &other,
std::string operation) {
if (other.getNumDims() != this->getNumDims())
throw std::invalid_argument("Cannot perform the " + operation +
" operation on this MDHistoWorkspace. The "
"number of dimensions does not match.");
if (other.m_length != this->m_length)
throw std::invalid_argument("Cannot perform the " + operation +
" operation on this MDHistoWorkspace. The "
"length of the signals vector does not match.");
}
//----------------------------------------------------------------------------------------------
/** Perform the += operation, element-by-element, for two MDHistoWorkspace's
*
* @param b :: workspace on the RHS of the operation
* @return *this after operation */
MDHistoWorkspace &MDHistoWorkspace::operator+=(const MDHistoWorkspace &b) {
add(b);
return *this;
}
//----------------------------------------------------------------------------------------------
/** Perform the += operation, element-by-element, for two MDHistoWorkspace's
*
* @param b :: workspace on the RHS of the operation
* */
void MDHistoWorkspace::add(const MDHistoWorkspace &b) {
checkWorkspaceSize(b, "add");
for (size_t i = 0; i < m_length; ++i) {
m_signals[i] += b.m_signals[i];
m_errorsSquared[i] += b.m_errorsSquared[i];
m_numEvents[i] += b.m_numEvents[i];
m_nEventsContributed += b.m_nEventsContributed;
}
//----------------------------------------------------------------------------------------------
/** Perform the += operation with a scalar as the RHS argument
*
* @param signal :: signal to apply
* @param error :: error (not squared) to apply
* */
void MDHistoWorkspace::add(const signal_t signal, const signal_t error) {
signal_t errorSquared = error * error;
for (size_t i = 0; i < m_length; ++i) {
m_signals[i] += signal;
m_errorsSquared[i] += errorSquared;
}
//----------------------------------------------------------------------------------------------
/** Perform the -= operation, element-by-element, for two MDHistoWorkspace's
*
* @param b :: workspace on the RHS of the operation
* @return *this after operation */
MDHistoWorkspace &MDHistoWorkspace::operator-=(const MDHistoWorkspace &b) {
subtract(b);
return *this;
}
//----------------------------------------------------------------------------------------------
/** Perform the -= operation, element-by-element, for two MDHistoWorkspace's
*
* @param b :: workspace on the RHS of the operation
* */
void MDHistoWorkspace::subtract(const MDHistoWorkspace &b) {
checkWorkspaceSize(b, "subtract");
for (size_t i = 0; i < m_length; ++i) {
m_signals[i] -= b.m_signals[i];
m_errorsSquared[i] += b.m_errorsSquared[i];
m_numEvents[i] += b.m_numEvents[i];
m_nEventsContributed += b.m_nEventsContributed;
}
//----------------------------------------------------------------------------------------------
/** Perform the -= operation with a scalar as the RHS argument
*
* @param signal :: signal to apply
* @param error :: error (not squared) to apply
* */
void MDHistoWorkspace::subtract(const signal_t signal, const signal_t error) {
signal_t errorSquared = error * error;
for (size_t i = 0; i < m_length; ++i) {
m_signals[i] -= signal;
m_errorsSquared[i] += errorSquared;
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
}
//----------------------------------------------------------------------------------------------
/** Perform the *= operation, element-by-element, for two MDHistoWorkspace's
*
* Error propagation of \f$ f = a * b \f$ is given by:
* \f$ df^2 = f^2 * (da^2 / a^2 + db^2 / b^2) \f$
*
* @param b_ws :: workspace on the RHS of the operation
* @return *this after operation */
MDHistoWorkspace &MDHistoWorkspace::operator*=(const MDHistoWorkspace &b_ws) {
multiply(b_ws);
return *this;
}
//----------------------------------------------------------------------------------------------
/** Perform the *= operation, element-by-element, for two MDHistoWorkspace's
*
* Error propagation of \f$ f = a * b \f$ is given by:
* \f$ df^2 = f^2 * (da^2 / a^2 + db^2 / b^2) \f$
*
* @param b_ws :: workspace on the RHS of the operation
