Newer
Older
#pylint: disable=no-init,invalid-name
from mantid.api import PythonAlgorithm, AlgorithmFactory, ITableWorkspaceProperty, WorkspaceFactory,\
FileProperty, FileAction, MatrixWorkspaceProperty
from mantid.kernel import Direction
_OUTPUTLEVEL = "NOOUTPUT"
class LoadFullprofFile(PythonAlgorithm):
""" Create the input TableWorkspaces for LeBail Fitting
"""
def category(self):
"""
"""
return "Diffraction;Utility"
def name(self):
"""
"""
return "LoadFullprofFile"
def summary(self):
""" Return summary
"""
return "Load file generated by Fullprof."
def PyInit(self):
""" Declare properties
self.declareProperty(FileProperty("Filename","", FileAction.Load, ['.hkl', '.prf', '.dat']),\
"Name of [http://www.ill.eu/sites/fullprof/ Fullprof] .hkl or .prf file.")
#self.declareProperty("Bank", 1, "Bank ID for output if there are more than one bank in .irf file.")
self.declareProperty(ITableWorkspaceProperty("PeakParameterWorkspace", "", Direction.Output),\
"Name of table workspace containing peak parameters from .hkl file.")
self.declareProperty(MatrixWorkspaceProperty("OutputWorkspace", "", Direction.Output),\
"Name of data workspace containing the diffraction pattern in .prf file. ")
return
def PyExec(self):
""" Main Execution Body
"""
# 1. Properties
fpfilename = self.getPropertyValue("Filename")
# 2. Import
if fpfilename.lower().endswith(".hkl") is True:
# (.hkl) file
self._tableWS = self._loadFPHKLFile(fpfilename)
self._dataWS = self._makeEmptyDataWorkspace()
elif fpfilename.lower().endswith(".prf") is True:
self._tableWS, self._dataWS= self._loadFullprofPrfFile(fpfilename)
elif fpfilename.lower().endswith(".dat") is True:
# (.dat) file: Fullprof data file
self._tableWS, self._dataWS = self._loadFullprofDataFile(fpfilename)
else:
raise NotImplementedError("File %s is neither .hkl nor .prf. It is not supported." % (fpfilename))
# 3. Export
self.setProperty("PeakParameterWorkspace", self._tableWS)
self.setProperty("OutputWorkspace", self._dataWS)
return
def _loadFPHKLFile(self, filename):
""" Load Fullprof .hkl file to a TableWorkspace
"""
# 1. Import to a dictionary
hkldict = self._importFullprofHKLFile(filename)
# 2. Create workspace from dictionary
peakws = self._createReflectionWorkspace(hkldict)
return peakws
def _importFullprofHKLFile(self, hklfilename):
""" Import Fullprof's .hkl file
"""
import math
# 1. Import file
try:
hklfile = open(hklfilename, "r")
lines = hklfile.readlines()
hklfile.close()
except IOError:
raise IOError("Error to open/read Fullprof .hkl file %s" % (hklfilename))
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# 2. Parse
hkldict = {}
for line in lines:
# a) Clean & split
line = line.strip()
if len(line) == 0:
continue
terms = line.split()
# b) parse
if not terms[0].isdigit():
# Comment line
continue
h = int(terms[0])
k = int(terms[1])
l = int(terms[2])
if len(terms) >= 9:
dsp = float(terms[3])
tof = float(terms[4])
alpha = float(terms[5])
beta = float(terms[6])
sigma2 = float(terms[7])
gamma2 = float(terms[8])
else:
dsp = 0.0
tof = 0.0
alpha = 0.0
beta = 0.0
sigma2 = 0.0
gamma2 = 0.0
fwhm = 1.0
if len(terms) >= 13:
fwhm = float(terms[12])
elif len(terms) >= 9:
fwhm = math.sqrt(sigma2)*2.0
dkey = (h, k, l)
if hkldict.has_key(dkey):
if _OUTPUTLEVEL == "INFORMATION":
self.warning("Warning! Duplicate HKL %d, %d, %d" % (h, k, l))
continue
if fwhm < 1.0E-5:
# Peak width is too small/annihilated peak
if _OUTPUTLEVEL == "INFORMATION":
self.log.information("Peak (%d, %d, %d) has an unreasonable small FWHM. Peak does not exist. " % (h, k, l))
continue
hkldict[dkey] = {}
hkldict[dkey]["dsp"] = dsp
hkldict[dkey]["tof"] = tof
hkldict[dkey]["alpha"] = alpha
hkldict[dkey]["beta"] = beta
hkldict[dkey]["sigma2"] = sigma2
hkldict[dkey]["gamma2"] = gamma2
hkldict[dkey]["FWHM"] = fwhm
# ENDFOR: line
self.log().information("Import Fullprof reflection file %s successfully. " % (hklfilename))
return hkldict
def _createReflectionWorkspace(self, hkldict):
""" Create TableWorkspace containing reflections and etc.
