Newer
Older
#include "MantidCrystal/IndexPeaks.h"
#include "MantidDataObjects/PeaksWorkspace.h"
#include "MantidGeometry/Crystal/IndexingUtils.h"
#include "MantidGeometry/Crystal/OrientedLattice.h"
#include "MantidKernel/BoundedValidator.h"
namespace Crystal {
// Register the algorithm into the AlgorithmFactory
DECLARE_ALGORITHM(IndexPeaks)
using namespace Mantid::Kernel;
using namespace Mantid::API;
using namespace Mantid::DataObjects;
using namespace Mantid::Geometry;
/** Initialize the algorithm's properties.
*/
void IndexPeaks::init() {
this->declareProperty(make_unique<WorkspaceProperty<PeaksWorkspace>>(
"PeaksWorkspace", "", Direction::InOut),
"Input Peaks Workspace");
auto mustBePositive = boost::make_shared<BoundedValidator<double>>();
mustBePositive->setLower(0.0);
this->declareProperty(
make_unique<PropertyWithValue<double>>("Tolerance", 0.15, mustBePositive,
Direction::Input),
"Indexing Tolerance (0.15)");
this->declareProperty(
make_unique<PropertyWithValue<double>>("ToleranceForSatellite", 0.15,
mustBePositive, Direction::Input),
"Satellite Indexing Tolerance (0.15)");
this->declareProperty("RoundHKLs", true,
"Round H, K and L values to integers");
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
this->declareProperty("CommonUBForAll", false,
"Index all orientations with a common UB");
this->declareProperty(
make_unique<PropertyWithValue<int>>("NumIndexed", 0, Direction::Output),
"Gets set with the number of indexed peaks.");
this->declareProperty(make_unique<PropertyWithValue<double>>(
"AverageError", 0.0, Direction::Output),
"Gets set with the average HKL indexing error.");
this->declareProperty(make_unique<PropertyWithValue<int>>(
"TotalNumIndexed", 0, Direction::Output),
"Gets set with the number of Total indexed peaks.");
this->declareProperty(make_unique<PropertyWithValue<int>>("MainNumIndexed", 0,
Direction::Output),
"Gets set with the number of indexed main peaks.");
this->declareProperty(make_unique<PropertyWithValue<int>>("SateNumIndexed", 0,
Direction::Output),
"Gets set with the number of indexed main peaks.");
this->declareProperty(
make_unique<PropertyWithValue<double>>("MainError", 0.0,
Direction::Output),
"Gets set with the average HKL indexing error of Main Peaks.");
this->declareProperty(
make_unique<PropertyWithValue<double>>("SatelliteError", 0.0,
Direction::Output),
"Gets set with the average HKL indexing error of Satellite Peaks.");
}
/** Execute the algorithm.
*/
void IndexPeaks::exec() {
PeaksWorkspace_sptr ws = this->getProperty("PeaksWorkspace");
if (!ws) {
throw std::runtime_error("Could not read the peaks workspace");
}
OrientedLattice o_lattice = ws->mutableSample().getOrientedLattice();
const Matrix<double> &UB = o_lattice.getUB();
if (!IndexingUtils::CheckUB(UB)) {
throw std::runtime_error(
"ERROR: The stored UB is not a valid orientation matrix");
}
bool round_hkls = this->getProperty("RoundHKLs");
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
bool commonUB = this->getProperty("CommonUBForAll");
std::vector<Peak> &peaks = ws->getPeaks();
size_t n_peaks = ws->getNumberPeaks();
int total_indexed = 0;
int total_main = 0;
int total_sate = 0;
double average_error;
double average_main_error;
double average_sate_error;
double tolerance = this->getProperty("Tolerance");
if (commonUB) {
std::vector<V3D> miller_indices;
std::vector<V3D> q_vectors;
q_vectors.reserve(n_peaks);
for (size_t i = 0; i < n_peaks; i++) {
q_vectors.push_back(peaks[i].getQSampleFrame());
}
total_indexed = IndexingUtils::CalculateMillerIndices(
UB, q_vectors, tolerance, miller_indices, average_error);
for (size_t i = 0; i < n_peaks; i++) {
peaks[i].setHKL(miller_indices[i]);
peaks[i].setIntHKL(V3D(round(miller_indices[i][0]),
