Newer
Older
#pylint: disable=no-init,invalid-name
"""
This algorithm is a refactored version of the RefLReduction algorithm.
It was written in an attempt to:
- Not rely on external code but only on algorithms.
- Do work using existing algorithms as opposed to doing everything in arrays.
- Keep the same parameters and work as a drop-in replacement for the old algorithm.
- Reproduce the output of the old algorithm.
"""
import time
import math
import os
from mantid.api import *
from mantid.simpleapi import *
from mantid.kernel import *
class LiquidsReflectometryReduction(PythonAlgorithm):
number_of_pixels_x=0
number_of_pixels_y=0
TOLERANCE=0.
def category(self):
return "Reflectometry\\SNS"
def name(self):
return "LiquidsReflectometryReduction"
def version(self):
return 1
def summary(self):
return "Liquids Reflectometer (REFL) reduction"
def PyInit(self):
#TODO: Revisit the choice of names when we are entirely rid of the old code.
self.declareProperty(StringArrayProperty("RunNumbers"), "List of run numbers to process")
self.declareProperty("NormalizationRunNumber", 0, "Run number of the normalization run to use")
self.declareProperty(IntArrayProperty("SignalPeakPixelRange", [123, 137],
IntArrayLengthValidator(2), direction=Direction.Input),
self.declareProperty("SubtractSignalBackground", True,
doc='If true, the background will be subtracted from the data peak')
self.declareProperty(IntArrayProperty("SignalBackgroundPixelRange", [123, 137],
IntArrayLengthValidator(2), direction=Direction.Input),
"Pixel range defining the background. Default:(123,137)")
self.declareProperty("NormFlag", True, doc="If true, the data will be normalized")
self.declareProperty(IntArrayProperty("NormPeakPixelRange", [127, 133],
IntArrayLengthValidator(2), direction=Direction.Input),
"Pixel range defining the normalization peak")
self.declareProperty("SubtractNormBackground", True,
doc="If true, the background will be subtracted from the normalization peak")
self.declareProperty(IntArrayProperty("NormBackgroundPixelRange", [127, 137],
IntArrayLengthValidator(2), direction=Direction.Input),
"Pixel range defining the background for the normalization")
self.declareProperty("LowResDataAxisPixelRangeFlag", True,
doc="If true, the low resolution direction of the data will be cropped according "+\
"to the lowResDataAxisPixelRange property")
self.declareProperty(IntArrayProperty("LowResDataAxisPixelRange", [115, 210],
IntArrayLengthValidator(2), direction=Direction.Input),
"Pixel range to use in the low resolution direction of the data")
self.declareProperty("LowResNormAxisPixelRangeFlag", True,
doc="If true, the low resolution direction of the normalization run will be cropped "+\
"according to the LowResNormAxisPixelRange property")
self.declareProperty(IntArrayProperty("LowResNormAxisPixelRange", [115, 210],
IntArrayLengthValidator(2), direction=Direction.Input),
"Pixel range to use in the low resolution direction of the normalizaion run")
self.declareProperty(FloatArrayProperty("TOFRange", [0., 340000.],
FloatArrayLengthValidator(2), direction=Direction.Input),
self.declareProperty("TOFRangeFlag", True,
doc="If true, the TOF will be cropped according to the TOF range property")
self.declareProperty("QMin", 0.05, doc="Minimum Q-value")
self.declareProperty("QStep", 0.02, doc="Step size in Q. Enter a negative value to get a log scale")
self.declareProperty("AngleOffset", 0.0, doc="angle offset (degrees)")
self.declareProperty("AngleOffsetError", 0.0, doc="Angle offset error (degrees)")
self.declareProperty(MatrixWorkspaceProperty("OutputWorkspace", "", Direction.Output), "Output workspace")
self.declareProperty("ScalingFactorFile", "", doc="Scaling factor configuration file")
self.declareProperty("SlitsWidthFlag", True,
doc="Looking for perfect match of slits width when using Scaling Factor file")
self.declareProperty("IncidentMediumSelected", "", doc="Incident medium used for those runs")
self.declareProperty("GeometryCorrectionFlag", False, doc="Use or not the geometry correction")
self.declareProperty("FrontSlitName", "S1", doc="Name of the front slit")
self.declareProperty("BackSlitName", "Si", doc="Name of the back slit")
self.declareProperty("TOFSteps", 40.0, doc="TOF step size")
self.declareProperty("CropFirstAndLastPoints", True, doc="If true, we crop the first and last points")
self.declareProperty("ApplyPrimaryFraction", False, doc="If true, the primary fraction correction will be applied")
self.declareProperty(IntArrayProperty("PrimaryFractionRange", [117, 197],
IntArrayLengthValidator(2), direction=Direction.Input),
"Pixel range to use for calculating the primary fraction correction.")
