Skip to content
Snippets Groups Projects
LoadEventPreNexus2.cpp 41.9 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
/*WIKI* 




The LoadEventPreNeXus algorithm stores data from the pre-nexus neutron event data file in an [[EventWorkspace]]. The default histogram bin boundaries consist of a single bin able to hold all events (in all pixels), and will have their [[units]] set to time-of-flight. Since it is an [[EventWorkspace]], it can be rebinned to finer bins with no loss of data.

=== Optional properties ===
Specific pulse ID and mapping files can be specified if needed; these are guessed at automatically from the neutron filename, if not specified.





*WIKI*/

#include "MantidDataHandling/LoadEventPreNexus2.h"
#include <algorithm>
#include <sstream>
#include <stdexcept>
#include <functional>
#include <iostream>
#include <set>
#include <vector>
#include <Poco/File.h>
#include <Poco/Path.h>
#include <boost/timer.hpp>
#include "MantidAPI/FileFinder.h"
#include "MantidAPI/LoadAlgorithmFactory.h"
#include "MantidAPI/WorkspaceFactory.h"
#include "MantidDataObjects/EventWorkspace.h"
#include "MantidDataObjects/EventList.h"
#include "MantidKernel/ArrayProperty.h"
#include "MantidKernel/FileValidator.h"
#include "MantidKernel/DateAndTime.h"
#include "MantidKernel/Glob.h"
#include "MantidAPI/FileProperty.h"
#include "MantidKernel/ConfigService.h"
#include "MantidKernel/BinaryFile.h"
#include "MantidKernel/System.h"
#include "MantidKernel/TimeSeriesProperty.h"
#include "MantidKernel/UnitFactory.h"
#include "MantidKernel/DateAndTime.h"
#include "MantidGeometry/IDetector.h"
#include "MantidKernel/CPUTimer.h"
#include "MantidKernel/VisibleWhenProperty.h"
#include "MantidDataObjects/Workspace2D.h"

#include <algorithm>
#include <sstream>

namespace Mantid
{
namespace DataHandling
{
// Register the algorithm into the AlgorithmFactory
DECLARE_ALGORITHM(LoadEventPreNexus2)
DECLARE_LOADALGORITHM(LoadEventPreNexus2)

using namespace Kernel;
using namespace API;
using namespace Geometry;
using boost::posix_time::ptime;
using boost::posix_time::time_duration;
using DataObjects::EventList;
using DataObjects::EventWorkspace;
using DataObjects::EventWorkspace_sptr;
using DataObjects::TofEvent;
using std::cout;
using std::endl;
using std::ifstream;
using std::runtime_error;
using std::stringstream;
using std::string;
using std::vector;

/*
 * constants for locating the parameters to use in execution
 */
static const string EVENT_PARAM("EventFilename");
static const string PULSEID_PARAM("PulseidFilename");
static const string MAP_PARAM("MappingFilename");
static const string PID_PARAM("SpectrumList");
static const string PARALLEL_PARAM("UseParallelProcessing");
static const string BLOCK_SIZE_PARAM("LoadingBlockSize");
static const string OUT_PARAM("OutputWorkspace");
static const string PULSE_EXT("pulseid.dat");
static const string EVENT_EXT("event.dat");
/// Default number of items to read in from any of the files.
static const size_t DEFAULT_BLOCK_SIZE = 1000000; // 100,000
/// All pixel ids with matching this mask are errors.
static const PixelType ERROR_PID = 0x80000000;
/// The maximum possible tof as native type
static const uint32_t MAX_TOF_UINT32 = std::numeric_limits<uint32_t>::max();
/// Conversion factor between 100 nanoseconds and 1 microsecond.
static const double TOF_CONVERSION = .1;
/// Conversion factor between picoColumbs and microAmp*hours
static const double CURRENT_CONVERSION = 1.e-6 / 3600.;


//-----------------------------------------------------------------------------
//Statistic Functions

static string getRunnumber(const string &filename) {
  // start by trimming the filename
  string runnumber(Poco::Path(filename).getBaseName());

  if (runnumber.find("neutron") >= string::npos)
    return "0";

  std::size_t left = runnumber.find("_");
  std::size_t right = runnumber.find("_", left+1);

  return runnumber.substr(left+1, right-left-1);
}

static string generatePulseidName(string eventfile)
{
  size_t start;
  string ending;

  // normal ending
  ending = "neutron_event.dat";
  start = eventfile.find(ending);
  if (start != string::npos)
    return eventfile.replace(start, ending.size(), "pulseid.dat");

