Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
#include "MantidMDAlgorithms/IntegrateEllipsoidsWithSatellites.h"
#include "MantidAPI/AnalysisDataService.h"
#include "MantidGeometry/Instrument/DetectorInfo.h"
#include "MantidAPI/FileProperty.h"
#include "MantidAPI/InstrumentValidator.h"
#include "MantidAPI/Run.h"
#include "MantidAPI/WorkspaceFactory.h"
#include "MantidAPI/WorkspaceUnitValidator.h"
#include "MantidDataObjects/EventWorkspace.h"
#include "MantidDataObjects/Peak.h"
#include "MantidDataObjects/PeakShapeEllipsoid.h"
#include "MantidDataObjects/PeaksWorkspace.h"
#include "MantidDataObjects/Workspace2D.h"
#include "MantidGeometry/Crystal/IndexingUtils.h"
#include "MantidGeometry/Crystal/OrientedLattice.h"
#include "MantidHistogramData/LinearGenerator.h"
#include "MantidKernel/BoundedValidator.h"
#include "MantidKernel/CompositeValidator.h"
#include "MantidKernel/Statistics.h"
#include "MantidMDAlgorithms/Integrate3DEvents.h"
#include "MantidMDAlgorithms/MDTransfFactory.h"
#include "MantidMDAlgorithms/MDTransfQ3D.h"
#include "MantidMDAlgorithms/UnitsConversionHelper.h"
#include "MantidAPI/Sample.h"
#include <boost/math/special_functions/round.hpp>
#include <cmath>
using namespace Mantid::API;
using namespace Mantid::HistogramData;
using namespace Mantid::Kernel;
using namespace Mantid::Geometry;
using namespace Mantid::DataObjects;
namespace Mantid {
namespace MDAlgorithms {
/// This only works for diffraction.
const std::string ELASTIC("Elastic");
/// Only convert to Q-vector.
const std::string Q3D("Q3D");
/// Q-vector is always three dimensional.
const std::size_t DIMS(3);
/**
* @brief qListFromEventWS creates qlist from events
* @param integrator : itegrator object on which qlists are accumulated
* @param prog : progress object
* @param wksp : input EventWorkspace
* @param UBinv : inverse of UB matrix
* @param hkl_integ ; boolean for integrating in HKL space
*/
void IntegrateEllipsoidsWithSatellites::qListFromEventWS(Integrate3DEvents &integrator,Progress &prog,EventWorkspace_sptr &wksp,DblMatrix const &UBinv,bool hkl_integ) {
// loop through the eventlists
int numSpectra = static_cast<int>(wksp->getNumberHistograms());
PARALLEL_FOR_IF(Kernel::threadSafe(*wksp))
for (int i = 0; i < numSpectra; ++i) {
PARALLEL_START_INTERUPT_REGION
// units conversion helper
UnitsConversionHelper unitConverter;
unitConverter.initialize(m_targWSDescr, "Momentum");
// initialize the MD coordinates conversion class
MDTransfQ3D qConverter;
qConverter.initialize(m_targWSDescr);
std::vector<double> buffer(DIMS);
// get a reference to the event list
EventList &events = wksp->getSpectrum(i);
events.switchTo(WEIGHTED_NOTIME);
events.compressEvents(1e-5, &events);
// check to see if the event list is empty
if (events.empty()) {
prog.report();
continue; // nothing to do
}
// update which pixel is being converted
std::vector<Mantid::coord_t> locCoord(DIMS, 0.);
unitConverter.updateConversion(i);
qConverter.calcYDepCoordinates(locCoord, i);
// loop over the events
double signal(1.); // ignorable garbage
double errorSq(1.); // ignorable garbage
const std::vector<WeightedEventNoTime> &raw_events =
events.getWeightedEventsNoTime();
std::vector<std::pair<double, V3D>> qList;
for (const auto &raw_event : raw_events) {
double val = unitConverter.convertUnits(raw_event.tof());
qConverter.calcMatrixCoord(val, locCoord, signal, errorSq);
for (size_t dim = 0; dim < DIMS; ++dim) {
buffer[dim] = locCoord[dim];
}