#pylint: disable=too-many-locals,too-many-branches
# The old reduction code had a tolerance value for matching the
# slit parameters to get the scaling factors
self.TOLERANCE = 0.020
# DATA
dataRunNumbers = self.getProperty("RunNumbers").value
dataPeakRange = self.getProperty("SignalPeakPixelRange").value
dataBackRange = self.getProperty("SignalBackgroundPixelRange").value
# NORM
normalizationRunNumber = self.getProperty("NormalizationRunNumber").value
normBackRange = self.getProperty("NormBackgroundPixelRange").value
normPeakRange = self.getProperty("NormPeakPixelRange").value
qMin = self.getProperty("QMin").value
qStep = self.getProperty("QStep").value
if qStep > 0: #force logarithmic binning
qStep = -qStep
# If we have multiple files, add them
file_list = []
for item in dataRunNumbers:
# The standard mode of operation is to give a run number as input
try:
data_file = FileFinder.findRuns("REF_L%s" % item)[0]
# Allow for a file name or file path as input
data_file = FileFinder.findRuns(item)[0]
runs = reduce((lambda x, y: '%s+%s' % (x, y)), file_list)
ws_event_data = Load(Filename=runs, OutputWorkspace="REF_L_%s" % dataRunNumbers[0])
# Compute the primary fraction using the unprocessed workspace
apply_primary_fraction = self.getProperty("ApplyPrimaryFraction").value
primary_fraction = [1.0, 0.0]
if apply_primary_fraction:
signal_range = self.getProperty("PrimaryFractionRange").value
primary_fraction = LRPrimaryFraction(InputWorkspace=ws_event_data,
SignalRange=signal_range)
crop_TOF = self.getProperty("TOFRangeFlag").value
tof_step = self.getProperty("TOFSteps").value
TOFrange = self.getProperty("TOFRange").value #microS
if TOFrange[0] <= 0:
TOFrange[0] = tof_step
logger.error("Lower bound of TOF range cannot be zero: using %s" % tof_step)
# If the TOF range option is turned off, use the full range
# Protect against TOF=0, which will crash when going to Q.
tof_min = ws_event_data.getTofMin()
if tof_min <= 0:
tof_min = tof_step
tof_max = ws_event_data.getTofMax()
TOFrange = [tof_min, tof_max]
logger.information("Using TOF range: %g %g" % (tof_min, tof_max))
# Number of pixels in each direction
#TODO: revisit this when we update the IDF
self.number_of_pixels_x = int(ws_event_data.getInstrument().getNumberParameter("number-of-x-pixels")[0])
self.number_of_pixels_y = int(ws_event_data.getInstrument().getNumberParameter("number-of-y-pixels")[0])
# Get scattering angle theta
theta = self.calculate_scattering_angle(ws_event_data)
two_theta_degrees = 2.0*theta*180.0/math.pi
AddSampleLog(Workspace=ws_event_data, LogName='two_theta', LogText=str(two_theta_degrees), LogType='Number')
# ----- Process Sample Data -------------------------------------------
crop_request = self.getProperty("LowResDataAxisPixelRangeFlag").value
low_res_range = self.getProperty("LowResDataAxisPixelRange").value
bck_request = self.getProperty("SubtractSignalBackground").value
data_cropped = self.process_data(ws_event_data, TOFrange,
crop_request, low_res_range,
dataPeakRange, bck_request, dataBackRange)
# ----- Normalization -------------------------------------------------
perform_normalization = self.getProperty("NormFlag").value
if perform_normalization:
# Load normalization
ws_event_norm = LoadEventNexus("REF_L_%s" % normalizationRunNumber,
OutputWorkspace="REF_L_%s" % normalizationRunNumber)