  // split up event files - yes this is copy and pasted code
  ending = "neutron0_event.dat";
  start = eventfile.find(ending);
  if (start != string::npos)
    return eventfile.replace(start, ending.size(), "pulseid0.dat");

  ending = "neutron1_event.dat";
  start = eventfile.find(ending);
  if (start != string::npos)
    return eventfile.replace(start, ending.size(), "pulseid1.dat");

  return "";
}

static string generateMappingfileName(EventWorkspace_sptr &wksp)
{//
  // get the name of the mapping file as set in the parameter files
  std::vector<string> temp = wksp->getInstrument()->getStringParameter("TS_mapping_file");
  if (temp.empty())
    return "";
  string mapping = temp[0];
  // Try to get it from the working directory
  Poco::File localmap(mapping);
  if (localmap.exists())
    return mapping;

  // Try to get it from the data directories
  string dataversion = Mantid::API::FileFinder::Instance().getFullPath(mapping);
  if (!dataversion.empty())
    return dataversion;

  // get a list of all proposal directories
  string instrument = wksp->getInstrument()->getName();
  Poco::File base("/SNS/" + instrument + "/");
  // try short instrument name
  if (!base.exists())
  {
    instrument = Kernel::ConfigService::Instance().getInstrument(instrument).shortName();
    base = Poco::File("/SNS/" + instrument + "/");
    if (!base.exists())
      return "";
  }
  vector<string> dirs; // poco won't let me reuse temp
  base.list(dirs);

  // check all of the proposals for the mapping file in the canonical place
  const string CAL("_CAL");
  const size_t CAL_LEN = CAL.length(); // cache to make life easier
  vector<string> files;
  for (size_t i = 0; i < dirs.size(); ++i) {
    if ( (dirs[i].length() > CAL_LEN)
         && (dirs[i].compare(dirs[i].length() - CAL.length(), CAL.length(), CAL) == 0) ) {
      if (Poco::File(base.path() + "/" + dirs[i] + "/calibrations/" + mapping).exists())
        files.push_back(base.path() + "/" + dirs[i] + "/calibrations/" + mapping);
    }
  }

  if (files.empty())
    return "";
  else if (files.size() == 1)
    return files[0];
  else // just assume that the last one is the right one, this should never be fired
    return *(files.rbegin());
}
//-----------------------------------------------------------------------------

/*
 * Constructor
 */
LoadEventPreNexus2::LoadEventPreNexus2() : Mantid::API::IDataFileChecker(), eventfile(NULL), max_events(0)
{
}

/*
 * Desctructor
 */
LoadEventPreNexus2::~LoadEventPreNexus2()
{
  delete this->eventfile;
}

/*
 * Sets documentation strings for this algorithm
 */
void LoadEventPreNexus2::initDocs()
{
  this->setWikiSummary("Loads SNS raw neutron event data format and stores it in a [[workspace]] ([[EventWorkspace]] class). ");
  this->setOptionalMessage("Loads SNS raw neutron event data format and stores it in a workspace (EventWorkspace class).");
}

//-----------------------------------------------------------------------------
/*
 *  Initialize the algorithm
 */
void LoadEventPreNexus2::init()
{
  // which files to use
  declareProperty(new FileProperty(EVENT_PARAM, "", FileProperty::Load, EVENT_EXT),
      "The name of the neutron event file to read, including its full or relative path. The file typically ends in neutron_event.dat (N.B. case sensitive if running on Linux).");
  declareProperty(new FileProperty(PULSEID_PARAM, "", FileProperty::OptionalLoad, PULSE_EXT),
      "File containing the accelerator pulse information; the filename will be found automatically if not specified.");
  declareProperty(new FileProperty(MAP_PARAM, "", FileProperty::OptionalLoad, ".dat"),
      "File containing the pixel mapping (DAS pixels to pixel IDs) file (typically INSTRUMENT_TS_YYYY_MM_DD.dat). The filename will be found automatically if not specified.");

  // which pixels to load
  declareProperty(new ArrayProperty<int64_t>(PID_PARAM),
      "A list of individual spectra (pixel IDs) to read, specified as e.g. 10:20. Only used if set.");

  BoundedValidator<int> *mustBePositive = new BoundedValidator<int>();
  mustBePositive->setLower(1);
  declareProperty("ChunkNumber", EMPTY_INT(), mustBePositive,
      "If loading the file by sections ('chunks'), this is the section number of this execution of the algorithm.");
  declareProperty("TotalChunks", EMPTY_INT(), mustBePositive->clone(),
      "If loading the file by sections ('chunks'), this is the total number of sections.");
  // TotalChunks is only meaningful if ChunkNumber is set
  // Would be nice to be able to restrict ChunkNumber to be <= TotalChunks at validation
  setPropertySettings("TotalChunks", new VisibleWhenProperty(this, "ChunkNumber", IS_NOT_DEFAULT));

  std::vector<std::string> propOptions;
  propOptions.push_back("Auto");
  propOptions.push_back("Serial");
  propOptions.push_back("Parallel");
  declareProperty("UseParallelProcessing", "Auto",new ListValidator(propOptions),
      "Use multiple cores for loading the data?\n"
      "  Auto: Use serial loading for small data sets, parallel for large data sets.\n"
      "  Serial: Use a single core.\n"
      "  Parallel: Use all available cores.");