V3D qVec(buffer[0], buffer[1], buffer[2]);
if (hkl_integ)
qVec = UBinv * qVec;
qList.emplace_back(raw_event.m_weight, qVec);
} // end of loop over events in list
PARALLEL_CRITICAL(addEvents) { integrator.addEvents(qList, hkl_integ); }
prog.report();
PARALLEL_END_INTERUPT_REGION
} // end of loop over spectra
PARALLEL_CHECK_INTERUPT_REGION
}
/**
* @brief qListFromHistoWS creates qlist from input workspaces of type
* Workspace2D
* @param integrator : itegrator object on which qlists are accumulated
* @param prog : progress object
* @param wksp : input Workspace2D
* @param UBinv : inverse of UB matrix
* @param hkl_integ ; boolean for integrating in HKL space
*/
void IntegrateEllipsoidsWithSatellites::qListFromHistoWS(Integrate3DEvents &integrator,Progress &prog,Workspace2D_sptr &wksp,DblMatrix const &UBinv,bool hkl_integ) {
// loop through the eventlists
int numSpectra = static_cast<int>(wksp->getNumberHistograms());
PARALLEL_FOR_IF(Kernel::threadSafe(*wksp))
for (int i = 0; i < numSpectra; ++i) {
PARALLEL_START_INTERUPT_REGION
// units conversion helper
UnitsConversionHelper unitConverter;
unitConverter.initialize(m_targWSDescr, "Momentum");
// initialize the MD coordinates conversion class
MDTransfQ3D qConverter;
qConverter.initialize(m_targWSDescr);
std::vector<double> buffer(DIMS);
// get tof and y values
const auto &xVals = wksp->points(i);
const auto &yVals = wksp->y(i);
// update which pixel is being converted
std::vector<Mantid::coord_t> locCoord(DIMS, 0.);
unitConverter.updateConversion(i);
qConverter.calcYDepCoordinates(locCoord, i);
// loop over the events
double signal(1.); // ignorable garbage
double errorSq(1.); // ignorable garbage
std::vector<std::pair<double, V3D>> qList;
for (size_t j = 0; j < yVals.size(); ++j) {
const double &yVal = yVals[j];
if (yVal > 0) // TODO, is this condition right?
{
double val = unitConverter.convertUnits(xVals[j]);
qConverter.calcMatrixCoord(val, locCoord, signal, errorSq);
for (size_t dim = 0; dim < DIMS; ++dim) {
buffer[dim] = locCoord[dim]; // TODO. Looks un-necessary to me. Can't
// we just add localCoord directly to
// qVec
}
V3D qVec(buffer[0], buffer[1], buffer[2]);
if (hkl_integ)
qVec = UBinv * qVec;
if (std::isnan(qVec[0]) || std::isnan(qVec[1]) || std::isnan(qVec[2]))
continue;
// Account for counts in histograms by increasing the qList with the
// same q-point
qList.emplace_back(yVal, qVec);
}
}
PARALLEL_CRITICAL(addHisto) { integrator.addEvents(qList, hkl_integ); }
prog.report();
PARALLEL_END_INTERUPT_REGION
} // end of loop over spectra
PARALLEL_CHECK_INTERUPT_REGION
}
/** NOTE: This has been adapted from the SaveIsawQvector algorithm.
*/
// Register the algorithm into the AlgorithmFactory
DECLARE_ALGORITHM(IntegrateEllipsoidsWithSatellites)
//---------------------------------------------------------------------
/// Algorithm's name for identification. @see Algorithm::name
const std::string IntegrateEllipsoidsWithSatellites::name() const {
return "IntegrateEllipsoidsWithSatellites";
}
/// Algorithm's version for identification. @see Algorithm::version
int IntegrateEllipsoidsWithSatellites::version() const { return 1; }
/// Algorithm's category for identification. @see Algorithm::category
const std::string IntegrateEllipsoidsWithSatellites::category() const {
return "Crystal\\Integration";
}
//---------------------------------------------------------------------
//---------------------------------------------------------------------
/** Initialize the algorithm's properties.
