Newer
Older
#include "MantidAlgorithms/FindPeakBackground.h"
#include "MantidAPI/MatrixWorkspace.h"
#include "MantidAPI/TableRow.h"
#include "MantidAPI/WorkspaceFactory.h"
#include "MantidAPI/WorkspaceProperty.h"
#include "MantidAlgorithms/FindPeaks.h"
#include "MantidDataObjects/TableWorkspace.h"
#include "MantidDataObjects/Workspace2D.h"
#include "MantidKernel/ArrayProperty.h"
#include "MantidKernel/ListValidator.h"
#include "MantidKernel/Statistics.h"
#include <sstream>
using namespace Mantid;
using namespace Mantid::API;
using namespace Mantid::Kernel;
using namespace Mantid::DataObjects;
using namespace std;
using Mantid::HistogramData::HistogramX;
using Mantid::HistogramData::HistogramY;
namespace Mantid {
namespace Algorithms {
DECLARE_ALGORITHM(FindPeakBackground)
//----------------------------------------------------------------------------------------------
/** Define properties
*/
void FindPeakBackground::init() {
declareProperty(Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
"InputWorkspace", "Anonymous", Direction::Input),
"Name of input MatrixWorkspace that contains peaks.");
declareProperty("WorkspaceIndex", EMPTY_INT(),
"workspace indices to have peak and background separated. "
"No default is taken. ");
declareProperty(
"SigmaConstant", 1.0,
"Multiplier of standard deviations of the variance for convergence of "
"peak elimination. Default is 1.0. ");
declareProperty(Kernel::make_unique<ArrayProperty<double>>("FitWindow"),
"Optional: enter a comma-separated list of the minimum and "
"maximum X-positions of window to fit. "
"The window is the same for all indices in workspace. The "
"length must be exactly two.");
std::vector<std::string> bkgdtypes{"Flat", "Linear", "Quadratic"};
declareProperty("BackgroundType", "Linear",
boost::make_shared<StringListValidator>(bkgdtypes),
"Type of Background.");
// The found peak in a table
declareProperty(
Kernel::make_unique<WorkspaceProperty<API::ITableWorkspace>>(
"OutputWorkspace", "", Direction::Output),
"The name of the TableWorkspace in which to store the background found "
"for each index. "
"Table contains the indices of the beginning and ending of peak "
"and the estimated background coefficients for the constant, linear, and "
"quadratic terms.");
}
//----------------------------------------------------------------------------------------------
/** Execute body
*/
void FindPeakBackground::exec() {
// Get input and validate
processInputProperties();
auto &inpX = m_histogram->x();
auto &inpY = m_histogram->y();
size_t sizex = inpX.size(); // inpWS->x(inpwsindex).size();
size_t sizey = inpY.size(); // inpWS->y(inpwsindex).size();
// determine the fit window with their index in X (or Y)
size_t n = sizey;
size_t l0 = 0;
if (m_vecFitWindows.size() > 1) {
Mantid::Algorithms::FindPeaks fp;
l0 = fp.getIndex(inpX, m_vecFitWindows[0]);
n = fp.getIndex(inpX, m_vecFitWindows[1]);
// m_vecFitWindows won't be used again form this point till end.
// Set up output table workspace
Progress prog(this, 0.0, 1.0, 1);
// Find background
double Ymean, Yvariance, Ysigma;
MantidVec maskedY;
auto in = std::min_element(inpY.cbegin(), inpY.cend());
double bkg0 = inpY[in - inpY.begin()];
for (size_t l = l0; l < n; ++l) {
maskedY.push_back(inpY[l] - bkg0);
}
MantidVec mask(n - l0, 0.0);
double xn = static_cast<double>(n - l0);
if ((0. == xn) || (0. == xn - 1.0))
throw std::runtime_error(
"The number of Y values in the input workspace for the "
"workspace index given, minus 'l0' or minus 'l0' minus 1, is 0. This "
"will produce a "
"divide-by-zero");
do {
Statistics stats = getStatistics(maskedY);
Ymean = stats.mean;
Yvariance = stats.standard_deviation * stats.standard_deviation;
Ysigma = std::sqrt((moment4(maskedY, static_cast<size_t>(xn), Ymean) -
(xn - 3.0) / (xn - 1.0) * Yvariance) /