  // the output workspace name
  declareProperty(new WorkspaceProperty<IEventWorkspace>(OUT_PARAM,"",Direction::Output),
      "The name of the workspace that will be created, filled with the read-in data and stored in the [[Analysis Data Service]].");

  return;
}


/*
 * Execute the algorithm
 * 1. check all the inputs
 * 2. create an EventWorkspace object
 * 3. process events
 * 4. set out output
 */
void LoadEventPreNexus2::exec()
{
  // 1. Check!
  // a. Check 'chunk' properties are valid, if set
  const int chunks = getProperty("TotalChunks");
  if ( !isEmpty(chunks) && int(getProperty("ChunkNumber")) > chunks )
  {
    throw std::out_of_range("ChunkNumber cannot be larger than TotalChunks");
  }

  prog = new Progress(this,0.0,1.0,100);

  // b. what spectra (pixel ID's) to load
  this->spectra_list = this->getProperty(PID_PARAM);

  // c. the event file is needed in case the pulseid fileanme is empty
  string event_filename = this->getPropertyValue(EVENT_PARAM);
  string pulseid_filename = this->getPropertyValue(PULSEID_PARAM);
  bool throwError = true;
  if (pulseid_filename.empty())
  {
    pulseid_filename = generatePulseidName(event_filename);
    if (!pulseid_filename.empty())
    {
      if (Poco::File(pulseid_filename).exists())
      {
        this->g_log.information() << "Found pulseid file " << pulseid_filename << std::endl;
        throwError = false;
      }
      else
      {
        pulseid_filename = "";
      }

    }
  }

  // 2. Read input files
  prog->report("Loading Pulse ID file");
  this->readPulseidFile(pulseid_filename, throwError);
  prog->report("Loading Event File");
  this->openEventFile(event_filename);

  // 3. Create otuput Workspace
  prog->report("Creating output workspace");
  // a. prep the output workspace
  EventWorkspace_sptr localWorkspace = EventWorkspace_sptr(new EventWorkspace());
  // b. Make sure to initialize. We can use dummy numbers for arguments, for event workspace it doesn't matter
  localWorkspace->initialize(1,1,1);
  // c. Set the units
  localWorkspace->getAxis(0)->unit() = UnitFactory::Instance().create("TOF");
  localWorkspace->setYUnit("Counts");
  // d. Set title
  localWorkspace->setTitle("Dummy Title");

  // 4. Properties:
  // a. Add the run_start property (Use the first pulse as the run_start time)
  if (this->num_pulses > 0)
  {
    // add the start of the run as a ISO8601 date/time string. The start = the first pulse.
    // (this is used in LoadInstrument to find the right instrument file to use).
    localWorkspace->mutableRun().addProperty("run_start", pulsetimes[0].to_ISO8601_string(), true );
  }

  // b. determine the run number and add it to the run object
  localWorkspace->mutableRun().addProperty("run_number", getRunnumber(event_filename));

  // 5. Get the instrument!
  prog->report("Loading Instrument");
  this->runLoadInstrument(event_filename, localWorkspace);

  // 6. load the mapping file
  prog->report("Loading Mapping File");
  string mapping_filename = this->getPropertyValue(MAP_PARAM);
  if (mapping_filename.empty()) {
    mapping_filename = generateMappingfileName(localWorkspace);
    if (!mapping_filename.empty())
      this->g_log.information() << "Found mapping file \"" << mapping_filename << "\"" << std::endl;
  }
  this->loadPixelMap(mapping_filename);

  // 7. Process the events into pixels
  this->procEvents(localWorkspace);

  // 8. Save output
  this->setProperty<IEventWorkspace_sptr>(OUT_PARAM, localWorkspace);

  // 9. Fast frequency sample environment data
  std::vector<size_t> numpixels;
  std::set<PixelType>::iterator pit;
  std::map<PixelType, size_t>::iterator mit;
  for (pit=this->wrongdetids.begin(); pit!=this->wrongdetids.end(); ++pit){
    // a. pixel ID -> index
    PixelType pid = *pit;
    mit = this->wrongdetidmap.find(pid);
    size_t mindex = mit->second;
    if (mindex > this->wrongdetid_abstimes.size()){
      g_log.error() << "Wrong Index " << mindex << " for Pixel " << pid << std::endl;
      throw std::invalid_argument("Wrong array index for pixel from map");
    }