* */
void MDHistoWorkspace::multiply(const MDHistoWorkspace &b_ws) {
checkWorkspaceSize(b_ws, "multiply");
for (size_t i = 0; i < m_length; ++i) {
signal_t a = m_signals[i];
signal_t da2 = m_errorsSquared[i];
signal_t b = b_ws.m_signals[i];
signal_t db2 = b_ws.m_errorsSquared[i];
signal_t f = a * b;
signal_t df2 = (f * f) * (da2 / (a * a) + db2 / (b * b));
m_signals[i] = f;
m_errorsSquared[i] = df2;
Janik Zikovsky
committed
}
}
//----------------------------------------------------------------------------------------------
/** Perform the *= operation with a scalar as the RHS argument
*
* Error propagation of \f$ f = a * b \f$ is given by:
* \f$ df^2 = f^2 * (da^2 / a^2 + db^2 / b^2) \f$
*
* @param signal :: signal to apply
* @param error :: error (not squared) to apply
* @return *this after operation */
void MDHistoWorkspace::multiply(const signal_t signal, const signal_t error) {
signal_t b = signal;
signal_t db2 = error * error;
signal_t db2_relative = db2 / (b * b);
for (size_t i = 0; i < m_length; ++i) {
signal_t a = m_signals[i];
signal_t da2 = m_errorsSquared[i];
signal_t f = a * b;
signal_t df2 = (f * f) * (da2 / (a * a) + db2_relative);
m_signals[i] = f;
m_errorsSquared[i] = df2;
Janik Zikovsky
committed
}
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
}
//----------------------------------------------------------------------------------------------
/** Perform the /= operation, element-by-element, for two MDHistoWorkspace's
*
* Error propagation of \f$ f = a / b \f$ is given by:
* \f$ df^2 = f^2 * (da^2 / a^2 + db^2 / b^2) \f$
*
* @param b_ws :: workspace on the RHS of the operation
* @return *this after operation */
MDHistoWorkspace &MDHistoWorkspace::operator/=(const MDHistoWorkspace &b_ws) {
divide(b_ws);
return *this;
}
//----------------------------------------------------------------------------------------------
/** Perform the /= operation, element-by-element, for two MDHistoWorkspace's
*
* Error propagation of \f$ f = a / b \f$ is given by:
* \f$ df^2 = f^2 * (da^2 / a^2 + db^2 / b^2) \f$
*
* @param b_ws :: workspace on the RHS of the operation
**/
void MDHistoWorkspace::divide(const MDHistoWorkspace &b_ws) {
checkWorkspaceSize(b_ws, "divide");
for (size_t i = 0; i < m_length; ++i) {
signal_t a = m_signals[i];
signal_t da2 = m_errorsSquared[i];
signal_t b = b_ws.m_signals[i];
signal_t db2 = b_ws.m_errorsSquared[i];
signal_t f = a / b;
signal_t df2 = (f * f) * (da2 / (a * a) + db2 / (b * b));
m_signals[i] = f;
m_errorsSquared[i] = df2;
}
//----------------------------------------------------------------------------------------------
/** Perform the /= operation with a scalar as the RHS argument
*
* Error propagation of \f$ f = a / b \f$ is given by:
* \f$ df^2 = f^2 * (da^2 / a^2 + db^2 / b^2) \f$
*
* @param signal :: signal to apply
* @param error :: error (not squared) to apply
**/
void MDHistoWorkspace::divide(const signal_t signal, const signal_t error) {
signal_t b = signal;
signal_t db2 = error * error;
signal_t db2_relative = db2 / (b * b);
for (size_t i = 0; i < m_length; ++i) {
signal_t a = m_signals[i];
signal_t da2 = m_errorsSquared[i];
signal_t f = a / b;
signal_t df2 = (f * f) * (da2 / (a * a) + db2_relative);
m_signals[i] = f;
m_errorsSquared[i] = df2;
Janik Zikovsky
committed
}
}
//----------------------------------------------------------------------------------------------
/** Perform the natural logarithm on each signal in the workspace.
*
* Error propagation of \f$ f = ln(a) \f$ is given by:
* \f$ df^2 = a^2 / da^2 \f$
*/
void MDHistoWorkspace::log(double filler) {
for (size_t i = 0; i < m_length; ++i) {
signal_t a = m_signals[i];
signal_t da2 = m_errorsSquared[i];
if (a <= 0) {
m_signals[i] = filler;
m_errorsSquared[i] = 0;
} else {
m_signals[i] = std::log(a);
m_errorsSquared[i] = da2 / (a * a);
}
//----------------------------------------------------------------------------------------------
/** Perform the base-10 logarithm on each signal in the workspace.