*/
void IntegrateEllipsoidsWithSatellites::init() {
auto ws_valid = boost::make_shared<CompositeValidator>();
ws_valid->add<WorkspaceUnitValidator>("TOF");
ws_valid->add<InstrumentValidator>();
// the validator which checks if the workspace has axis
declareProperty(make_unique<WorkspaceProperty<MatrixWorkspace>>(
"InputWorkspace", "", Direction::Input, ws_valid),
"An input MatrixWorkspace with time-of-flight units along "
"X-axis and defined instrument with defined sample");
declareProperty(make_unique<WorkspaceProperty<PeaksWorkspace>>(
"PeaksWorkspace", "", Direction::InOut),
"Workspace with Peaks to be integrated. NOTE: The peaks MUST "
"be indexed with integer HKL values.");
boost::shared_ptr<BoundedValidator<double>> mustBePositive(
new BoundedValidator<double>());
mustBePositive->setLower(0.0);
declareProperty("RegionRadius", .2, mustBePositive,
"Only events at most this distance from a peak will be "
"considered when integrating");
declareProperty("SatelliteRegionRadius", .1, mustBePositive,
"Only events at most this distance from a peak will be "
"considered when integrating");
declareProperty("SpecifySize", false,
"If true, use the following for the major axis sizes, else use 3-sigma");
declareProperty("PeakSize", .18, mustBePositive,
"Half-length of major axis for peak ellipsoid");
declareProperty("BackgroundInnerSize", .18, mustBePositive,
"Half-length of major axis for inner ellipsoidal surface of "
"background region");
declareProperty("BackgroundOuterSize", .19, mustBePositive,
"Half-length of major axis for outer ellipsoidal surface of "
"background region");
declareProperty("SatellitePeakSize", .08, mustBePositive,
"Half-length of major axis for satellite peak ellipsoid");
declareProperty("SatelliteBackgroundInnerSize", .08, mustBePositive,
"Half-length of major axis for inner ellipsoidal surface of "
"satellite background region");
declareProperty("SatelliteBackgroundOuterSize", .09, mustBePositive,
"Half-length of major axis for outer ellipsoidal surface of "
"satellite background region");
declareProperty(make_unique<WorkspaceProperty<PeaksWorkspace>>("OutputWorkspace", "", Direction::Output),
"The output PeaksWorkspace will be a copy of the input PeaksWorkspace "
"with the peaks' integrated intensities.");
declareProperty("CutoffIsigI", EMPTY_DBL(), mustBePositive,
"Cuttoff for I/sig(i) when finding mean of half-length of "
"major radius in first pass when SpecifySize is false."
"Default is no second pass.");
declareProperty("NumSigmas", 3,
"Number of sigmas to add to mean of half-length of "
"major radius for second pass when SpecifySize is false.");
declareProperty("IntegrateIfOnEdge", false,
"Set to false to not integrate if peak radius is off edge of detector."
"Background will be scaled if background radius is off edge.");
declareProperty("AdaptiveQBackground", false,
"Default is false. If true, "
"BackgroundOuterRadius + AdaptiveQMultiplier * **|Q|** and "
"BackgroundInnerRadius + AdaptiveQMultiplier * **|Q|**");
declareProperty("AdaptiveQMultiplier", 0.0,
"PeakRadius + AdaptiveQMultiplier * **|Q|** "
"so each peak has a "
"different integration radius. Q includes the 2*pi factor.");
declareProperty("UseOnePercentBackgroundCorrection", true,
"If this options is enabled, then the the top 1% of the "
"background will be removed"
"before the background subtraction.");
}
//---------------------------------------------------------------------
/** Execute the algorithm.