    // b. Create output workspace2D
    // i. Output information in workspaces
    size_t nbins = this->wrongdetid_abstimes[mindex].size();
    // ii.Create workspace
    DataObjects::Workspace2D_sptr ws2d = boost::dynamic_pointer_cast<DataObjects::Workspace2D>(
        API::WorkspaceFactory::Instance().create("Workspace2D", 1, nbins, nbins));
    // iii. set data
    double y0 = 0;
    for (size_t k = 0; k < nbins; k ++){
      ws2d->dataX(0)[k] = static_cast<double>(this->wrongdetid_abstimes[mindex][k]);
      ws2d->dataY(0)[k] = y0;
      y0 = 1.0-y0;
    }

    // c. Set up otuput Workspace2D
    std::stringstream ssws;
    ssws << "OutputPixel" << pid << "Workspace";
    std::string outputtitle = ssws.str();
    std::stringstream ssname;
    ssname << "Pixel" << pid;
    std::string wsname = ssname.str();
    g_log.notice() << "Pixel " << pid << ": OutputWorkspace(" << outputtitle << ") <-- " << wsname << std::endl;
    this->declareProperty(new WorkspaceProperty<DataObjects::Workspace2D>(outputtitle, wsname, Direction::Output),
        "Set the output sample environment data record");
    this->setProperty(outputtitle, ws2d);

    // z. Check workspace
    //    TODO  This will be removed later
    g_log.error() << "Test Only!  Delete this section later!" << std::endl;
    size_t maxcounts = 3;
    size_t counts = 0;
    std::set<int64_t> deltas;
    // i.  do statistic
    size_t numzerodeltat = 0;
    size_t numfreq = 0;
    int64_t sumdeltat = 0;
    for (size_t k = 1; k < nbins; k ++){
      int64_t deltat = this->wrongdetid_abstimes[mindex][k]-this->wrongdetid_abstimes[mindex][k-1];
      deltas.insert(deltat);
      if (deltat == 0){
        numzerodeltat ++;
        if (counts < maxcounts)
        {
          g_log.error() << "Delta T = 0:  T = " << this->wrongdetid_abstimes[mindex][k] << std::endl;
          counts ++;
        }
      } else {
        numfreq ++;
        sumdeltat += deltat;
      }
    }
    double frequency = 1.0/(static_cast<double>(sumdeltat)/static_cast<double>(numfreq)*1.0E-9);
    size_t numpt = this->wrongdetid_abstimes[mindex].size();
    g_log.notice() << "Frequency = " << frequency << "  Number of pixels with zero Delta T = " << numzerodeltat << std::endl;
    int64_t t0 = this->wrongdetid_abstimes[mindex][0];
    int64_t tf = this->wrongdetid_abstimes[mindex][numpt-1];
    g_log.notice() << "T0 = " << t0 << ", Tf = " << tf << "  Delta T = " << tf-t0 << " ns"<< std::endl;
    g_log.notice() << "Theoretical number of events = " << static_cast<double>(tf-t0)*frequency*1.0E-9 << std::endl;
    g_log.notice() << "Number of various delta T = " << deltas.size() << std::endl;
    std::set<int64_t>::iterator dtit;
    for (dtit=deltas.begin(); dtit!=deltas.end(); ++dtit){
      g_log.notice() << *dtit <<", ";
    }
    g_log.notice() << std::endl;

  } //ENDFOR pit

  // -1. Cleanup
  delete prog;

  return;
} // exec()

/**
 * Returns the name of the property to be considered as the Filename for Load
 * @returns A character string containing the file property's name
 */
const char * LoadEventPreNexus2::filePropertyName() const
{
  return EVENT_PARAM.c_str();
}

/**
 * Do a quick file type check by looking at the first 100 bytes of the file
 *  @param filePath :: path of the file including name.
 *  @param nread :: no.of bytes read
 *  @param header :: The first 100 bytes of the file as a union
 *  @return true if the given file is of type which can be loaded by this algorithm
 */
bool LoadEventPreNexus2::quickFileCheck(const std::string& filePath,size_t,const file_header&)
{
  std::string ext = extension(filePath);
  return (ext.rfind("dat") != std::string::npos);
}

/**
 * Checks the file by opening it and reading few lines
 *  @param filePath :: name of the file inluding its path
 *  @return an integer value how much this algorithm can load the file
 */
int LoadEventPreNexus2::fileCheck(const std::string& filePath)
{
  int confidence(0);
  try
  {
    // If this looks like a binary file where the exact file length is a multiple
    // of the DasEvent struct then we're probably okay.
    // NOTE: Putting this on the stack gives a segfault on Windows when for some reason
    // the BinaryFile destructor is called twice! I'm sure there is something I don't understand there
    // but heap allocation seems to work so go for that.
    BinaryFile<DasEvent> *event_file = new BinaryFile<DasEvent>(filePath);
    confidence = 80;
    delete event_file;
  }
  catch(std::runtime_error &)
  {
    // This BinaryFile constructor throws if the file does not contain an
    // exact multiple of the sizeof(DasEvent) objects.
  }
  return confidence;
}