xn);
MantidVec::const_iterator it =
std::max_element(maskedY.begin(), maskedY.end());
const size_t pos = it - maskedY.begin();
maskedY[pos] = 0;
mask[pos] = 1.0;
} while (std::abs(Ymean - Yvariance) > m_sigmaConstant * Ysigma);
if (n - l0 > 5) {
// remove single outliers
if (mask[1] == mask[2] && mask[2] == mask[3])
mask[0] = mask[1];
if (mask[0] == mask[2] && mask[2] == mask[3])
mask[1] = mask[2];
for (size_t l = 2; l < n - l0 - 3; ++l) {
if (mask[l - 1] == mask[l + 1] &&
(mask[l - 1] == mask[l - 2] || mask[l + 1] == mask[l + 2])) {
mask[l] = mask[l + 1];
}
if (mask[n - l0 - 2] == mask[n - l0 - 3] &&
mask[n - l0 - 3] == mask[n - l0 - 4])
mask[n - l0 - 1] = mask[n - l0 - 2];
if (mask[n - l0 - 1] == mask[n - l0 - 3] &&
mask[n - l0 - 3] == mask[n - l0 - 4])
mask[n - l0 - 2] = mask[n - l0 - 1];
// mask regions not connected to largest region
// for loop can start > 1 for multiple peaks
vector<cont_peak> peaks;
if (mask[0] == 1) {
peaks.back().start = l0;
for (size_t l = 1; l < n - l0; ++l) {
if (mask[l] != mask[l - 1] && mask[l] == 1) {
peaks.back().start = l + l0;
} else if (!peaks.empty()) {
size_t ipeak = peaks.size() - 1;
if (mask[l] != mask[l - 1] && mask[l] == 0) {
peaks[ipeak].stop = l + l0;
if (inpY[l + l0] > peaks[ipeak].maxY)
peaks[ipeak].maxY = inpY[l + l0];
double a0 = 0., a1 = 0., a2 = 0.;
if (!peaks.empty()) {
g_log.debug() << "Peaks' size = " << peaks.size()
<< " -> esitmate background. \n";
if (peaks.back().stop == 0)
peaks.back().stop = n - 1;
std::sort(peaks.begin(), peaks.end(), by_len());
// save endpoints
min_peak = peaks[0].start;
// extra point for histogram input
max_peak = peaks[0].stop + sizex - sizey;
goodfit = 1;
} else {
// assume the whole thing is background
g_log.debug("Peaks' size = 0 -> whole region assumed background");
min_peak = n;
max_peak = l0;
goodfit = 2;
estimateBackground(inpX, inpY, l0, n, min_peak, max_peak, (!peaks.empty()),
a0, a1, a2);
// Add a new row
API::TableRow t = m_outPeakTableWS->getRow(0);
t << static_cast<int>(m_inputWSIndex) << static_cast<int>(min_peak)
<< static_cast<int>(max_peak) << a0 << a1 << a2 << goodfit;
}
// 4. Set the output
setProperty("OutputWorkspace", m_outPeakTableWS);
}
//----------------------------------------------------------------------------------------------
/** Estimate background
* @param X :: vec for X
* @param Y :: vec for Y
* @param i_min :: index of minimum in X to estimate background
* @param i_max :: index of maximum in X to estimate background
* @param p_min :: index of peak min in X to estimate background
* @param p_max :: index of peak max in X to estimate background
* @param hasPeak :: ban data in the peak range
* @param out_bg0 :: interception
* @param out_bg1 :: slope
* @param out_bg2 :: a2 = 0
*/
void FindPeakBackground::estimateBackground(
const HistogramX &X, const HistogramY &Y, const size_t i_min,
const size_t i_max, const size_t p_min, const size_t p_max,
const bool hasPeak, double &out_bg0, double &out_bg1, double &out_bg2) {
// Validate input
if (i_min >= i_max)
throw std::runtime_error("i_min cannot larger or equal to i_max");
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
throw std::runtime_error("p_min cannot larger or equal to p_max");
// set all parameters to zero
out_bg0 = 0.;
out_bg1 = 0.;
out_bg2 = 0.;
// accumulate sum
double sum = 0.0;
double sumX = 0.0;
double sumY = 0.0;
double sumX2 = 0.0;
double sumXY = 0.0;
double sumX2Y = 0.0;
double sumX3 = 0.0;
double sumX4 = 0.0;
for (size_t i = i_min; i < i_max; ++i) {
if (i >= p_min && i < p_max)
continue;
sum += 1.0;
sumX += X[i];
sumX2 += X[i] * X[i];
sumY += Y[i];
sumXY += X[i] * Y[i];
sumX2Y += X[i] * X[i] * Y[i];
sumX3 += X[i] * X[i] * X[i];
sumX4 += X[i] * X[i] * X[i] * X[i];
}
// Estimate flat background
double bg0_flat = 0.;
if (sum != 0.)