*/
void IntegrateEllipsoidsWithSatellites::exec() {
// get the input workspace
MatrixWorkspace_sptr wksp = getProperty("InputWorkspace");
EventWorkspace_sptr eventWS =
boost::dynamic_pointer_cast<EventWorkspace>(wksp);
Workspace2D_sptr histoWS = boost::dynamic_pointer_cast<Workspace2D>(wksp);
if (!eventWS && !histoWS) {
throw std::runtime_error("IntegrateEllipsoids needs either a "
"EventWorkspace or Workspace2D as input.");
}
// error out if there are not events
if (eventWS && eventWS->getNumberEvents() <= 0) {
throw std::runtime_error(
"IntegrateEllipsoids does not work for empty event lists");
}
PeaksWorkspace_sptr in_peak_ws = getProperty("PeaksWorkspace");
if (!in_peak_ws) {
throw std::runtime_error("Could not read the peaks workspace");
}
double radius_m = getProperty("RegionRadius");
double radius_s = getProperty("SatelliteRegionRadius");
int numSigmas = getProperty("NumSigmas");
double cutoffIsigI = getProperty("CutoffIsigI");
bool specify_size = getProperty("SpecifySize");
double peak_radius = getProperty("PeakSize");
double sate_peak_radius = getProperty("SatellitePeakSize");
double back_inner_radius = getProperty("BackgroundInnerSize");
double sate_back_inner_radius = getProperty("SatelliteBackgroundInnerSize");
double back_outer_radius = getProperty("BackgroundOuterSize");
double sate_back_outer_radius = getProperty("SatelliteBackgroundOuterSize");
bool hkl_integ = false;
bool integrateEdge = getProperty("IntegrateIfOnEdge");
bool adaptiveQBackground = getProperty("AdaptiveQBackground");
double adaptiveQMultiplier = getProperty("AdaptiveQMultiplier");
double adaptiveQBackgroundMultiplier = 0.0;
bool useOnePercentBackgroundCorrection =
getProperty("UseOnePercentBackgroundCorrection");
if (adaptiveQBackground)
adaptiveQBackgroundMultiplier = adaptiveQMultiplier;
if (!integrateEdge) {
// This only fails in the unit tests which say that MaskBTP is not
// registered
try {
runMaskDetectors(in_peak_ws, "Tube", "edges");
runMaskDetectors(in_peak_ws, "Pixel", "edges");
} catch (...) {
g_log.error("Can't execute MaskBTP algorithm for this instrument to set "
"edge for IntegrateIfOnEdge option");
}
calculateE1(in_peak_ws->detectorInfo()); // fill E1Vec for use in detectorQ
}
Mantid::DataObjects::PeaksWorkspace_sptr peak_ws =
getProperty("OutputWorkspace");
if (peak_ws != in_peak_ws)
peak_ws = in_peak_ws->clone();
// get UBinv and the list of
// peak Q's for the integrator
std::vector<Peak> &peaks = peak_ws->getPeaks();
size_t n_peaks = peak_ws->getNumberPeaks();
size_t indexed_count = 0;
std::vector<V3D> peak_q_list;
std::vector<std::pair<double, V3D>> qList;
std::vector<V3D> hkl_vectors;
std::vector<V3D> mnp_vectors;
int ModDim = 0;
for (size_t i = 0; i < n_peaks; i++) // Note: we skip un-indexed peaks
{
V3D hkl(peaks[i].getIntHKL());
V3D mnp(peaks[i].getIntMNP());
if (mnp[0] != 0 && ModDim == 0)
ModDim = 1;
if (mnp[1] != 0 && ModDim == 1)
ModDim = 2;
if (mnp[2] != 0 && ModDim == 2)
ModDim = 3;
if (Geometry::IndexingUtils::ValidIndex(hkl, 1.0) || Geometry::IndexingUtils::ValidIndex(mnp, 1.0)) // use tolerance == 1 to
// just check for (0,0,0,0,0,0)
{
peak_q_list.emplace_back(peaks[i].getQLabFrame());