crop_request = self.getProperty("LowResNormAxisPixelRangeFlag").value
low_res_range = self.getProperty("LowResNormAxisPixelRange").value
bck_request = self.getProperty("SubtractNormBackground").value
norm_cropped = self.process_data(ws_event_norm, TOFrange,
crop_request, low_res_range,
normPeakRange, bck_request, normBackRange)
# Avoid leaving trash behind
AnalysisDataService.remove(str(ws_event_norm))
# Sum up the normalization peak
norm_summed = SumSpectra(InputWorkspace = norm_cropped)
norm_summed = RebinToWorkspace(WorkspaceToRebin=norm_summed,
WorkspaceToMatch=data_cropped,
OutputWorkspace=str(norm_summed))
# Sum up the normalization peak
norm_summed = SumSpectra(InputWorkspace = norm_cropped)
# Normalize the data
normalized_data = data_cropped / norm_summed
# Avoid leaving trash behind
AnalysisDataService.remove(str(data_cropped))
AnalysisDataService.remove(str(norm_cropped))
AnalysisDataService.remove(str(norm_summed))
AddSampleLog(Workspace=normalized_data, LogName='normalization_run', LogText=str(normalizationRunNumber))
else:
normalized_data = data_cropped
AddSampleLog(Workspace=normalized_data, LogName='normalization_run', LogText="None")
# At this point, the workspace should be considered a distribution of points
normalized_data = ConvertToPointData(InputWorkspace=normalized_data,
OutputWorkspace=str(normalized_data))
normalized_data = self.apply_scaling_factor(normalized_data)
q_workspace = SumSpectra(InputWorkspace = normalized_data)
q_workspace.getAxis(0).setUnit("MomentumTransfer")
# Geometry correction to convert To Q with correction
geometry_correction_flag = self.getProperty("GeometryCorrectionFlag").value
if geometry_correction_flag:
logger.error("The geometry correction for the Q conversion has not been implemented.")
# Get the distance fromthe moderator to the detector
sample = ws_event_data.getInstrument().getSample()
source = ws_event_data.getInstrument().getSource()
source_sample_distance = sample.getDistance(source)
detector = ws_event_data.getDetector(0)
sample_detector_distance = detector.getPos().getZ()
source_detector_distance = source_sample_distance + sample_detector_distance
# Convert to Q
# Use the TOF range to pick the maximum Q, and give it a little extra room.
h = 6.626e-34 # m^2 kg s^-1
m = 1.675e-27 # kg
constant = 4e-4 * math.pi * m * source_detector_distance / h * math.sin(theta)
q_range = [qMin, qStep, constant / TOFrange[0] * 1.2]
q_min_from_data = constant / TOFrange[1]
q_max_from_data = constant / TOFrange[0]
AddSampleLog(Workspace=q_workspace, LogName='q_min', LogText=str(q_min_from_data), LogType='Number')
AddSampleLog(Workspace=q_workspace, LogName='q_max', LogText=str(q_max_from_data), LogType='Number')
tof_to_lambda = 1.0e4 * h / (m * source_detector_distance)
lambda_min = tof_to_lambda * TOFrange[0]
lambda_max = tof_to_lambda * TOFrange[1]
AddSampleLog(Workspace=q_workspace, LogName='lambda_min', LogText=str(lambda_min), LogType='Number')
AddSampleLog(Workspace=q_workspace, LogName='lambda_max', LogText=str(lambda_max), LogType='Number')
data_x = q_workspace.dataX(0)
for i in range(len(data_x)):
data_x[i] = constant / data_x[i]
q_workspace = SortXAxis(InputWorkspace=q_workspace, OutputWorkspace=str(q_workspace))
# Cook up a name compatible with the UI for backward compatibility
_time = int(time.time())
name_output_ws = self.getPropertyValue("OutputWorkspace")