//-----------------------------------------------------------------------------
/** Load the instrument geometry File
 *  @param eventfilename :: Used to pick the instrument.
 *  @param localWorkspace :: MatrixWorkspace in which to put the instrument geometry
 */
void LoadEventPreNexus2::runLoadInstrument(const std::string &eventfilename, MatrixWorkspace_sptr localWorkspace)
{
  // determine the instrument parameter file
  string instrument = Poco::Path(eventfilename).getFileName();
  size_t pos = instrument.rfind("_"); // get rid of 'event.dat'
  pos = instrument.rfind("_", pos-1); // get rid of 'neutron'
  pos = instrument.rfind("_", pos-1); // get rid of the run number
  instrument = instrument.substr(0, pos);

  // do the actual work
  IAlgorithm_sptr loadInst= createSubAlgorithm("LoadInstrument");

  // Now execute the sub-algorithm. Catch and log any error, but don't stop.
  loadInst->setPropertyValue("InstrumentName", instrument);
  loadInst->setProperty<MatrixWorkspace_sptr> ("Workspace", localWorkspace);
  loadInst->setProperty("RewriteSpectraMap", false);
  loadInst->executeAsSubAlg();

  // Populate the instrument parameters in this workspace - this works around a bug
  localWorkspace->populateInstrumentParameters();
}



//-----------------------------------------------------------------------------
/** Turn a pixel id into a "corrected" pixelid and period.
 *
 */
inline void LoadEventPreNexus2::fixPixelId(PixelType &pixel, uint32_t &period) const
{
  if (!this->using_mapping_file) { // nothing to do here
    period = 0;
    return;
  }

  PixelType unmapped_pid = pixel % this->numpixel;
  period = (pixel - unmapped_pid) / this->numpixel;
  pixel = this->pixelmap[unmapped_pid];
}

//-----------------------------------------------------------------------------
/** Process the event file properly.
 * @param workspace :: EventWorkspace to write to.
 */
void LoadEventPreNexus2::procEvents(DataObjects::EventWorkspace_sptr & workspace)
{
  this->num_error_events = 0;
  this->num_good_events = 0;
  this->num_ignored_events = 0;
  this->num_bad_events = 0;
  this->num_wrongdetid_events = 0;

  //Default values in the case of no parallel
  size_t loadBlockSize = Mantid::Kernel::DEFAULT_BLOCK_SIZE * 2;

  shortest_tof = static_cast<double>(MAX_TOF_UINT32) * TOF_CONVERSION;
  longest_tof = 0.;

  //Initialize progress reporting.
  size_t numBlocks = (max_events + loadBlockSize - 1) / loadBlockSize;

  // We want to pad out empty pixels.
  detid2det_map detector_map;
  workspace->getInstrument()->getDetectors(detector_map);

  // -------------- Determine processing mode
  std::string procMode = getProperty("UseParallelProcessing");
  if (procMode == "Serial")
    parallelProcessing = false;
  else if (procMode == "Parallel")
    parallelProcessing = true;
  else
  {
    // Automatic determination. Loading serially (for me) is about 3 million events per second,
    // (which is sped up by ~ x 3 with parallel processing, say 10 million per second, e.g. 7 million events more per seconds).
    // compared to a setup time/merging time of about 10 seconds per million detectors.
    double setUpTime = double(detector_map.size()) * 10e-6;
    parallelProcessing = ((double(max_events) / 7e6) > setUpTime);
    g_log.debug() << (parallelProcessing ? "Using" : "Not using") << " parallel processing." << std::endl;
  }

  // determine maximum pixel id
  detid2det_map::iterator it;
  detid_max = 0; // seems like a safe lower bound
  for (it = detector_map.begin(); it != detector_map.end(); it++)
    if (it->first > detid_max)
      detid_max = it->first;

  // Pad all the pixels
  prog->report("Padding Pixels");
  this->pixel_to_wkspindex.reserve(detid_max+1); //starting at zero up to and including detid_max
  // Set to zero
  this->pixel_to_wkspindex.assign(detid_max+1, 0);
  size_t workspaceIndex = 0;
  for (it = detector_map.begin(); it != detector_map.end(); it++)
  {
    if (!it->second->isMonitor())
    {
      this->pixel_to_wkspindex[it->first] = workspaceIndex;
      EventList & spec = workspace->getOrAddEventList(workspaceIndex);
      spec.addDetectorID(it->first);
      // Start the spectrum number at 1
      spec.setSpectrumNo(specid_t(workspaceIndex+1));
      workspaceIndex += 1;
    }
  }
  workspace->doneAddingEventLists();

  //For slight speed up
  loadOnlySomeSpectra = (this->spectra_list.size() > 0);