round(miller_indices[i][1]),
round(miller_indices[i][2])));
peaks[i].setIntMNP(V3D(0, 0, 0));
}
} else {
double total_error = 0;
double total_main_error = 0;
double total_sate_error = 0;
double satetolerance = this->getProperty("ToleranceForSatellite");
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
// get list of run numbers in this peaks workspace
std::vector<int> run_numbers;
for (size_t i = 0; i < n_peaks; i++) {
int run = peaks[i].getRunNumber();
bool found = false;
size_t k = 0;
while (k < run_numbers.size() && !found) {
if (run == run_numbers[k])
found = true;
else
k++;
}
if (!found)
run_numbers.push_back(run);
}
// index the peaks for each run separately, using a UB matrix optimized for
// that run
for (size_t run_index = 0; run_index < run_numbers.size(); run_index++) {
std::vector<V3D> miller_indices;
std::vector<V3D> q_vectors;
int run = run_numbers[run_index];
for (size_t i = 0; i < n_peaks; i++) {
if (peaks[i].getRunNumber() == run)
q_vectors.push_back(peaks[i].getQSampleFrame());
}
Matrix<double> tempUB(UB);
int num_indexed = 0;
int original_indexed = 0;
double original_error = 0;
original_indexed = IndexingUtils::CalculateMillerIndices(
tempUB, q_vectors, tolerance, miller_indices, original_error);
IndexingUtils::RoundHKLs(miller_indices); // HKLs must be rounded for
// Optimize_UB to work
num_indexed = original_indexed;
average_error = original_error;
bool done = false;
if (num_indexed < 3) // can't optimize without at least 3
{ // peaks
done = true;
}
int iteration = 0;
while (iteration < 4 && !done) // try repeatedly optimizing 4 times
{ // which is usually sufficient
try {
IndexingUtils::Optimize_UB(tempUB, miller_indices, q_vectors);
} catch (...) // If there is any problem, such as too few
{ // independent peaks, just use the original UB
tempUB = UB;
done = true;
num_indexed = IndexingUtils::CalculateMillerIndices(
tempUB, q_vectors, tolerance, miller_indices, average_error);
IndexingUtils::RoundHKLs(miller_indices); // HKLs must be rounded for
// Optimize_UB to work
if (num_indexed < original_indexed) // just use the original UB
{
num_indexed = original_indexed;
average_error = original_error;
done = true;
}
iteration++;
}
g_log.notice() << "Maximum Order: " << o_lattice.getMaxOrder() << '\n';
if (o_lattice.getMaxOrder() ==
0) // If data not modulated, recalculate fractional HKL
{
if (!round_hkls) // If user wants fractional hkls, recalculate them
{
num_indexed = IndexingUtils::CalculateMillerIndices(
tempUB, q_vectors, tolerance, miller_indices, average_error);
}
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
total_indexed += num_indexed;
total_error += average_error * num_indexed;
// tell the user how many were indexed in each run
if (run_numbers.size() > 1) {
g_log.notice() << "Run " << run << ": indexed " << num_indexed
<< " Peaks out of " << q_vectors.size()
<< " with tolerance of " << tolerance << '\n';
g_log.notice() << "Average error in h,k,l for indexed peaks = "
<< average_error << '\n';
}
size_t miller_index_counter = 0;
for (size_t i = 0; i < n_peaks; i++) {
if (peaks[i].getRunNumber() == run) {
peaks[i].setHKL(miller_indices[miller_index_counter]);
peaks[i].setIntHKL(
V3D(round(miller_indices[miller_index_counter][0]),
round(miller_indices[miller_index_counter][1]),
round(miller_indices[miller_index_counter][2])));
peaks[i].setIntMNP(V3D(0, 0, 0));
miller_index_counter++;
}
}
} else {
int ModDim = 0;
int main_indexed = 0;
int sate_indexed = 0;
double main_error = 0;
double sate_error = 0;
int maxOrder = o_lattice.getMaxOrder();
bool CT = o_lattice.getCrossTerm();
V3D offsets1 = o_lattice.getModVec(1);
V3D offsets2 = o_lattice.getModVec(2);
V3D offsets3 = o_lattice.getModVec(3);
if (offsets1 == V3D(0, 0, 0))