*
* Error propagation of \f$ f = ln(a) \f$ is given by:
* \f$ df^2 = (ln(10)^-2) * a^2 / da^2 \f$
*/
void MDHistoWorkspace::log10(double filler) {
for (size_t i = 0; i < m_length; ++i) {
signal_t a = m_signals[i];
signal_t da2 = m_errorsSquared[i];
if (a <= 0) {
m_signals[i] = filler;
m_errorsSquared[i] = 0;
} else {
m_signals[i] = std::log10(a);
m_errorsSquared[i] = 0.1886117 * da2 / (a * a); // 0.1886117 = ln(10)^-2
}
//----------------------------------------------------------------------------------------------
/** Perform the exp() function on each signal in the workspace.
*
* Error propagation of \f$ f = exp(a) \f$ is given by:
* \f$ df^2 = f^2 * da^2 \f$
*/
void MDHistoWorkspace::exp() {
for (size_t i = 0; i < m_length; ++i) {
signal_t f = std::exp(m_signals[i]);
signal_t da2 = m_errorsSquared[i];
m_signals[i] = f;
m_errorsSquared[i] = f * f * da2;
}
//----------------------------------------------------------------------------------------------
/** Perform the power function (signal^exponent) on each signal S in the
*workspace.
*
* Error propagation of \f$ f = a^b \f$ is given by:
* \f$ df^2 = f^2 * b^2 * (da^2 / a^2) \f$
*/
void MDHistoWorkspace::power(double exponent) {
double exponent_squared = exponent * exponent;
for (size_t i = 0; i < m_length; ++i) {
signal_t a = m_signals[i];
signal_t f = std::pow(a, exponent);
signal_t da2 = m_errorsSquared[i];
m_signals[i] = f;
m_errorsSquared[i] = f * f * exponent_squared * da2 / (a * a);
}
//==============================================================================================
//============================== BOOLEAN OPERATIONS
//============================================
//==============================================================================================
//----------------------------------------------------------------------------------------------
/** A boolean &= (and) operation, element-by-element, for two
*MDHistoWorkspace's.
*
* 0.0 is "false", all other values are "true". All errors are set to 0.
*
* @param b :: workspace on the RHS of the operation
* @return *this after operation */
MDHistoWorkspace &MDHistoWorkspace::operator&=(const MDHistoWorkspace &b) {
checkWorkspaceSize(b, "&= (and)");
for (size_t i = 0; i < m_length; ++i) {
m_signals[i] = ((m_signals[i] != 0) && (b.m_signals[i] != 0)) ? 1.0 : 0.0;
m_errorsSquared[i] = 0;
Janik Zikovsky
committed
}
return *this;
}
//----------------------------------------------------------------------------------------------
/** A boolean |= (or) operation, element-by-element, for two MDHistoWorkspace's.
*
* 0.0 is "false", all other values are "true". All errors are set to 0.
*
* @param b :: workspace on the RHS of the operation
* @return *this after operation */
MDHistoWorkspace &MDHistoWorkspace::operator|=(const MDHistoWorkspace &b) {
checkWorkspaceSize(b, "|= (or)");
for (size_t i = 0; i < m_length; ++i) {
m_signals[i] = ((m_signals[i] != 0) || (b.m_signals[i] != 0)) ? 1.0 : 0.0;
m_errorsSquared[i] = 0;
Janik Zikovsky
committed
}
return *this;
}
//----------------------------------------------------------------------------------------------
/** A boolean ^= (xor) operation, element-by-element, for two
*MDHistoWorkspace's.
*
* 0.0 is "false", all other values are "true". All errors are set to 0.
*
* @param b :: workspace on the RHS of the operation
* @return *this after operation */
MDHistoWorkspace &MDHistoWorkspace::operator^=(const MDHistoWorkspace &b) {
checkWorkspaceSize(b, "^= (xor)");
for (size_t i = 0; i < m_length; ++i) {
m_signals[i] = ((m_signals[i] != 0) ^ (b.m_signals[i] != 0)) ? 1.0 : 0.0;
m_errorsSquared[i] = 0;
Janik Zikovsky
committed
}
return *this;
}
//----------------------------------------------------------------------------------------------
/** A boolean not operation, performed in-place.
* All errors are set to 0.
*
* 0.0 is "false", all other values are "true". All errors are set to 0.
*/
void MDHistoWorkspace::operatorNot() {
for (size_t i = 0; i < m_length; ++i) {