  //Turn the spectra list into a map, for speed of access
  for (std::vector<int64_t>::iterator it = spectra_list.begin(); it != spectra_list.end(); it++)
    spectraLoadMap[*it] = true;

  CPUTimer tim;

  // --------------- Create the partial workspaces ------------------------------------------
  // Vector of partial workspaces, for parallel processing.
  std::vector<EventWorkspace_sptr> partWorkspaces;
  std::vector<DasEvent *> buffers;

  /// Pointer to the vector of events
  typedef std::vector<TofEvent> * EventVector_pt;
  /// Bare array of arrays of pointers to the EventVectors
  EventVector_pt ** eventVectors;

  /// How many threads will we use?
  size_t numThreads = 1;
  if (parallelProcessing)
    numThreads = size_t(PARALLEL_GET_MAX_THREADS);


  partWorkspaces.resize(numThreads);
  buffers.resize(numThreads);
  eventVectors = new EventVector_pt *[numThreads];

  PRAGMA_OMP( parallel for if (parallelProcessing) )
  for (int i=0; i < int(numThreads); i++)
  {
    // This is the partial workspace we are about to create (if in parallel)
    EventWorkspace_sptr partWS;
    if (parallelProcessing)
    {
      prog->report("Creating Partial Workspace");
      // Create a partial workspace
      partWS = EventWorkspace_sptr(new EventWorkspace());
      //Make sure to initialize.
      partWS->initialize(1,1,1);
      // Copy all the spectra numbers and stuff (no actual events to copy though).
      partWS->copyDataFrom(*workspace);
      // Push it in the array
      partWorkspaces[i] = partWS;
    }
    else
      partWS = workspace;

    //Allocate the buffers
    buffers[i] = new DasEvent[loadBlockSize];

    // For each partial workspace, make an array where index = detector ID and value = pointer to the events vector
    eventVectors[i] = new EventVector_pt[detid_max+1];
    EventVector_pt * theseEventVectors = eventVectors[i];
    for (detid_t j=0; j<detid_max+1; j++)
    {
      size_t wi = pixel_to_wkspindex[j];
      // Save a POINTER to the vector<tofEvent>
      theseEventVectors[j] = &partWS->getEventList(wi).getEvents();
    }
  }

  g_log.debug() << tim << " to create " << partWorkspaces.size() << " workspaces for parallel loading." << std::endl;


  prog->resetNumSteps( numBlocks, 0.1, 0.8);

  // ---------------------------------- LOAD THE DATA --------------------------
  PRAGMA_OMP( parallel for schedule(dynamic, 1) if (parallelProcessing) )
  for (int blockNum=0; blockNum<int(numBlocks); blockNum++)
  {
    PARALLEL_START_INTERUPT_REGION

    // Find the workspace for this particular thread
    EventWorkspace_sptr ws;
    size_t threadNum = 0;
    if (parallelProcessing)
    {
      threadNum = PARALLEL_THREAD_NUMBER;
      ws = partWorkspaces[threadNum];
    }
    else
      ws = workspace;

    // Get the buffer (for this thread)
    DasEvent * event_buffer = buffers[threadNum];

    // Get the speeding-up array of vector<tofEvent> where index = detid.
    EventVector_pt * theseEventVectors = eventVectors[threadNum];

    // Where to start in the file?
    size_t fileOffset = first_event + (loadBlockSize * blockNum);
    // May need to reduce size of last (or only) block
    size_t current_event_buffer_size =
        ( blockNum == int(numBlocks-1) ) ? ( max_events - (numBlocks-1)*loadBlockSize ) : loadBlockSize;

    // Load this chunk of event data (critical block)
    PARALLEL_CRITICAL( LoadEventPreNexus2_fileAccess )
    {
      current_event_buffer_size = eventfile->loadBlockAt(event_buffer, fileOffset, current_event_buffer_size);
    }

    // This processes the events. Can be done in parallel!
    procEventsLinear(ws, theseEventVectors, event_buffer, current_event_buffer_size, fileOffset);

    // Report progress
    prog->report("Load Event PreNeXus");

    PARALLEL_END_INTERUPT_REGION
  }
  PARALLEL_CHECK_INTERUPT_REGION

  g_log.debug() << tim << " to load the data." << std::endl;


  // ---------------------------------- MERGE WORKSPACES BACK TOGETHER --------------------------
  if (parallelProcessing)
  {
    PARALLEL_START_INTERUPT_REGION
    prog->resetNumSteps( workspace->getNumberHistograms(), 0.8, 0.95);

    size_t memoryCleared = 0;
    MemoryManager::Instance().releaseFreeMemory();

    // Merge all workspaces, index by index.
    PARALLEL_FOR_NO_WSP_CHECK()
    for (int iwi=0; iwi<int(workspace->getNumberHistograms()); iwi++)
    {
      size_t wi = size_t(iwi);