throw std::runtime_error("Invalid Modulation Vector");
else if (offsets2 == V3D(0, 0, 0))
ModDim = 1;
else if (offsets3 == V3D(0, 0, 0))
ModDim = 2;
else
ModDim = 3;
IndexingUtils::CalculateMillerIndices(tempUB, q_vectors, 1.0,
miller_indices, average_error);
// Index satellite peaks
size_t miller_index_counter = 0;
for (size_t i = 0; i < n_peaks; i++) {
if (peaks[i].getRunNumber() == run) {
peaks[i].setHKL(miller_indices[miller_index_counter]);
miller_index_counter++;
V3D hkl;
hkl[0] = peaks[i].getH();
hkl[1] = peaks[i].getK();
hkl[2] = peaks[i].getL();
double h_error;
double k_error;
double l_error;
bool suc_indexed = false;
if (IndexingUtils::ValidIndex(hkl, tolerance)) {
peaks[i].setIntHKL(hkl);
peaks[i].setIntMNP(V3D(0, 0, 0));
suc_indexed = true;
main_indexed++;
h_error = fabs(round(hkl[0]) - hkl[0]);
k_error = fabs(round(hkl[1]) - hkl[1]);
l_error = fabs(round(hkl[2]) - hkl[2]);
main_error += h_error + k_error + l_error;
} else if (!CT) {
if (ModDim > 0) {
for (int order = -maxOrder; order <= maxOrder; order++) {
if (order == 0)
continue; // exclude order 0
V3D hkl1(hkl);
hkl1[0] -= order * offsets1[0];
hkl1[1] -= order * offsets1[1];
hkl1[2] -= order * offsets1[2];
if (IndexingUtils::ValidIndex(hkl1, satetolerance)) {
peaks[i].setIntHKL(hkl1);
peaks[i].setIntMNP(V3D(order, 0, 0));
suc_indexed = true;
sate_indexed++;
h_error = fabs(round(hkl1[0]) - hkl1[0]);
k_error = fabs(round(hkl1[1]) - hkl1[1]);
l_error = fabs(round(hkl1[2]) - hkl1[2]);
sate_error += h_error + k_error + l_error;
}
}
if (ModDim > 1) {
for (int order = -maxOrder; order <= maxOrder; order++) {
if (order == 0)
continue; // exclude order 0
V3D hkl1(hkl);
hkl1[0] -= order * offsets2[0];
hkl1[1] -= order * offsets2[1];
hkl1[2] -= order * offsets2[2];
if (IndexingUtils::ValidIndex(hkl1, satetolerance)) {
peaks[i].setIntHKL(hkl1);
peaks[i].setIntMNP(V3D(0, order, 0));
suc_indexed = true;
sate_indexed++;
h_error = fabs(round(hkl1[0]) - hkl1[0]);
k_error = fabs(round(hkl1[1]) - hkl1[1]);
l_error = fabs(round(hkl1[2]) - hkl1[2]);
sate_error += h_error + k_error + l_error;
}
}
if (ModDim > 2) {
for (int order = -maxOrder; order <= maxOrder; order++) {
if (order == 0)
continue; // exclude order 0
V3D hkl1(hkl);
hkl1[0] -= order * offsets3[0];
hkl1[1] -= order * offsets3[1];
hkl1[2] -= order * offsets3[2];
if (IndexingUtils::ValidIndex(hkl1, satetolerance)) {
peaks[i].setIntHKL(hkl1);
peaks[i].setIntMNP(V3D(0, 0, order));
suc_indexed = true;
sate_indexed++;
h_error = fabs(round(hkl1[0]) - hkl1[0]);
k_error = fabs(round(hkl1[1]) - hkl1[1]);
l_error = fabs(round(hkl1[2]) - hkl1[2]);
sate_error += h_error + k_error + l_error;
}
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
}
} else {
if (ModDim == 1) {
for (int order = -maxOrder; order <= maxOrder; order++) {
if (order == 0)
continue; // exclude order 0
V3D hkl1(hkl);
hkl1[0] -= order * offsets1[0];
hkl1[1] -= order * offsets1[1];
hkl1[2] -= order * offsets1[2];
if (IndexingUtils::ValidIndex(hkl1, satetolerance)) {
peaks[i].setIntHKL(hkl1);
peaks[i].setIntMNP(V3D(order, 0, 0));
suc_indexed = true;
sate_indexed++;
h_error = fabs(round(hkl1[0]) - hkl1[0]);
k_error = fabs(round(hkl1[1]) - hkl1[1]);
l_error = fabs(round(hkl1[2]) - hkl1[2]);
sate_error += h_error + k_error + l_error;
}
}
}
if (ModDim == 2) {
for (int m = -maxOrder; m <= maxOrder; m++)
for (int n = -maxOrder; m <= maxOrder; n++) {
if (m == 0 && n == 0)
continue; // exclude 0,0
V3D hkl1(hkl);
hkl1[0] -= m * offsets1[0] + n * offsets2[0];
hkl1[1] -= m * offsets1[1] + n * offsets2[1];
hkl1[2] -= m * offsets1[2] + n * offsets2[2];
if (IndexingUtils::ValidIndex(hkl1, satetolerance)) {
peaks[i].setIntHKL(hkl1);
peaks[i].setIntMNP(V3D(m, n, 0));
suc_indexed = true;