name_output_ws = name_output_ws + '_#' + str(_time) + 'ts'
q_rebin = Rebin(InputWorkspace=q_workspace, Params=q_range,
OutputWorkspace=name_output_ws)
if apply_primary_fraction:
ws_fraction = CreateSingleValuedWorkspace(DataValue=primary_fraction[0],
ErrorValue=primary_fraction[1])
q_rebin = Multiply(LHSWorkspace=q_rebin, RHSWorkspace=ws_fraction,
OutputWorkspace=name_output_ws)
AddSampleLog(Workspace=q_rebin, LogName='primary_fraction', LogText=str(primary_fraction[0]), LogType='Number')
AddSampleLog(Workspace=q_rebin, LogName='primary_fraction_error', LogText=str(primary_fraction[1]), LogType='Number')
# Replace NaNs by zeros
q_rebin = ReplaceSpecialValues(InputWorkspace=q_rebin,
OutputWorkspace=name_output_ws,
NaNValue=0.0, NaNError=0.0)
# Crop to non-zero values
data_y = q_rebin.readY(0)
low_q = None
high_q = None
for i in range(len(data_y)):
if low_q is None and abs(data_y[i])>0:
low_q = i
if high_q is None and abs(data_y[len(data_y)-1-i])>0:
high_q = len(data_y)-1-i
if low_q is not None and high_q is not None:
break
crop = self.getProperty("CropFirstAndLastPoints").value
if low_q is not None and high_q is not None:
# Get rid of first and last Q points to avoid edge effects
if crop:
low_q += 1
high_q -= 1
data_x = q_rebin.readX(0)
q_rebin = CropWorkspace(InputWorkspace=q_rebin,
OutputWorkspace=str(q_rebin),
XMin=data_x[low_q], XMax=data_x[high_q])
else:
logger.error("Data is all zeros. Check your TOF ranges.")
# Clean up the workspace for backward compatibility
data_y = q_rebin.dataY(0)
data_e = q_rebin.dataE(0)
# Again for backward compatibility, the first and last points of the
# raw output when not cropping was simply set to 0 += 1.
if crop is False:
data_y[0] = 0
data_e[0] = 1
data_y[len(data_y)-1] = 0
data_e[len(data_y)-1] = 1
# Values < 1e-12 and values where the error is greater than the value are replaced by 0+-1
for i in range(len(data_y)):
if data_y[i] < 1e-12 or data_e[i]>data_y[i]:
data_y[i]=0.0
data_e[i]=1.0
# Sanity check
if sum(data_y) == 0:
raise RuntimeError("The reflectivity is all zeros: check your peak selection")
# Avoid leaving trash behind
for ws in ['ws_event_data', 'normalized_data', 'q_workspace']:
if AnalysisDataService.doesExist(ws):
AnalysisDataService.remove(ws)
self.setProperty('OutputWorkspace', mtd[name_output_ws])
def calculate_scattering_angle(self, ws_event_data):
"""
Compute the scattering angle
@param ws_event_data: data workspace
"""
run_object = ws_event_data.getRun()
thi_value = run_object.getProperty('thi').value[0]
thi_units = run_object.getProperty('thi').units
tthd_value = run_object.getProperty('tthd').value[0]
tthd_units = run_object.getProperty('tthd').units
# Make sure we have radians
if thi_units == 'degree':
thi_value *= math.pi / 180.0
if tthd_units == 'degree':
tthd_value *= math.pi / 180.0
theta = math.fabs(tthd_value - thi_value) / 2.
if theta < 0.001:
logger.warning("thi and tthd are equal: is this a direct beam?")
# Add the offset
angle_offset_deg = self.getProperty("AngleOffset").value
return theta + angle_offset_deg * math.pi / 180.0
def process_data(self, workspace, tof_range, crop_low_res, low_res_range,
peak_range, subtract_background, background_range):
"""
Common processing for both sample data and normalization.
"""
#TODO: The rebin and crop approach is used to be consistent with the old code.