      // The output event list.
      EventList & el = workspace->getEventList(wi);
      el.clear(false);

      // How many events will it have?
      size_t numEvents = 0;
      for (size_t i=0; i<numThreads; i++)
        numEvents += partWorkspaces[i]->getEventList(wi).getNumberEvents();
      // This will avoid too much copying.
      el.reserve(numEvents);

      // Now merge the event lists
      for (size_t i=0; i<numThreads; i++)
      {
        EventList & partEl = partWorkspaces[i]->getEventList(wi);
        el += partEl.getEvents();
        // Free up memory as you go along.
        partEl.clear(false);
      }

      // With TCMalloc, release memory when you accumulate enough to make sense
      PARALLEL_CRITICAL( LoadEventPreNexus2_trackMemory )
      {
        memoryCleared += numEvents;
        if (memoryCleared > 10000000) // ten million events = about 160 MB
        {
          MemoryManager::Instance().releaseFreeMemory();
          memoryCleared = 0;
        }
      }
      prog->report("Merging Workspaces");
    }
    // Final memory release
    MemoryManager::Instance().releaseFreeMemory();
    g_log.debug() << tim << " to merge workspaces together." << std::endl;
    PARALLEL_END_INTERUPT_REGION
  }
  PARALLEL_CHECK_INTERUPT_REGION

  // Delete the buffers for each thread.
  for (size_t i=0; i<numThreads; i++)
  {
    delete [] buffers[i];
    delete [] eventVectors[i];
  }
  delete [] eventVectors;
  //delete [] pulsetimes;

  prog->resetNumSteps( 3, 0.94, 1.00);

  //finalize loading
  prog->report("Deleting Empty Lists");
  if(loadOnlySomeSpectra)
    workspace->deleteEmptyLists();

  prog->report("Setting proton charge");
  this->setProtonCharge(workspace);
  g_log.debug() << tim << " to set the proton charge log." << std::endl;

  //Make sure the MRU is cleared
  workspace->clearMRU();

  //Now, create a default X-vector for histogramming, with just 2 bins.
  Kernel::cow_ptr<MantidVec> axis;
  MantidVec& xRef = axis.access();
  xRef.resize(2);
  xRef[0] = shortest_tof - 1; //Just to make sure the bins hold it all
  xRef[1] = longest_tof + 1;
  workspace->setAllX(axis);
  this->pixel_to_wkspindex.clear();

  // Final process on wrong detector id events
  for (size_t vi = 0; vi < this->wrongdetid_abstimes.size(); vi ++){
    std::sort(this->wrongdetid_abstimes[vi].begin(), this->wrongdetid_abstimes[vi].end());
  }

  // Final message output
  g_log.notice() << "Read " << this->num_good_events << " events + "
      << this->num_error_events << " errors"
      << ". Shortest TOF: " << shortest_tof << " microsec; longest TOF: "
      << longest_tof << " microsec." << std::endl;

  g_log.notice() << "Bad Events = " << this->num_bad_events << "  Events of Wrong Detector = " << this->num_wrongdetid_events << std::endl;
  g_log.notice() << "Number of Wrong Detector IDs = " << this->wrongdetids.size() << std::endl;
  std::set<PixelType>::iterator wit;
  for (wit=this->wrongdetids.begin(); wit!=this->wrongdetids.end(); ++wit){
    g_log.notice() << "Wrong Detector ID : " << *wit << std::endl;
  }
  std::map<PixelType, size_t>::iterator git;
  for (git = this->wrongdetidmap.begin(); git != this->wrongdetidmap.end(); ++git){
    PixelType tmpid = git->first;
    size_t vindex = git->second;
    g_log.notice() << "Pixel " << tmpid << ":  Total number of events = " << this->wrongdetid_abstimes[vindex].size() << std::endl;
  }

  return;
} // End of procEvents

//-----------------------------------------------------------------------------
/** Linear-version of the procedure to process the event file properly.
 * @param workspace :: EventWorkspace to write to.
 * @param arrayOfVectors :: For speed up: this is an array, of size detid_max+1, where the
 *        index is a pixel ID, and the value is a pointer to the vector<tofEvent> in the given EventList.
 * @param event_buffer :: The buffer containing the DAS events
 * @param current_event_buffer_size :: The length of the given DAS buffer
 * @param fileOffset :: Value for an offset into the binary file
 */
void LoadEventPreNexus2::procEventsLinear(DataObjects::EventWorkspace_sptr & /*workspace*/,
    std::vector<TofEvent> ** arrayOfVectors, DasEvent * event_buffer,
    size_t current_event_buffer_size, size_t fileOffset)
{