"""
# 1. Set up columns
tablews = WorkspaceFactory.createTable()
tablews.addColumn("int", "H")
tablews.addColumn("int", "K")
tablews.addColumn("int", "L")
tablews.addColumn("double", "Alpha")
tablews.addColumn("double", "Beta")
tablews.addColumn("double", "Sigma2")
tablews.addColumn("double", "Gamma")
tablews.addColumn("double", "FWHM")
tablews.addColumn("double", "PeakHeight")
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# 2. Add rows
for hkl in sorted(hkldict.keys()):
pardict = hkldict[hkl]
tablews.addRow([hkl[0], hkl[1], hkl[2], pardict["alpha"], pardict["beta"], pardict["sigma2"], pardict["gamma2"], pardict["FWHM"], 1.0])
# ENDFOR
return tablews
def _loadFullprofPrfFile(self, prffilename):
""" Load Fullprof .prf file
"""
# 1. Parse the file to dictionary
infodict, data = self._parseFullprofPrfFile(prffilename)
# 2. Export information to table file
tablews = WorkspaceFactory.createTable()
tablews.addColumn("str", "Name")
tablews.addColumn("double", "Value")
for parname in infodict.keys():
parvalue = infodict[parname]
tablews.addRow([parname, parvalue])
# 3. Export the data workspace
datasize = len(data)
print "Data Size = ", datasize
dataws = WorkspaceFactory.create("Workspace2D", 4, datasize, datasize)
for i in xrange(datasize):
for j in xrange(4):
dataws.dataX(j)[i] = data[i][0]
dataws.dataY(j)[i] = data[i][j+1]
dataws.dataE(j)[i] = 1.0
return (tablews, dataws)
def _parseFullprofPrfFile(self, filename):
""" Parse Fullprof .prf file to a information dictionary and a data set (list of list)
"""
try:
pfile = open(filename, "r")
except IOError:
raise NotImplementedError("Unable to open .prf file %s" % (filename))
rawlines = pfile.readlines()
lines = []
for l in rawlines:
line = l.strip()
if len(line) > 0:
lines.append(line)
infodict = {}
dataset = []
infoline = lines[0]
if infoline.count("CELL:") == 1:
terms = infoline.split("CELL:")[1].split()
a = float(terms[0])
b = float(terms[1])
c = float(terms[2])
alpha = float(terms[3])
beta = float(terms[4])
gamma = float(terms[5])
infodict["A"] = float(a)
infodict["B"] = float(b)
infodict["C"] = float(c)
infodict["Alpha"] = float(alpha)
infodict["Beta"] = float(beta )
infodict["Gamma"] = float(gamma)
#if infoline.count("SPGR:") == 1:
# terms = infoline.split("SPGR:")
# spacegroup = terms[1].strip()
# infodict["SpaceGroup"] = spacegroup
firstline = -1
for i in xrange(1, len(lines)):
break
if firstline < 0:
raise NotImplementedError("File format is incorrect. Unable to locate data title line")