qList.emplace_back(1., V3D(peaks[i].getQLabFrame()));
// V3D miller_ind(static_cast<double>(boost::math::iround<double>(hkl[0])),
// static_cast<double>(boost::math::iround<double>(hkl[1])),
// static_cast<double>(boost::math::iround<double>(hkl[2])));
hkl_vectors.push_back(hkl);
mnp_vectors.push_back(mnp);
indexed_count++;
}
}
if (indexed_count < 3)
throw std::runtime_error("At least three linearly independent indexed peaks are needed.");
// Get UB using indexed peaks and
// lab-Q vectors
Matrix<double> UB(3, 3, false);
Matrix<double> modUB(3, 3, false);
Matrix<double> modHKL(3, 3, false);
Geometry::IndexingUtils::Optimize_6dUB(UB, modUB, hkl_vectors, mnp_vectors, ModDim, peak_q_list);
OrientedLattice lattice;
// lattice = peak_ws->mutableSample().getOrientedLattice();
// UB = lattice.getUB();
lattice.setUB(UB);
lattice.setModUB(modUB);
modHKL = lattice.getModHKL();
lattice = peak_ws->mutableSample().getOrientedLattice();
int maxOrder = lattice.getMaxOrder();
bool CT = lattice.getCrossTerm();
Matrix<double> UBinv(UB);
UBinv.Invert();
UBinv *= (1.0 / (2.0 * M_PI));
std::vector<double> PeakRadiusVector(n_peaks, peak_radius);
std::vector<double> BackgroundInnerRadiusVector(n_peaks, back_inner_radius);
std::vector<double> BackgroundOuterRadiusVector(n_peaks, back_outer_radius);
if (specify_size)
{
if (back_outer_radius > radius_m)
throw std::runtime_error("BackgroundOuterSize must be less than or equal to the RegionRadius");
if (back_inner_radius >= back_outer_radius)
throw std::runtime_error("BackgroundInnerSize must be less BackgroundOuterSize");
if (peak_radius > back_inner_radius)
throw std::runtime_error("PeakSize must be less than or equal to the BackgroundInnerSize");
}
// make the integrator
Integrate3DEvents integrator(qList, hkl_vectors, mnp_vectors, UBinv, modHKL, radius_m, radius_s, maxOrder, CT, useOnePercentBackgroundCorrection);
// get the events and add
// them to the inegrator
// set up a descripter of where we are going
this->initTargetWSDescr(wksp);
// set up the progress bar
const size_t numSpectra = wksp->getNumberHistograms();
Progress prog(this, 0.5, 1.0, numSpectra);
if (eventWS) {
// process as EventWorkspace
qListFromEventWS(integrator, prog, eventWS, UBinv, hkl_integ);
} else {
// process as Workspace2D
qListFromHistoWS(integrator, prog, histoWS, UBinv, hkl_integ);
}
double inti;
double sigi;
std::vector<double> principalaxis1, principalaxis2, principalaxis3;
std::vector<double> sateprincipalaxis1, sateprincipalaxis2, sateprincipalaxis3;
V3D peak_q;
for (size_t i = 0; i < n_peaks; i++)
{
V3D hkl(peaks[i].getIntHKL());
V3D mnp(peaks[i].getIntMNP());
if (Geometry::IndexingUtils::ValidIndex(hkl, 1.0)||Geometry::IndexingUtils::ValidIndex(mnp, 1.0))
{
peak_q = peaks[i].getQLabFrame();
std::vector<double> axes_radii;
// modulus of Q
double lenQpeak = 0.0;
if (adaptiveQMultiplier != 0.0) {
for (size_t d = 0; d < 3; d++) {
lenQpeak += peak_q[d] * peak_q[d];
}
lenQpeak = std::sqrt(lenQpeak);
}
double adaptiveRadius = adaptiveQMultiplier * lenQpeak + peak_radius;
if (mnp!=V3D(0,0,0))
adaptiveRadius = adaptiveQMultiplier * lenQpeak + sate_peak_radius;
if (adaptiveRadius <= 0.0) {