  //Starting pulse time
  DateAndTime pulsetime;
  int64_t pulse_i = 0;
  int64_t numPulses = static_cast<int64_t>(num_pulses);
  if (event_indices.size() < num_pulses)
  {
    g_log.warning() << "Event_indices vector is smaller than the pulsetimes array.\n";
    numPulses = static_cast<int64_t>(event_indices.size());
  }

  size_t local_num_error_events = 0;
  size_t local_num_bad_events = 0;
  size_t local_num_wrongdetid_events = 0;
  size_t local_num_ignored_events = 0;
  size_t local_num_good_events = 0;
  double local_shortest_tof = static_cast<double>(MAX_TOF_UINT32) * TOF_CONVERSION;
  double local_longest_tof = 0.;

  std::map<PixelType, size_t> local_pidindexmap;
  std::vector<std::vector<int64_t> > local_abstimes;

  std::set<PixelType> local_wrongdetids;

  // process the individual events
  for (size_t i = 0; i < current_event_buffer_size; i++)
  {
    DasEvent & temp = *(event_buffer + i);
    PixelType pid = temp.pid;
    bool iswrongdetid = false;

    if ((pid & ERROR_PID) == ERROR_PID) // marked as bad
    {
      local_num_error_events++;
      local_num_bad_events ++;
      continue;
    }

    //Covert the pixel ID from DAS pixel to our pixel ID
    if (this->using_mapping_file)
    {
      PixelType unmapped_pid = pid % this->numpixel;
      pid = this->pixelmap[unmapped_pid];
    }

    // Wrong pixel IDs
    if (pid > static_cast<PixelType>(detid_max))
    {
      iswrongdetid = true;

      local_num_error_events++;
      local_num_wrongdetid_events++;
      local_wrongdetids.insert(pid);
    }

    //Now check if this pid we want to load.
    if (loadOnlySomeSpectra && !iswrongdetid)
    {
      std::map<int64_t, bool>::iterator it;
      it = spectraLoadMap.find(pid);
      if (it == spectraLoadMap.end())
      {
        //Pixel ID was not found, so the event is being ignored.
        local_num_ignored_events++;
        continue;
      }
    }

    // work with the good guys

    //Find the pulse time for this event index
    if (pulse_i < numPulses-1)
    {
      //This is the total offset into the file
      size_t total_i = i + fileOffset;
      //Go through event_index until you find where the index increases to encompass the current index. Your pulse = the one before.
      while (!((total_i >= event_indices[pulse_i]) && (total_i < event_indices[pulse_i+1])) )
      {
        pulse_i++;
        if (pulse_i >= (numPulses-1))
          break;
      }

      //if (pulsetimes[pulse_i] != pulsetime)    std::cout << pulse_i << " at " << pulsetimes[pulse_i] << "\n";

      //Save the pulse time at this index for creating those events
      pulsetime = pulsetimes[pulse_i];
    } // Find pulse time

    double tof = static_cast<double>(temp.tof) * TOF_CONVERSION;

    if (!iswrongdetid){
      // a) Regular events
      TofEvent event(tof, pulsetime);

      //Find the overall max/min tof
      if (tof < local_shortest_tof)
        local_shortest_tof = tof;
      if (tof > local_longest_tof)
        local_longest_tof = tof;

      //The addEventQuickly method does not clear the cache, making things slightly faster.
      //workspace->getEventList(this->pixel_to_wkspindex[pid]).addEventQuickly(event);

      // This is equivalent to workspace->getEventList(this->pixel_to_wkspindex[pid]).addEventQuickly(event);
      // But should be faster as a bunch of these calls were cached.
      arrayOfVectors[pid]->push_back(event);

      // TODO work with period
      local_num_good_events++;

    } else {
      // b) Special events/Wrong detector id
      // i.  get/add index of the entry in map
      std::map<PixelType, size_t>::iterator it;
      it = local_pidindexmap.find(pid);
      size_t theindex = 0;
      if (it == local_pidindexmap.end()){
        // Initialize it!
        size_t newindex = local_abstimes.size();
        local_pidindexmap[pid] = newindex;

        std::vector<int64_t> tempvectime;
        local_abstimes.push_back(tempvectime);

        theindex = newindex;
      } else {
        // existing
        theindex = it->second;
      }

      // ii. calculate and add absolute time
      int64_t abstime = (pulsetime.total_nanoseconds()+int64_t(tof*1000));
      local_abstimes[theindex].push_back(abstime);

      if (abstime == 666977093983629966)
        g_log.error() << "Check Special Event: Pulse ID = " << pulse_i << "  Tof = " << temp.tof << std::endl;

    }

  } // ENDFOR each event

  PARALLEL_CRITICAL( LoadEventPreNexus2_global_statistics )
  {
    this->num_good_events += local_num_good_events;
    this->num_ignored_events += local_num_ignored_events;
    this->num_error_events += local_num_error_events;

    this->num_bad_events += local_num_bad_events;
    this->num_wrongdetid_events += local_num_wrongdetid_events;