Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
// Mantid Repository : https://github.com/mantidproject/mantid
//
// Copyright © 2018 ISIS Rutherford Appleton Laboratory UKRI,
// NScD Oak Ridge National Laboratory, European Spallation Source
// & Institut Laue - Langevin
// SPDX - License - Identifier: GPL - 3.0 +
#include "MantidLiveData/Kafka/IKafkaStreamDecoder.h"
#include "MantidKernel/Logger.h"
#include "MantidKernel/WarningSuppressions.h"
#include "MantidLiveData/Exception.h"
#include "MantidLiveData/Kafka/KafkaTopicSubscriber.h"
GNU_DIAG_OFF("conversion")
#include "private/Schema/ba57_run_info_generated.h"
#include "private/Schema/df12_det_spec_map_generated.h"
#include "private/Schema/f142_logdata_generated.h"
GNU_DIAG_ON("conversion")
using namespace Mantid::Types;
using namespace LogSchema;
namespace {
/// Logger
Mantid::Kernel::Logger g_log("IKafkaStreamDecoder");
// File identifiers from flatbuffers schema
const std::string RUN_MESSAGE_ID = "ba57";
const std::chrono::seconds MAX_LATENCY(1);
} // namespace
namespace Mantid {
namespace LiveData {
// -----------------------------------------------------------------------------
// Public members
// -----------------------------------------------------------------------------
/**
* Constructor
* @param broker A reference to a Broker object for creating topic streams
* @param streamTopic The name of the topic streaming the stream data
* @param runInfoTopic The name of the topic streaming the run information
* @param spDetTopic The name of the topic streaming the spectrum-detector
* @param sampleEnvTopic The name of the topic stream sample environment
* information. run mapping
*/
IKafkaStreamDecoder::IKafkaStreamDecoder(std::shared_ptr<IKafkaBroker> broker,
const std::string &streamTopic,
const std::string &runInfoTopic,
const std::string &spDetTopic,
const std::string &sampleEnvTopic)
: m_broker(broker), m_streamTopic(streamTopic),
m_runInfoTopic(runInfoTopic), m_spDetTopic(spDetTopic),
m_sampleEnvTopic(sampleEnvTopic), m_interrupt(false), m_specToIdx(),
m_runStart(), m_runNumber(-1), m_thread(), m_capturing(false),
m_exception(), m_extractWaiting(false), m_cbIterationEnd([] {}),
m_cbError([] {}) {}
/**
* Destructor.
* Stops capturing from the stream
*/
IKafkaStreamDecoder::~IKafkaStreamDecoder() { stopCapture(); }
/**
* Start capturing from the stream on a separate thread. This is a non-blocking
* call and will return after the thread has started
*/
void IKafkaStreamDecoder::startCapture(bool startNow) {
// If we are not starting now, then we want to start at the start of the run
if (!startNow) {
// Get last two messages in run topic to ensure we get a runStart message
m_runStream =
m_broker->subscribe({m_runInfoTopic}, SubscribeAtOption::LASTTWO);
std::string rawMsgBuffer;
auto runStartData = getRunStartMessage(rawMsgBuffer);
joinStreamAtTime(runStartData);
} else {
m_dataStream =
m_broker->subscribe({m_streamTopic, m_runInfoTopic, m_sampleEnvTopic},
SubscribeAtOption::LATEST);
}
// Get last two messages in run topic to ensure we get a runStart message
m_runStream =
m_broker->subscribe({m_runInfoTopic}, SubscribeAtOption::LASTTWO);
m_spDetStream =
m_broker->subscribe({m_spDetTopic}, SubscribeAtOption::LASTONE);
m_thread = std::thread([this]() { this->captureImpl(); });
m_thread.detach();
}
/** Indicate if the next data to be extracted should replace LoadLiveData's
* output workspace,
* for example the first data of a new run
*/
bool IKafkaStreamDecoder::dataReset() {
bool result = (m_dataReset == true); // copy from atomic bool
m_dataReset = false; // reset to false
return result;
}
void IKafkaStreamDecoder::joinStreamAtTime(
const IKafkaStreamDecoder::RunStartStruct &runStartData) {
auto runStartTime = runStartData.startTime;
int64_t startTimeMilliseconds = nanosecondsToMilliseconds(runStartTime);
m_dataStream =
m_broker->subscribe({m_streamTopic, m_runInfoTopic, m_sampleEnvTopic},
startTimeMilliseconds, SubscribeAtOption::TIME);
// make sure we listen to the run start topic starting from the run start
// message we already got the start time from
m_dataStream->seek(m_runInfoTopic, 0, runStartData.runStartMsgOffset);
}
int64_t
IKafkaStreamDecoder::nanosecondsToMilliseconds(uint64_t timeNanoseconds) const {
return static_cast<int64_t>(timeNanoseconds / 1000000);
}
/**
* Stop capturing from the stream. This is a blocking call until the capturing
* function has completed
*/
void IKafkaStreamDecoder::stopCapture() noexcept {
// This will interrupt the "event" loop
m_interrupt = true;
// Wait until the function has completed. The background thread
// will exit automatically
while (m_capturing) {
std::this_thread::sleep_for(std::chrono::milliseconds(50));
};
}
/**
* Check if a message has indicated that end of run has been reached
* @return True if end of run has been reached
*/
bool IKafkaStreamDecoder::hasReachedEndOfRun() noexcept {
// Notify the decoder that MonitorLiveData knows it has reached end of run
// and after giving it opportunity to interrupt, decoder can continue with
// messages of the next run
if (!m_extractedEndRunData || m_extractWaiting)
return false;
if (m_endRun) {
std::lock_guard<std::mutex> runStatusLock(m_runStatusMutex);
m_runStatusSeen = true;
m_cvRunStatus.notify_one();
return true;
}
return false;
}
/**
* Check for an exception thrown by the background thread and rethrow
* it if necessary. If no error occurred swap the current internal buffer
* for a fresh one and return the old buffer.