bg0_flat = sumY / sum;
// Estimate linear - use Cramer's rule for 2 x 2 matrix
double bg0_linear = 0.;
double bg1_linear = 0.;
double determinant = sum * sumX2 - sumX * sumX;
if (determinant != 0) {
bg0_linear = (sumY * sumX2 - sumX * sumXY) / determinant;
bg1_linear = (sum * sumXY - sumY * sumX) / determinant;
}
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
// Estimate quadratic - use Cramer's rule for 3 x 3 matrix
// | a b c |
// | d e f |
// | g h i |
// 3 x 3 determinate: aei+bfg+cdh-ceg-bdi-afh
double bg0_quadratic = 0.;
double bg1_quadratic = 0.;
double bg2_quadratic = 0.;
determinant = sum * sumX2 * sumX4 + sumX * sumX3 * sumX2 +
sumX2 * sumX * sumX3 - sumX2 * sumX2 * sumX2 -
sumX * sumX * sumX4 - sum * sumX3 * sumX3;
if (determinant != 0) {
bg0_quadratic =
(sumY * sumX2 * sumX4 + sumX * sumX3 * sumX2Y + sumX2 * sumXY * sumX3 -
sumX2 * sumX2 * sumX2Y - sumX * sumXY * sumX4 - sumY * sumX3 * sumX3) /
determinant;
bg1_quadratic =
(sum * sumXY * sumX4 + sumY * sumX3 * sumX2 + sumX2 * sumX * sumX2Y -
sumX2 * sumXY * sumX2 - sumY * sumX * sumX4 - sum * sumX3 * sumX2Y) /
determinant;
bg2_quadratic =
(sum * sumX2 * sumX2Y + sumX * sumXY * sumX2 + sumY * sumX * sumX3 -
sumY * sumX2 * sumX2 - sumX * sumX * sumX2Y - sum * sumXY * sumX3) /
determinant;
}
double chisq_flat = 0.;
double chisq_linear = 0.;
double chisq_quadratic = 0.;
if (sum != 0) {
double num_points = 0.;
// calculate the chisq - not normalized by the number of points
for (size_t i = i_min; i < i_max; ++i) {
if (i >= p_min && i < p_max)
continue;
num_points += 1.;
// accumulate for flat
chisq_flat += (bg0_flat - Y[i]) * (bg0_flat - Y[i]);
// accumulate for linear
double temp = bg0_linear + bg1_linear * X[i] - Y[i];
chisq_linear += (temp * temp);
// accumulate for quadratic
temp = bg0_quadratic + bg1_quadratic * X[i] +
bg2_quadratic * X[i] * X[i] - Y[i];
chisq_quadratic += (temp * temp);
// convert to <reduced chisq> = chisq / (<number points> - <number
// parameters>)
chisq_flat = chisq_flat / (num_points - 1.);
chisq_linear = chisq_linear / (num_points - 2.);
chisq_quadratic = chisq_quadratic / (num_points - 3.);
}
const double INVALID_CHISQ(1.e10); // big invalid value
if (m_backgroundType == "Flat") {
chisq_linear = INVALID_CHISQ;
chisq_quadratic = INVALID_CHISQ;
} else if (m_backgroundType == "Linear") {
chisq_quadratic = INVALID_CHISQ;
}
g_log.debug() << "flat: " << bg0_flat << " + " << 0. << "x + " << 0.
<< "x^2 reduced chisq=" << chisq_flat << "\n";
g_log.debug() << "line: " << bg0_linear << " + " << bg1_linear << "x + " << 0.