g_log.error() << "Error: Radius for integration sphere of peak " << i
<< " is negative = " << adaptiveRadius << '\n';
peaks[i].setIntensity(0.0);
peaks[i].setSigmaIntensity(0.0);
PeakRadiusVector[i] = 0.0;
BackgroundInnerRadiusVector[i] = 0.0;
BackgroundOuterRadiusVector[i] = 0.0;
continue;
}
double adaptiveBack_inner_radius = adaptiveQBackgroundMultiplier * lenQpeak + sate_back_inner_radius;
if (mnp==V3D(0,0,0))
adaptiveBack_inner_radius = adaptiveQBackgroundMultiplier * lenQpeak + back_inner_radius;
double adaptiveBack_outer_radius = adaptiveQBackgroundMultiplier * lenQpeak + sate_back_outer_radius;
if (mnp==V3D(0,0,0))
adaptiveBack_outer_radius = adaptiveQBackgroundMultiplier * lenQpeak + back_outer_radius;
PeakRadiusVector[i] = adaptiveRadius;
BackgroundInnerRadiusVector[i] = adaptiveBack_inner_radius;
BackgroundOuterRadiusVector[i] = adaptiveBack_outer_radius;
Mantid::Geometry::PeakShape_const_sptr shape =
integrator.ellipseIntegrateModEvents(E1Vec, peak_q, hkl, mnp, specify_size, adaptiveRadius,
adaptiveBack_inner_radius, adaptiveBack_outer_radius, axes_radii,
inti, sigi);
peaks[i].setIntensity(inti);
peaks[i].setSigmaIntensity(sigi);
peaks[i].setPeakShape(shape);
if (axes_radii.size() == 3) {
if (inti / sigi > cutoffIsigI || cutoffIsigI == EMPTY_DBL())
{
if (mnp==V3D(0,0,0))
{
principalaxis1.push_back(axes_radii[0]);
principalaxis2.push_back(axes_radii[1]);
principalaxis3.push_back(axes_radii[2]);
}
else
{
sateprincipalaxis1.push_back(axes_radii[0]);
sateprincipalaxis2.push_back(axes_radii[1]);
sateprincipalaxis3.push_back(axes_radii[2]);
}
}
}
} else {
peaks[i].setIntensity(0.0);
peaks[i].setSigmaIntensity(0.0);
}
}
if (principalaxis1.size() > 1)
{
Statistics stats1 = getStatistics(principalaxis1);
g_log.notice() << "principalaxis1: " << " mean " << stats1.mean << " standard_deviation " << stats1.standard_deviation << " minimum " << stats1.minimum << " maximum " << stats1.maximum << " median " << stats1.median << "\n";
Statistics stats2 = getStatistics(principalaxis2);
g_log.notice() << "principalaxis2: " << " mean " << stats2.mean << " standard_deviation " << stats2.standard_deviation << " minimum " << stats2.minimum << " maximum " << stats2.maximum << " median " << stats2.median << "\n";
Statistics stats3 = getStatistics(principalaxis3);
g_log.notice() << "principalaxis3: " << " mean " << stats3.mean << " standard_deviation " << stats3.standard_deviation << " minimum " << stats3.minimum << " maximum " << stats3.maximum << " median " << stats3.median << "\n";
if (sateprincipalaxis1.size() > 1)
{
Statistics satestats1 = getStatistics(sateprincipalaxis1);
g_log.notice() << "sateprincipalaxis1: " << " mean " << satestats1.mean << " standard_deviation " << satestats1.standard_deviation << " minimum " << satestats1.minimum << " maximum " << satestats1.maximum << " median " << satestats1.median << "\n";
Statistics satestats2 = getStatistics(sateprincipalaxis2);
g_log.notice() << "sateprincipalaxis2: " << " mean " << satestats2.mean << " standard_deviation " << satestats2.standard_deviation << " minimum " << satestats2.minimum << " maximum " << satestats2.maximum << " median " << satestats2.median << "\n";