* @return A pointer to the data collected since the last call to this
* method
*/
API::Workspace_sptr IKafkaStreamDecoder::extractData() {
if (m_exception) {
throw std::runtime_error(*m_exception);
}
m_extractWaiting = true;
m_cv.notify_one();
auto workspace_ptr = extractDataImpl();
m_extractWaiting = false;
m_cv.notify_one();
return workspace_ptr;
}
/**
* Start decoding data from the streams into the internal buffers.
* Implementation designed to be entry point for new thread of execution.
* It catches all thrown exceptions.
*/
void IKafkaStreamDecoder::captureImpl() noexcept {
m_capturing = true;
try {
captureImplExcept();
} catch (std::exception &exc) {
m_cbError();
m_exception = boost::make_shared<std::runtime_error>(exc.what());
} catch (...) {
m_cbError();
m_exception = boost::make_shared<std::runtime_error>(
"IKafkaStreamDecoder: Unknown exception type caught.");
}
m_capturing = false;
}
/**
* Check if we've reached the stop offset on every partition of every topic
*
* @param reachedEnd : Bool for each topic and partition to mark when stop
* offset reached
*/
void IKafkaStreamDecoder::checkIfAllStopOffsetsReached(
const std::unordered_map<std::string, std::vector<bool>> &reachedEnd,
bool &checkOffsets) {
if (std::all_of(reachedEnd.cbegin(), reachedEnd.cend(),
[](std::pair<std::string, std::vector<bool>> kv) {
return std::all_of(
kv.second.cbegin(), kv.second.cend(),
[](bool partitionEnd) { return partitionEnd; });
}) ||
reachedEnd.empty()) {
m_endRun = true;
// If we've reached the end of a run then set m_extractWaiting to true
// so that we wait until the buffer is emptied before continuing.
// Otherwise we can end up with data from two different runs in the
// same buffer workspace which is problematic if the user wanted the
// "Stop" or "Rename" run transition option.
m_extractedEndRunData = false;
checkOffsets = false;
g_log.notice("Reached end of run in data streams.");
}
}
std::unordered_map<std::string, std::vector<int64_t>>
IKafkaStreamDecoder::getStopOffsets(
std::unordered_map<std::string, std::vector<int64_t>> &stopOffsets,
std::unordered_map<std::string, std::vector<bool>> &reachedEnd,
uint64_t stopTime) const {
reachedEnd.clear();
stopOffsets.clear();
// Wait for max latency so that we don't miss any late messages
std::this_thread::sleep_for(MAX_LATENCY);
stopOffsets = m_dataStream->getOffsetsForTimestamp(
static_cast<int64_t>(stopTime / 1000000));
// /1000000 to convert nanosecond precision from message to millisecond
// precision which Kafka offset query supports
auto currentOffsets = m_dataStream->getCurrentOffsets();
// Set reachedEnd to false for each topic and partition
for (auto &topicOffsets : stopOffsets) {
auto topicName = topicOffsets.first;
// Ignore the runInfo topic
if (topicName.substr(topicName.length() -
KafkaTopicSubscriber::RUN_TOPIC_SUFFIX.length()) !=
KafkaTopicSubscriber::RUN_TOPIC_SUFFIX) {
g_log.debug() << "TOPIC: " << topicName
<< " PARTITIONS: " << topicOffsets.second.size()
<< std::endl;
reachedEnd.insert(
{topicName, std::vector<bool>(topicOffsets.second.size(), false)});
auto &partitionOffsets = topicOffsets.second;
for (uint32_t partitionNumber = 0;
partitionNumber < partitionOffsets.size(); partitionNumber++) {
auto offset = partitionOffsets[partitionNumber];
// If the stop offset is negative then there are no messages for us
// to collect on this topic, so mark reachedEnd as true already
reachedEnd[topicName][partitionNumber] = offset < 0;
// If the stop offset has already been reached then mark reachedEnd as
// true
if (currentOffsets[topicName][partitionNumber] >= offset)
reachedEnd[topicName][partitionNumber] = true;
}
}
}
return stopOffsets;
}
/**
* If extractData method is waiting for access to the buffer workspace
* then we wait for it to finish
*/
void IKafkaStreamDecoder::waitForDataExtraction() {
{
std::unique_lock<std::mutex> readyLock(m_waitMutex);
