Newer
Older
#include "MantidQtCustomInterfaces/Muon/ALCBaselineModellingModel.h"
#include "MantidQtCustomInterfaces/Muon/ALCHelper.h"
#include "MantidAPI/AlgorithmManager.h"
#include "MantidAPI/FunctionFactory.h"
#include "MantidAPI/TextAxis.h"
#include "MantidAPI/TableRow.h"
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
using namespace Mantid::API;
namespace MantidQt
{
namespace CustomInterfaces
{
void ALCBaselineModellingModel::fit(IFunction_const_sptr function, const std::vector<Section>& sections)
{
// Create a copy of the data
IAlgorithm_sptr clone = AlgorithmManager::Instance().create("CloneWorkspace");
clone->setChild(true);
clone->setProperty("InputWorkspace", boost::const_pointer_cast<MatrixWorkspace>(m_data));
clone->setProperty("OutputWorkspace", "__NotUsed__");
clone->execute();
Workspace_sptr cloned = clone->getProperty("OutputWorkspace");
MatrixWorkspace_sptr dataToFit = boost::dynamic_pointer_cast<MatrixWorkspace>(cloned);
assert(dataToFit); // CloneWorkspace should take care of that
disableUnwantedPoints(dataToFit, sections);
IFunction_sptr funcToFit =
FunctionFactory::Instance().createInitialized(function->asString());
IAlgorithm_sptr fit = AlgorithmManager::Instance().create("Fit");
fit->setChild(true);
fit->setProperty("Function", funcToFit);
fit->setProperty("InputWorkspace", dataToFit);
fit->setProperty("CreateOutput", true);
fit->execute();
MatrixWorkspace_sptr fitOutput = fit->getProperty("OutputWorkspace");
IAlgorithm_sptr extract = AlgorithmManager::Instance().create("ExtractSingleSpectrum");
extract->setChild(true);
extract->setProperty("InputWorkspace", fitOutput);
extract->setProperty("WorkspaceIndex", 2);
extract->setProperty("OutputWorkspace", "__NotUsed__");
extract->execute();
m_correctedData = extract->getProperty("OutputWorkspace");
emit correctedDataChanged();
m_fittedFunction = FunctionFactory::Instance().createInitialized(funcToFit->asString());
emit fittedFunctionChanged();
m_sections = sections;
void ALCBaselineModellingModel::setData(MatrixWorkspace_const_sptr data)
{
m_data = data;
emit dataChanged();
}
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
/**
* Disable points in the workpsace in the way that points which are not included in any of specified
* sections are not used when fitting given workspace
* @param ws :: Workspace to disable points in
* @param sections :: Section we want to use for fitting
*/
void ALCBaselineModellingModel::disableUnwantedPoints(MatrixWorkspace_sptr ws,
const std::vector<IALCBaselineModellingModel::Section>& sections)
{
// Whether point with particular index should be disabled
std::vector<bool> toDisable(ws->blocksize(), true);
// Find points which are in at least one section, and exclude them from disable list
for (size_t i = 0; i < ws->blocksize(); ++i)
{
for (auto it = sections.begin(); it != sections.end(); ++it)
{
if ( ws->dataX(0)[i] >= it->first && ws->dataX(0)[i] <= it->second )
{
toDisable[i] = false;
break; // No need to check other sections
}
}
}
// XXX: Points are disabled by settings their errors to very high value. This makes those
// points to have very low weights during the fitting, effectively disabling them.
const double DISABLED_ERR = std::numeric_limits<double>::max();
// Disable chosen points
for (size_t i = 0; i < ws->blocksize(); ++i)
{
if (toDisable[i])
{
ws->dataE(0)[i] = DISABLED_ERR;
}
}
}
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
MatrixWorkspace_sptr ALCBaselineModellingModel::exportWorkspace()
{
IAlgorithm_sptr clone = AlgorithmManager::Instance().create("CloneWorkspace");
clone->setChild(true);
clone->setProperty("InputWorkspace", boost::const_pointer_cast<MatrixWorkspace>(m_data));
clone->setProperty("OutputWorkspace", "__NotUsed");
clone->execute();
Workspace_sptr cloneResult = clone->getProperty("OutputWorkspace");
Workspace_sptr baseline = ALCHelper::createWsFromFunction(m_fittedFunction, m_data->readX(0));
IAlgorithm_sptr join1 = AlgorithmManager::Instance().create("ConjoinWorkspaces");
join1->setChild(true);
join1->setProperty("InputWorkspace1", cloneResult);
join1->setProperty("InputWorkspace2", baseline);
join1->setProperty("CheckOverlapping", false);
join1->execute();
MatrixWorkspace_sptr join1Result = join1->getProperty("InputWorkspace1");
IAlgorithm_sptr join2 = AlgorithmManager::Instance().create("ConjoinWorkspaces");
join2->setChild(true);
join2->setProperty("InputWorkspace1", join1Result);
join2->setProperty("InputWorkspace2", boost::const_pointer_cast<MatrixWorkspace>(m_correctedData));
join2->setProperty("CheckOverlapping", false);
join2->execute();
MatrixWorkspace_sptr result = join2->getProperty("InputWorkspace1");
TextAxis* yAxis = new TextAxis(result->getNumberHistograms());
yAxis->setLabel(0,"Data");
yAxis->setLabel(1,"Baseline");
yAxis->setLabel(2,"Corrected");
result->replaceAxis(1,yAxis);
return result;
}
ITableWorkspace_sptr ALCBaselineModellingModel::exportSections()
{
ITableWorkspace_sptr table = WorkspaceFactory::Instance().createTable("TableWorkspace");
table->addColumn("double", "Start X");
table->addColumn("double", "End X");
for(auto it = m_sections.begin(); it != m_sections.end(); ++it)
{
TableRow newRow = table->appendRow();
newRow << it->first << it->second;
}
return table;
}
ITableWorkspace_sptr ALCBaselineModellingModel::exportModel()
{
ITableWorkspace_sptr table = WorkspaceFactory::Instance().createTable("TableWorkspace");
table->addColumn("str", "Function");
TableRow newRow = table->appendRow();
newRow << m_fittedFunction->asString();
return table;
}
} // namespace CustomInterfaces
} // namespace Mantid