sate_indexed++;
h_error = fabs(round(hkl1[0]) - hkl1[0]);
k_error = fabs(round(hkl1[1]) - hkl1[1]);
l_error = fabs(round(hkl1[2]) - hkl1[2]);
sate_error += h_error + k_error + l_error;
}
}
if (ModDim == 3) {
for (int m = -maxOrder; m <= maxOrder; m++)
for (int n = -maxOrder; m <= maxOrder; n++)
for (int p = -maxOrder; m <= maxOrder; p++) {
if (m == 0 && n == 0 && p == 0)
continue; // exclude 0,0,0
V3D hkl1(hkl);
hkl1[0] -=
m * offsets1[0] + n * offsets2[0] + p * offsets3[0];
hkl1[1] -=
m * offsets1[1] + n * offsets2[1] + p * offsets3[1];
hkl1[2] -=
m * offsets1[2] + n * offsets2[2] + p * offsets3[2];
if (IndexingUtils::ValidIndex(hkl1, satetolerance)) {
peaks[i].setIntHKL(hkl1);
peaks[i].setIntMNP(V3D(m, n, p));
suc_indexed = true;
sate_indexed++;
h_error = fabs(round(hkl1[0]) - hkl1[0]);
k_error = fabs(round(hkl1[1]) - hkl1[1]);
l_error = fabs(round(hkl1[2]) - hkl1[2]);
sate_error += h_error + k_error + l_error;
}
if (!suc_indexed) {
peaks[i].setIntHKL(V3D(0, 0, 0));
peaks[i].setIntMNP(V3D(0, 0, 0));
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
num_indexed = main_indexed + sate_indexed;
total_main += main_indexed;
total_sate += sate_indexed;
total_main_error += main_error / 3;
total_sate_error += sate_error / 3;
total_indexed += main_indexed + sate_indexed;
total_error += main_error / 3 + sate_error / 3;
if (run_numbers.size() > 1) {
g_log.notice() << "Run " << run << ": indexed " << num_indexed
<< " Peaks out of " << q_vectors.size() << '\n';
g_log.notice() << "of which, " << main_indexed
<< " Main Bragg Peaks are indexed with tolerance of "
<< tolerance << ", " << sate_indexed
<< " Satellite Peaks are indexed with tolerance of "
<< satetolerance << '\n';
// g_log.notice() << "Average error in
// h,k,l for indexed main peaks = "
// << main_error << '\n';
// g_log.notice() << "Average error in
// h,k,l for indexed satellite peaks = "
// << sate_error << '\n';
}
}
}
if (total_indexed > 0)
average_error = total_error / total_indexed;
else
average_error = 0;
if (total_main > 0)
average_main_error = total_main_error / total_main;
else
average_main_error = 0;
if (total_sate > 0)
average_sate_error = total_sate_error / total_sate;
else
average_sate_error = 0;
}
if (o_lattice.getMaxOrder() == 0 || commonUB) {
// tell the user how many were indexed overall and the overall average error
g_log.notice() << "ALL Runs: indexed " << total_indexed << " Peaks out of "
<< n_peaks << " with tolerance of " << tolerance << '\n';
g_log.notice() << "Average error in h,k,l for indexed peaks = "
<< average_error << '\n';
// Save output properties
this->setProperty("NumIndexed", total_indexed);
this->setProperty("AverageError", average_error);
// Show the lattice parameters
g_log.notice() << o_lattice << "\n";
} else {
g_log.notice() << "ALL Runs: indexed " << total_indexed << " Peaks out of "
<< n_peaks << " with tolerance of " << tolerance << '\n';
g_log.notice() << "Out of " << total_indexed << " Indexed Peaks "
<< total_main << " are Main Bragg Peaks, and " << total_sate
<< " are satellite peaks " << '\n';
g_log.notice() << "Average error in h,k,l for indexed peaks = "
<< average_error << '\n';
g_log.notice() << "Average error in h,k,l for indexed main peaks = "
<< average_main_error << '\n';
g_log.notice() << "Average error in h,k,l for indexed satellite peaks = "
<< average_sate_error << '\n';
// Save output properties
setProperty("TotalNumIndexed", total_indexed);
setProperty("MainNumIndexed", total_main);
setProperty("SateNumIndexed", total_sate);
setProperty("MainError", average_main_error);
setProperty("SatelliteError", average_sate_error);
// Show the lattice parameters
g_log.notice() << o_lattice << "\n";
}
}
} // namespace Crystal
} // namespace Mantid