Statistics satestats3 = getStatistics(sateprincipalaxis3);
g_log.notice() << "sateprincipalaxis3: " << " mean " << satestats3.mean << " standard_deviation " << satestats3.standard_deviation << " minimum " << satestats3.minimum << " maximum " << satestats3.maximum << " median " << satestats3.median << "\n";
}
size_t histogramNumber = 3;
Workspace_sptr wsProfile = WorkspaceFactory::Instance().create("Workspace2D", histogramNumber, principalaxis1.size(),
principalaxis1.size());
Workspace2D_sptr wsProfile2D =
boost::dynamic_pointer_cast<Workspace2D>(wsProfile);
AnalysisDataService::Instance().addOrReplace("EllipsoidAxes", wsProfile2D);
// set output workspace
Points points(principalaxis1.size(), LinearGenerator(0, 1));
wsProfile2D->setHistogram(0, points, Counts(std::move(principalaxis1)));
wsProfile2D->setHistogram(1, points, Counts(std::move(principalaxis2)));
wsProfile2D->setHistogram(2, points, Counts(std::move(principalaxis3)));
if (cutoffIsigI != EMPTY_DBL())
{
principalaxis1.clear();
principalaxis2.clear();
principalaxis3.clear();
sateprincipalaxis1.clear();
sateprincipalaxis2.clear();
sateprincipalaxis3.clear();
specify_size = true;
peak_radius = std::max(std::max(stats1.mean, stats2.mean), stats3.mean) +
numSigmas * std::max(std::max(stats1.standard_deviation,
stats2.standard_deviation),
stats3.standard_deviation);
back_inner_radius = peak_radius;
back_outer_radius = peak_radius * 1.25992105; // A factor of 2 ^ (1/3)
// will make the background
// shell volume equal to the peak region volume.
V3D peak_q;
for (size_t i = 0; i < n_peaks; i++) {
V3D hkl(peaks[i].getIntHKL());
V3D mnp(peaks[i].getIntMNP());
if (Geometry::IndexingUtils::ValidIndex(hkl, 1.0)||Geometry::IndexingUtils::ValidIndex(mnp, 1.0))
{
peak_q = peaks[i].getQLabFrame();
std::vector<double> axes_radii;
integrator.ellipseIntegrateModEvents(E1Vec, peak_q, hkl, mnp, specify_size, peak_radius, back_inner_radius,back_outer_radius, axes_radii, inti, sigi);
peaks[i].setIntensity(inti);
peaks[i].setSigmaIntensity(sigi);
if (axes_radii.size() == 3)
{
if (mnp==V3D(0,0,0))
{
principalaxis1.push_back(axes_radii[0]);
principalaxis2.push_back(axes_radii[1]);
principalaxis3.push_back(axes_radii[2]);
}
else
{
sateprincipalaxis1.push_back(axes_radii[0]);
sateprincipalaxis2.push_back(axes_radii[1]);
sateprincipalaxis3.push_back(axes_radii[2]);
}
}
} else {
peaks[i].setIntensity(0.0);
peaks[i].setSigmaIntensity(0.0);
}
}
if (principalaxis1.size() > 1)
{
size_t histogramNumber = 3;
Workspace_sptr wsProfile2 = WorkspaceFactory::Instance().create("Workspace2D", histogramNumber, principalaxis1.size(),principalaxis1.size());
Workspace2D_sptr wsProfile2D2 =
boost::dynamic_pointer_cast<Workspace2D>(wsProfile2);
AnalysisDataService::Instance().addOrReplace("EllipsoidAxes_2ndPass",
wsProfile2D2);
// set output workspace
Points points(principalaxis1.size(), LinearGenerator(0, 1));
wsProfile2D->setHistogram(0, points, Counts(std::move(principalaxis1)));
wsProfile2D->setHistogram(1, points, Counts(std::move(principalaxis2)));
wsProfile2D->setHistogram(2, points, Counts(std::move(principalaxis3)));
}
}
}
// This flag is used by the PeaksWorkspace to evaluate whether it has been
// integrated.