# This should be replaced in the future.
# Rebin TOF axis
tof_max = workspace.getTofMax()
tof_min = workspace.getTofMin()
if tof_min > tof_range[1] or tof_max < tof_range[0]:
error_msg = "Requested TOF range does not match data for %s: " % str(workspace)
error_msg += "[%g, %g] found [%g, %g]" % (tof_range[0], tof_range[1],
tof_min, tof_max)
tof_step = self.getProperty("TOFSteps").value
workspace = Rebin(InputWorkspace=workspace, Params=[0, tof_step, tof_max],
PreserveEvents=False, OutputWorkspace="%s_histo" % str(workspace))
# Crop TOF range
workspace = CropWorkspace(InputWorkspace=workspace,
XMin=tof_range[0], XMax=tof_range[1],
OutputWorkspace=str(workspace))
# Integrate over low resolution range
x_min = 0
x_max = self.number_of_pixels_x
if crop_low_res:
x_min = int(low_res_range[0])
x_max = int(low_res_range[1])
# Subtract background
if subtract_background:
workspace = LRSubtractAverageBackground(InputWorkspace=workspace,
PeakRange=peak_range,
BackgroundRange=background_range,
LowResolutionRange=[x_min, x_max],
OutputWorkspace=str(workspace))
else:
# If we don't subtract the background, we still have to integrate
# over the low resolution axis
workspace = RefRoi(InputWorkspace=workspace, IntegrateY=False,
NXPixel=self.number_of_pixels_x,
NYPixel=self.number_of_pixels_y,
ConvertToQ=False, XPixelMin=x_min, XPixelMax=x_max,
OutputWorkspace=str(workspace))
# Normalize by current proton charge
# Note that the background subtraction will use an error weighted mean
# and use 1 as the error on counts of zero. We normalize by the integrated
# current _after_ the background subtraction so that the 1 doesn't have
# to be changed to a 1/Charge.
workspace = NormaliseByCurrent(InputWorkspace=workspace, OutputWorkspace=str(workspace))
# Crop to only the selected peak region
cropped = CropWorkspace(InputWorkspace = workspace,
StartWorkspaceIndex=int(peak_range[0]),
EndWorkspaceIndex=int(peak_range[1]),
OutputWorkspace="%s_cropped" % str(workspace))
# Avoid leaving trash behind
AnalysisDataService.remove(str(workspace))
return cropped
#pylint: disable=too-many-locals,too-many-branches
def apply_scaling_factor(self, workspace):
"""
Apply scaling factor from reference scaling data
@param workspace: Mantid workspace
"""
scaling_factor_file = self.getProperty("ScalingFactorFile").value
if not os.path.isfile(scaling_factor_file):
scaling_factor_files = FileFinder.findRuns(scaling_factor_file)
if len(scaling_factor_files)>0:
scaling_factor_file = scaling_factor_files[0]
if not os.path.isfile(scaling_factor_file):
logger.error("Could not find scaling factor file %s" % scaling_factor_file)
else:
logger.error("Could not find scaling factor file %s" % scaling_factor_file)
# Get the incident medium
incident_medium = self.getProperty("IncidentMediumSelected").value
# Get the wavelength
lr = workspace.getRun().getProperty('LambdaRequest').value[0]
lr_value = float("{0:.2f}".format(lr))
# Get the slit information
front_slit = self.getProperty("FrontSlitName").value
back_slit = self.getProperty("BackSlitName").value
# Option to match slit widths or not
match_slit_width = self.getProperty("SlitsWidthFlag").value
s1h = abs(workspace.getRun().getProperty("%sVHeight" % front_slit).value[0])
s1w = abs(workspace.getRun().getProperty("%sHWidth" % front_slit).value[0])
try:
s2h = abs(workspace.getRun().getProperty("%sVHeight" % back_slit).value[0])
s2w = abs(workspace.getRun().getProperty("%sHWidth" % back_slit).value[0])
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
# For backward compatibility with old code
logger.error("Specified slit could not be found: %s Trying S2" % back_slit)
s2h = abs(workspace.getRun().getProperty("S2VHeight").value[0])