m_cv.wait(readyLock, [&] { return !m_extractWaiting; });
}
}
void IKafkaStreamDecoder::waitForRunEndObservation() {
m_extractWaiting = true;
// Mark extractedEndRunData true before waiting on the extraction to ensure
// an immediate request for run status after extracting the data will return
// the correct value - avoids race condition in MonitorLiveData and tests
m_extractedEndRunData = true;
waitForDataExtraction();
// Wait until MonitorLiveData has seen that end of run was
// reached before setting m_endRun back to false and continuing
std::unique_lock<std::mutex> runStatusLock(m_runStatusMutex);
m_cvRunStatus.wait(runStatusLock, [&] { return m_runStatusSeen; });
m_endRun = false;
m_runStatusSeen = false;
runStatusLock.unlock();
// Set to zero until we have the new run number, MonitorLiveData will
// queries before each time it extracts data until it gets non-zero
m_runNumber = 0;
// Get new run message now so that new run number is available for
// MonitorLiveData as early as possible
RunStartStruct runStartStruct;
if (waitForNewRunStartMessage(runStartStruct))
return;
// Give time for MonitorLiveData to act on runStatus information
// and trigger m_interrupt for next loop iteration if user requested
// LiveData algorithm to stop at the end of the run
std::this_thread::sleep_for(std::chrono::milliseconds(100));
if (m_interrupt)
return;
// Rejoin event stream at start of new run
joinStreamAtTime(runStartStruct);
std::string detSpecMapMsgBuffer = getDetSpecMapForRun(runStartStruct);
initLocalCaches(detSpecMapMsgBuffer, runStartStruct);
}
/**
* Try to find a detector-spectrum map message published after the
* current run start time
*
* @param runStartStruct details of the current run
* @return received detector-spectrum map message buffer
*/
std::string IKafkaStreamDecoder::getDetSpecMapForRun(
const IKafkaStreamDecoder::RunStartStruct &runStartStruct) {
std::string rawMsgBuffer;
int64_t offset;
int32_t partition;
std::string topicName;
m_spDetStream = m_broker->subscribe(
{m_spDetTopic}, nanosecondsToMilliseconds(runStartStruct.startTime),
SubscribeAtOption::TIME);
m_spDetStream->consumeMessage(&rawMsgBuffer, offset, partition, topicName);
if (rawMsgBuffer.empty()) {
std::runtime_error(
"No detector-spectrum map message found for run number " +
std::to_string(runStartStruct.runNumber));
}
return rawMsgBuffer;
}
/**
* Wait for a run start message until we get one with a higher run number
* than the current run or the algorithm is interrupted
*
* @param runStartStructOutput details of the new run
* @return true if interrupted, false if got a new run start message
*/
bool IKafkaStreamDecoder::waitForNewRunStartMessage(
RunStartStruct &runStartStructOutput) {
while (!m_interrupt) {
std::string runMsgBuffer;
int64_t offset;
int32_t partition;
std::string topicName;
m_runStream->consumeMessage(&runMsgBuffer, offset, partition, topicName);
if (runMsgBuffer.empty()) {
continue; // no message available, try again
} else {
auto runMsg =
GetRunInfo(reinterpret_cast<const uint8_t *>(runMsgBuffer.c_str()));
if (runMsg->info_type_type() == InfoTypes_RunStart) {
// We got a run start message, deserialise it
auto runStartData = static_cast<const RunStart *>(runMsg->info_type());
IKafkaStreamDecoder::RunStartStruct runStartStruct = {
runStartData->instrument_name()->str(), runStartData->run_number(),
runStartData->start_time(),
static_cast<size_t>(runStartData->n_periods()), offset};
if (runStartStruct.runNumber > m_runNumber) {
runStartStructOutput = runStartStruct;
m_runNumber = runStartStruct.runNumber;
return false; // not interrupted
}
} else {
continue; // received message wasn't a RunStart message, try again
}
}
}
return true; // interrupted
}
IKafkaStreamDecoder::RunStartStruct
IKafkaStreamDecoder::getRunStartMessage(std::string &rawMsgBuffer) {
