"docs/sphinxext/mantiddoc/directives/algorithm.py" did not exist on "d482ab19967ae093feef4a5f1b7aec4e24d37cc3"
Newer
Older
#pylint: disable=no-init,invalid-name
@author Jose Borreguero, NScD
@date October 06, 2013
Copyright © 2007-8 ISIS Rutherford Appleton Laboratory, NScD Oak Ridge National Laboratory & European Spallation Source
This file is part of Mantid.
Mantid is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
Mantid is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
File change history is stored at: <https://github.com/mantidproject/mantid>
Code Documentation is available at: <http://doxygen.mantidproject.org>
'''
from mantid.api import IFunction1D, FunctionFactory
#pylint: disable=too-many-instance-attributes
class DSFinterp1DFit(IFunction1D):
_RegressionTypes = None
_minWindow = None
_InputWorkspaces = None
_LoadErrors = None
_WorkspaceIndex = None
_ParameterValues = None
_fmin = None
_fmax = None
_LocalRegression = None
_RegressionType = None
_RegressionWindow = None
_xvalues = None
_channelgroup = None
def category(self):
return 'QuasiElastic'
def init(self):
'''Declare parameters and attributes that participate in the fitting'''
self.declareParameter('Intensity', 1.0, 'Intensity')
self.declareParameter('TargetParameter', 1.0, 'Target value of the structure factor parameter')
self.declareAttribute('InputWorkspaces','')
self.declareAttribute('LoadErrors', False)
self.declareAttribute('WorkspaceIndex', 0)
self.declareAttribute('ParameterValues', '')
self.declareAttribute('LocalRegression', True)
self.declareAttribute('RegressionType', 'quadratic')
self.declareAttribute('RegressionWindow', 6)
# "private" attributes associated to the declare function attributes
self._InputWorkspaces = None
self._LoadErrors = None
self._WorkspaceIndex = None
self._ParameterValues = None
self._fmin = None
self._fmax = None
self._LocalRegression = None
self._RegressionType = None
self._RegressionTypes = set(['linear','quadratic']) #valid syntaxfor python >= 2.6
self._RegressionWindow = None
self._minWindow = { 'linear':3, 'quadratic':4 }
self._channelgroup = None
self._xvalues = None #energies of the channels
def setAttributeValue(self, name, value):
if name == "InputWorkspaces":
self._InputWorkspaces = value.split()
if ',' in value:
self._InputWorkspaces = [x.strip() for x in value.split(',')]
elif name == 'LoadErrors':
self._LoadErrors= bool(value)
elif name == 'WorkspaceIndex':
self._WorkspaceIndex = int(value)
elif name == 'ParameterValues':
self._ParameterValues = []
self._fmin = 0.0
self._fmax = 0.0
if value:
self._ParameterValues = [ float(f) for f in value.split() ]
self._fmin = min(self._ParameterValues)
self._fmax = max(self._ParameterValues)
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
elif name == 'LocalRegression':
self._LocalRegression = bool(value)
elif name == 'RegressionType':
self._RegressionType = value.lower()
elif name == 'RegressionWindow':
self._RegressionWindow = value
def validateParams(self):
'''Check parameters within expected range'''
intensity = self.getParameterValue('Intensity')
if intensity <=0:
message = 'Parameter Intensity in DSFinterp1DFit must be positive. Got {0} instead'.format(intensity)
logger.error(message)
return None
f = self.getParameterValue('TargetParameter')
if f < self._fmin or f > self._fmax:
message = 'TargetParameter {0} is out of bounds [{1}, {2}]. Applying penalty...'.format(f, self._fmin, self._fmax)
logger.error(message)
return None
return {'Intensity':intensity, 'TargetParameter':f}
def function1D(self, xvals):
''' Fit using the interpolated structure factor '''
p=self.validateParams()
if not p:
return numpy.zeros(len(xvals), dtype=float) # return zeros if parameters not valid
# The first time the function is called requires initialization of the interpolator
# Check consistency of the input
# check InputWorkspaces have at least the workspace index
for w in self._InputWorkspaces:
if mtd[w].getNumberHistograms() <= self._WorkspaceIndex:
message = 'Numer of histograms in Workspace {0} does not allow for workspace index {1}'.format(w,self._WorkspaceIndex)
logger.error(message)
raise IndexError(message)
# check number of input workspaces and parameters is the same
if len(self._ParameterValues) != len(self._InputWorkspaces):
message = 'Number of InputWorkspaces and ParameterValues should be the same.'+\
' Found {0} and {1}, respectively'.format(len(self._InputWorkspaces), len(self._ParameterValues))
logger.error(message)
raise ValueError(message)
# check the regression type is valid
if self._RegressionType not in self._RegressionTypes:
message = 'Regression type {0} not implemented. choose one of {1}'.format(self._RegressionType,
', '.join(self._RegressionTypes))
logger.error(message)
raise NotImplementedError(message)
# check the regression window is appropriate for the regression type selected
if self._RegressionWindow < self._minWindow[self._RegressionType]:
message = 'RegressionWindow must be equal or bigger than '+\
'{0} for regression type {1}'.format(self._minWindow[self._RegressionType], self._RegressionType)
logger.error(message)
raise ValueError(message)
# Initialize the energies of the channels with the first of the input workspaces
self._xvalues = numpy.copy( mtd[ self._InputWorkspaces[0] ].dataX(self._WorkspaceIndex) )
if len(self._xvalues) == 1+ len( mtd[ self._InputWorkspaces[0] ].dataY(self._WorkspaceIndex) ):
self._xvalues = (self._xvalues[1:]+self._xvalues[:-1])/2.0 # Deal with histogram data
# Initialize the channel group
# Load the InputWorkspaces into a group of dynamic structure factors
from dsfinterp.dsf import Dsf
from dsfinterp.dsfgroup import DsfGroup
dsfgroup = DsfGroup()
for idsf in range(nf):
dsf = Dsf()
dsf.SetIntensities( mtd[ self._InputWorkspaces[idsf] ].dataY(self._WorkspaceIndex) )
dsf.errors = None # do not incorporate error data
if self._LoadErrors:
dsf.SetErrors(mtd[ self._InputWorkspaces[idsf] ].dataE(self._WorkspaceIndex))
dsf.SetFvalue( self._ParameterValues[idsf] )
dsfgroup.InsertDsf(dsf)
from dsfinterp.channelgroup import ChannelGroup
self._channelgroup = ChannelGroup()
self._channelgroup.InitFromDsfGroup(dsfgroup)
if self._LocalRegression:
self._channelgroup.InitializeInterpolator(running_regr_type=self._RegressionType, windowlength=self._RegressionWindow)
else:
self._channelgroup.InitializeInterpolator(windowlength=0)
# channel group has been initialized, so evaluate the interpolator
dsf = self._channelgroup(p['TargetParameter'])
# Linear interpolation between the energies of the channels and the xvalues we require
# NOTE: interpolator evaluates to zero for any of the xvals outside of the domain defined by self._xvalues
intensities_interpolator = scipy.interpolate.interp1d(self._xvalues, p['Intensity']*dsf.intensities, kind='linear')
return intensities_interpolator(xvals) # can we pass by reference?
# Required to have Mantid recognize the new function
import dsfinterp
FunctionFactory.subscribe(DSFinterp1DFit)
except ImportError:
logger.debug('Failed to subscribe fit function DSFinterp1DFit. '+\
'Python package dsfinterp may be missing (https://pypi.python.org/pypi/dsfinterp)')