# Parse header line: T.O.F. Yobs Ycal Yobs-Ycal Backg Bragg ...
# to determine how the data line look alike (==5 or >= 5)
headerterms = dataheader.split()
dataperline = 5
# TOF., ... h k l ...
reflectionperline = len(headerterms)-5+3
for i in xrange(firstline, len(lines)):
line = lines[i].strip()
if len(line) == 0: # empty line
if line.count(")") == 0 and line.count("(") == 0:
terms = line.split()
if len(terms) != 5:
self.log().warning("Pure data line %d (%s) has irregular number of data points" % (i, line))
continue
x = float(terms[0])
yobs = float(terms[1])
ycal = float(terms[2])
ydif = float(terms[3])
ybak = float(terms[4])
dataset.append([x, yobs, ycal, ydif, ybak])
count += 1
elif line.count(")") == 1 and line.count("(") == 1:
# A line can be either pure reflection line or a combined data/reflection line
# remove '(' and ')'
newline = re.sub('[()]', ' ', line)
# Pure reflection line
tofh = float(terms[0])
hklstr = line.split(")")[1].split(")")[0].strip()
infodict[hklstr] = tofh
else:
# Mixed line: least number of items: data(5) + TOF+hkl = 9
yobs = float(terms[1])
ycal = float(terms[2])
ydif = float(terms[3])
ybak = float(terms[4])
dataset.append([x, yobs, ycal, ydif, ybak])
count += 1
raise NotImplementedError("Need a sample line of this use case.")
hklstr = line.split(")")[1].split(")")[0].strip()
infodict[hklstr] = tofh
# ENDIFELSE (terms)
else:
self.log().warning("%d-th line (%s) is not well-defined." % (i, line))
# ENDIF-ELIF-ELSE (line.count)
# ENDFOR
print "Data set counter = ", count
return (infodict, dataset)
def _makeEmptyDataWorkspace(self):
""" Make an empty data workspace (Workspace2D)
"""
dataws = WorkspaceFactory.create("Workspace2D", 1, 1, 1)
return dataws
def _loadFullprofDataFile(self, datafilename):
""" Parse a Fullprof (multiple) column file
"""
# Import file
datafile = open(datafilename, "r")
rawlines = datafile.readlines()
datafile.close()
# Parse head
iline = 0
parseheader = True
title = ""
while iline < len(rawlines) and parseheader is True:
line = rawlines[iline].strip()
if len(line) > 0:
if line.count("BANK") == 0:
# header
title += line + ", "
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
terms = line.split()
if terms[0] != 'BANK':
raise NotImplementedError("First word must be 'BANK', but not %s" % (terms[0]))
bankid = int(terms[1])
numdata = int(terms[2])
numlines = int(terms[3])
parseheader = False
# ENDIF
# ENDIF
iline += 1
# ENDWHILE (iline)
# Data vectors
vecx = []
vecy = []
vece = []
for i in xrange(iline, len(rawlines)):
line = rawlines[i].strip()
if len(line) == 0:
continue
terms = line.split()
numitems = len(terms)
if numitems % 3 != 0:
print "%d-th line '%s' is not a data line" % (i, line)
continue
numpts = numitems/3
for j in xrange(numpts):
x = float(terms[j*3])
y = float(terms[j*3+1])
e = float(terms[j*3+2])
vecx.append(x)
vecy.append(y)
vece.append(e)
# ENDFOR
# ENDFOR (i)
# Check
self.log().notice("Expected to read %d data points; Exactly read %d data points. " % (numdata*numlines, len(vecx)))
# Create output workspaces
tablews = WorkspaceFactory.createTable()
# Create the data workspace
datasize = len(vecx)
dataws = WorkspaceFactory.create("Workspace2D", 1, datasize, datasize)
for i in xrange(datasize):
dataws.dataX(0)[i] = vecx[i]
dataws.dataY(0)[i] = vecy[i]
dataws.dataE(0)[i] = vece[i]
return (tablews, dataws)
# Register algorithm with Mantid
AlgorithmFactory.subscribe(LoadFullprofFile)