<< "x^2 reduced chisq=" << chisq_linear << "\n";
g_log.debug() << "quad: " << bg0_quadratic << " + " << bg1_quadratic << "x + "
<< bg2_quadratic << "x^2 reduced chisq=" << chisq_quadratic
<< "\n";
// choose the right background function to apply
if ((chisq_quadratic < chisq_flat) && (chisq_quadratic < chisq_linear)) {
out_bg0 = bg0_quadratic;
out_bg1 = bg1_quadratic;
out_bg2 = bg2_quadratic;
} else if ((chisq_linear < chisq_flat) && (chisq_linear < chisq_quadratic)) {
out_bg0 = bg0_linear;
out_bg1 = bg1_linear;
} else {
out_bg0 = bg0_flat;
}
g_log.information() << "Estimated background: A0 = " << out_bg0
<< ", A1 = " << out_bg1 << ", A2 = " << out_bg2 << "\n";
}
//----------------------------------------------------------------------------------------------
/** Calculate 4th moment
* @param X :: vec for X
* @param n :: length of vector
* @param mean :: mean of X
*/
double FindPeakBackground::moment4(MantidVec &X, size_t n, double mean) {
double sum = 0.0;
for (size_t i = 0; i < n; ++i) {
sum += (X[i] - mean) * (X[i] - mean) * (X[i] - mean) * (X[i] - mean);
sum /= static_cast<double>(n);
return sum;
}
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
//----------------------------------------------------------------------------------------------
void FindPeakBackground::processInputProperties() {
// process input workspace and workspace index
MatrixWorkspace_const_sptr inpWS = getProperty("InputWorkspace");
int inpwsindex = getProperty("WorkspaceIndex");
if (isEmpty(inpwsindex)) {
// Default
if (inpWS->getNumberHistograms() == 1) {
inpwsindex = 0;
} else {
throw runtime_error("WorkspaceIndex must be given. ");
}
} else if (inpwsindex < 0 ||
inpwsindex >= static_cast<int>(inpWS->getNumberHistograms())) {
stringstream errss;
errss << "Input workspace " << inpWS->getName() << " has "
<< inpWS->getNumberHistograms() << " spectra. Input workspace index "
<< inpwsindex << " is out of boundary. ";
throw runtime_error(errss.str());
}
m_inputWSIndex = static_cast<size_t>(inpwsindex);
setHistogram(inpWS->histogram(inpwsindex));
std::vector<double> fitwindow = getProperty("FitWindow");
setFitWindow(fitwindow);
// background
m_backgroundType = getPropertyValue("BackgroundType");
size_t bkgdorder = 0;
if (m_backgroundType.compare("Linear") == 0)
bkgdorder = 1;
else if (m_backgroundType.compare("Quadratic") == 0)
bkgdorder = 2;
setBackgroundOrder(bkgdorder);
// sigma constant
double k = getProperty("SigmaConstant");
setSigma(k);
}
/// set histogram data to find background
void FindPeakBackground::setHistogram(
const HistogramData::Histogram &histogram) {
m_histogram = boost::make_shared<HistogramData::Histogram>(histogram);
}
/// set sigma constant
void FindPeakBackground::setSigma(const double &sigma) {
m_sigmaConstant = sigma;
}
/// set background order
void FindPeakBackground::setBackgroundOrder(size_t order) {
m_backgroundOrder = order;
}
////----------------------------------------------------------------------------------------------
///** find background (main algorithm)
// * @brief FindPeakBackground::findPeakBackground
// */
// void FindPeakBackground::findPeakBackground() {return;}
///// get result
// void getBackgroundResult();
//----------------------------------------------------------------------------------------------
/** set fit window
* @brief FindPeakBackground::setFitWindow
* @param fitwindow
*/
void FindPeakBackground::setFitWindow(const std::vector<double> &fitwindow) {
// validate input
if (m_vecFitWindows.size() == 0) {
m_vecFitWindows.resize(2);
m_vecFitWindows[0] = m_histogram->y().front();
m_vecFitWindows[1] = m_histogram->y().back();
} else if (m_vecFitWindows.size() != 2 ||
m_vecFitWindows[0] >= m_vecFitWindows[1]) {
throw std::invalid_argument("Fit window has either wrong item number or "
"window value is not in ascending order.");
}
// m_vecFitWindows.resize(2);
// copy the input to class variable
m_vecFitWindows = fitwindow;
return;
}
//----------------------------------------------------------------------------------------------
/**
* @brief FindPeakBackground::createOutputWorkspaces
*/
void FindPeakBackground::createOutputWorkspaces() {
// Set up output table workspace
m_outPeakTableWS = WorkspaceFactory::Instance().createTable("TableWorkspace");
m_outPeakTableWS->addColumn("int", "wksp_index");
m_outPeakTableWS->addColumn("int", "peak_min_index");
m_outPeakTableWS->addColumn("int", "peak_max_index");
m_outPeakTableWS->addColumn("double", "bkg0");
m_outPeakTableWS->addColumn("double", "bkg1");
m_outPeakTableWS->addColumn("double", "bkg2");
m_outPeakTableWS->addColumn("int", "GoodFit");
m_outPeakTableWS->appendRow();
}
void FindPeakBackground::findStartStopIndex(size_t &istart, size_t &istop) {
// Generate output
auto inpX = m_histogram->x();
auto inpY = m_histogram->y();
// size_t sizex = inpX.size();
size_t sizey = inpY.size();
// initial value of start and stop x index
size_t n = sizey;
size_t l0 = 0;
if (m_vecFitWindows.size() > 1) {
Mantid::Algorithms::FindPeaks fp;
l0 = fp.getIndex(inpX, m_vecFitWindows[0]);
n = fp.getIndex(inpX, m_vecFitWindows[1]);
if (n < sizey)
n++;
}
istart = l0;
istop = n;
}
} // namespace Algorithms
} // namespace Mantid