auto offset = getRunInfoMessage(rawMsgBuffer);
auto runMsg =
GetRunInfo(reinterpret_cast<const uint8_t *>(rawMsgBuffer.c_str()));
if (runMsg->info_type_type() != InfoTypes_RunStart) {
// We want a runStart message, try the next one
offset = getRunInfoMessage(rawMsgBuffer);
runMsg =
GetRunInfo(reinterpret_cast<const uint8_t *>(rawMsgBuffer.c_str()));
if (runMsg->info_type_type() != InfoTypes_RunStart) {
throw std::runtime_error("IKafkaStreamDecoder::initLocalCaches() - "
"Could not find a run start message"
"in the run info topic. Unable to continue");
}
}
auto runStartData = static_cast<const RunStart *>(runMsg->info_type());
IKafkaStreamDecoder::RunStartStruct runStart = {
runStartData->instrument_name()->str(), runStartData->run_number(),
runStartData->start_time(),
static_cast<size_t>(runStartData->n_periods()), offset};
return runStart;
}
/**
* Try to get a runInfo message from Kafka, throw error if it fails
* @param rawMsgBuffer : string to use as message buffer
*/
int64_t IKafkaStreamDecoder::getRunInfoMessage(std::string &rawMsgBuffer) {
int64_t offset;
int32_t partition;
std::string topicName;
m_runStream->consumeMessage(&rawMsgBuffer, offset, partition, topicName);
if (rawMsgBuffer.empty()) {
throw std::runtime_error("IKafkaStreamDecoder::getRunInfoMessage() - "
"Empty message received from run info "
"topic. Unable to continue");
}
if (!flatbuffers::BufferHasIdentifier(
reinterpret_cast<const uint8_t *>(rawMsgBuffer.c_str()),
RUN_MESSAGE_ID.c_str())) {
throw std::runtime_error("IKafkaStreamDecoder::getRunInfoMessage() - "
"Received unexpected message type from run info "
"topic. Unable to continue");
}
return offset;
}
std::map<int32_t, std::set<int32_t>>
IKafkaStreamDecoder::buildSpectrumToDetectorMap(const size_t nspectra,
const int32_t *spec,
const int32_t *udet,
uint32_t length) {
// Order is important here
std::map<int32_t, std::set<int32_t>> spdetMap;
for (uint32_t i = 0; i < length; ++i) {
auto specNo = spec[i];
auto detId = udet[i];
auto search = spdetMap.find(specNo);
if (search != spdetMap.end()) {
search->second.insert(detId);
} else {
spdetMap.insert({specNo, {detId}});
}
}
assert(nspectra == spdetMap.size());
return spdetMap;
}
void IKafkaStreamDecoder::checkRunMessage(
const std::string &buffer, bool &checkOffsets,
std::unordered_map<std::string, std::vector<int64_t>> &stopOffsets,
std::unordered_map<std::string, std::vector<bool>> &reachedEnd) {
if (flatbuffers::BufferHasIdentifier(
reinterpret_cast<const uint8_t *>(buffer.c_str()),
RUN_MESSAGE_ID.c_str())) {
auto runMsg = GetRunInfo(reinterpret_cast<const uint8_t *>(buffer.c_str()));
if (!checkOffsets && runMsg->info_type_type() == InfoTypes_RunStop) {
auto runStopMsg = static_cast<const RunStop *>(runMsg->info_type());
auto stopTime = runStopMsg->stop_time();
g_log.debug() << "Received an end-of-run message with stop time = "
<< stopTime << std::endl;
stopOffsets = getStopOffsets(stopOffsets, reachedEnd, stopTime);
checkOffsets = true;
checkIfAllStopOffsetsReached(reachedEnd, checkOffsets);
}
}
}
void IKafkaStreamDecoder::checkRunEnd(
const std::string &topicName, bool &checkOffsets, const int64_t offset,
const int32_t partition,
std::unordered_map<std::string, std::vector<int64_t>> &stopOffsets,
std::unordered_map<std::string, std::vector<bool>> &reachedEnd) {
if (reachedEnd.count(topicName) &&
offset >= stopOffsets[topicName][static_cast<size_t>(partition)]) {
reachedEnd[topicName][static_cast<size_t>(partition)] = true;
if (offset == stopOffsets[topicName][static_cast<size_t>(partition)]) {
g_log.debug() << "Reached end-of-run in " << topicName << " topic."
<< std::endl;
g_log.debug() << "topic: " << topicName << " offset: " << offset
<< " stopOffset: "
<< stopOffsets[topicName][static_cast<size_t>(partition)]
<< std::endl;
}
checkIfAllStopOffsetsReached(reachedEnd, checkOffsets);
}
}
} // namespace LiveData
} // namespace Mantid