s2w = abs(workspace.getRun().getProperty("S2HWidth").value[0])
scaling_info = "Scaling settings: %s wl=%s S1H=%s S2H=%s" % (incident_medium,
lr_value, s1h, s2h)
if match_slit_width:
scaling_info += " S1W=%s S2W=%s" % (s1w, s2w)
logger.information(scaling_info)
def _reduce(accumulation, item):
"""
Reduce function that accumulates values in a dictionary
"""
toks_item = item.split('=')
if len(toks_item)!=2:
return accumulation
if type(accumulation)==dict:
accumulation[toks_item[0].strip()] = toks_item[1].strip()
else:
toks_accum = accumulation.split('=')
accumulation = {toks_item[0].strip(): toks_item[1].strip(),
toks_accum[0].strip(): toks_accum[1].strip()}
return accumulation
def _value_check(key, data, reference):
"""
Check an entry against a reference value
"""
if key in data:
return abs(abs(float(data[key])) - abs(float(reference))) <= self.TOLERANCE
return False
scaling_data = open(scaling_factor_file, 'r')
file_content = scaling_data.read()
scaling_data.close()
data_found = None
for line in file_content.split('\n'):
if line.startswith('#'):
continue
# Parse the line of data and produce a dict
toks = line.split()
data_dict = reduce(_reduce, toks, {})
# Get ordered list of keys
keys = []
for token in toks:
key_value = token.split('=')
if len(key_value)==2:
keys.append(key_value[0].strip())
# Skip empty lines
if len(keys)==0:
continue
# Complain if the format is non-standard
elif len(keys)<10:
logger.error("Bad scaling factor entry\n %s" % line)
continue
# Sanity check
if keys[0] != 'IncidentMedium' and keys[1] != 'LambdaRequested' \
and keys[2] != 'S1H':
logger.error("The scaling factor file isn't standard: bad keywords")
# The S2H key has been changing in the earlier version of REFL reduction.
# Get the key from the data to make sure we are backward compatible.
s2h_key = keys[3]
if 'IncidentMedium' in data_dict \
and data_dict['IncidentMedium'] == incident_medium.strip() \
and _value_check('LambdaRequested', data_dict, lr_value) \
and _value_check('S1H', data_dict, s1h) \
and _value_check(s2h_key, data_dict, s2h):
if not match_slit_width or (_value_check('S1W', data_dict, s1w) \
and _value_check(s2w_key, data_dict, s2w)):
data_found = data_dict
break
AddSampleLog(Workspace=workspace, LogName='isSFfound', LogText=str(data_found is not None))
if data_found is not None:
a = float(data_found['a'])
b = float(data_found['b'])
a_error = float(data_found['error_a'])
b_error = float(data_found['error_b'])
AddSampleLog(Workspace=workspace, LogName='scaling_factor_a', LogText=str(a), LogType='Number')
AddSampleLog(Workspace=workspace, LogName='scaling_factor_b', LogText=str(b), LogType='Number')
AddSampleLog(Workspace=workspace, LogName='scaling_factor_a_error', LogText=str(a_error), LogType='Number')
AddSampleLog(Workspace=workspace, LogName='scaling_factor_b_error', LogText=str(b_error), LogType='Number')
# Extract a single spectrum, just so we have the TOF axis
# to create a normalization workspace
normalization = ExtractSingleSpectrum(InputWorkspace=workspace,
OutputWorkspace="normalization",
WorkspaceIndex=0)
norm_tof = normalization.dataX(0)
norm_value = normalization.dataY(0)
norm_error = normalization.dataE(0)
for i in range(len(norm_value)):
norm_value[i] = norm_tof[i] * b + a
norm_error[i] = math.sqrt(a_error*a_error + norm_tof[i] * norm_tof[i] * b_error * b_error)
workspace = Divide(LHSWorkspace=workspace,
RHSWorkspace=normalization,
OutputWorkspace=str(workspace))
# Avoid leaving trash behind
AnalysisDataService.remove(str(normalization))
logger.error("Could not find scaling factor for %s" % str(workspace))
AlgorithmFactory.subscribe(LiquidsReflectometryReduction)