peak_ws->mutableRun().addProperty("PeaksIntegrated", 1, true);
// These flags are specific to the algorithm.
peak_ws->mutableRun().addProperty("PeakRadius", PeakRadiusVector, true);
peak_ws->mutableRun().addProperty("BackgroundInnerRadius",
BackgroundInnerRadiusVector, true);
peak_ws->mutableRun().addProperty("BackgroundOuterRadius",
BackgroundOuterRadiusVector, true);
setProperty("OutputWorkspace", peak_ws);
}
/**
* @brief IntegrateEllipsoidsWithSatellites::initTargetWSDescr Initialize the output
* information for the MD conversion framework.
*
* @param wksp The workspace to get information from.
*/
void IntegrateEllipsoidsWithSatellites::initTargetWSDescr(MatrixWorkspace_sptr &wksp) {
m_targWSDescr.setMinMax(std::vector<double>(3, -2000.),
std::vector<double>(3, 2000.));
m_targWSDescr.buildFromMatrixWS(wksp, Q3D, ELASTIC);
m_targWSDescr.setLorentsCorr(false);
// generate the detectors table
Mantid::API::Algorithm_sptr childAlg = createChildAlgorithm("PreprocessDetectorsToMD", 0., .5); // HACK. soft dependency on non-dependent package.
childAlg->setProperty("InputWorkspace", wksp);
childAlg->executeAsChildAlg();
DataObjects::TableWorkspace_sptr table =
childAlg->getProperty("OutputWorkspace");
if (!table)
throw(std::runtime_error("Can not retrieve results of \"PreprocessDetectorsToMD\""));
else
m_targWSDescr.m_PreprDetTable = table;
}
/*
* Define edges for each instrument by masking. For CORELLI, tubes 1 and 16, and
*pixels 0 and 255.
* Get Q in the lab frame for every peak, call it C
* For every point on the edge, the trajectory in reciprocal space is a straight
*line, going through O=V3D(0,0,0).
* Calculate a point at a fixed momentum, say k=1. Q in the lab frame
*E=V3D(-k*sin(tt)*cos(ph),-k*sin(tt)*sin(ph),k-k*cos(ph)).
* Normalize E to 1: E=E*(1./E.norm())
*
* @param inst: instrument
*/
void IntegrateEllipsoidsWithSatellites::calculateE1(const Geometry::DetectorInfo &detectorInfo) {
for (size_t i = 0; i < detectorInfo.size(); ++i) {
if (detectorInfo.isMonitor(i))
continue; // skip monitor
if (!detectorInfo.isMasked(i))
continue; // edge is masked so don't check if not masked
const auto &det = detectorInfo.detector(i);
double tt1 = det.getTwoTheta(V3D(0, 0, 0), V3D(0, 0, 1)); // two theta
double ph1 = det.getPhi(); // phi
V3D E1 = V3D(-std::sin(tt1) * std::cos(ph1), -std::sin(tt1) * std::sin(ph1),
1. - std::cos(tt1)); // end of trajectory
E1 = E1 * (1. / E1.norm()); // normalize
E1Vec.push_back(E1);
}
}
void IntegrateEllipsoidsWithSatellites::runMaskDetectors(Mantid::DataObjects::PeaksWorkspace_sptr peakWS, std::string property,std::string values) {
IAlgorithm_sptr alg = createChildAlgorithm("MaskBTP");
alg->setProperty<Workspace_sptr>("Workspace", peakWS);
alg->setProperty(property, values);
if (!alg->execute())
throw std::runtime_error(
"MaskDetectors Child Algorithm has not executed successfully");
}
} // namespace MDAlgorithms
} // namespace Mantid