Newer
Older
//----------------------------------------------------------------------
// Includes
//----------------------------------------------------------------------
#include <cmath>
#include "MantidAlgorithms/BinaryOperation.h"
#include "MantidAPI/WorkspaceProperty.h"
#include "MantidAPI/WorkspaceIterator.h"
using namespace Mantid::API;
using namespace Mantid::Kernel;
namespace Mantid
{
namespace Algorithms
{
// Get a reference to the logger
Logger& BinaryOperation::g_log = Logger::get("BinaryOperation");
Roman Tolchenov
committed
declareProperty(new WorkspaceProperty<MatrixWorkspace>("InputWorkspace_1","",Direction::Input));
declareProperty(new WorkspaceProperty<MatrixWorkspace>("InputWorkspace_2","",Direction::Input));
declareProperty(new WorkspaceProperty<MatrixWorkspace>("OutputWorkspace","",Direction::Output));
* @throw runtime_error Thrown if algorithm cannot execute
*/
void BinaryOperation::exec()
{
// get input workspace, dynamic cast not needed
Roman Tolchenov
committed
MatrixWorkspace_sptr in_work1 = getProperty("InputWorkspace_1");
MatrixWorkspace_sptr in_work2 = getProperty("InputWorkspace_2");
// Check that the input workspace are compatible
if (!checkCompatibility(in_work1,in_work2))
Russell Taylor
committed
std::ostringstream ostr;
ostr << "The two workspaces are not compatible for algorithm " << this->name();
g_log.error() << ostr << std::endl;
throw std::invalid_argument( ostr.str() );
Roman Tolchenov
committed
MatrixWorkspace::const_iterator ti_in1 = createConstIterator(in_work1,in_work2);
MatrixWorkspace::const_iterator ti_in2 = createConstIterator(in_work2,in_work1);
Roman Tolchenov
committed
MatrixWorkspace_sptr out_work = getProperty("OutputWorkspace");
Russell Taylor
committed
// We need to create a new workspace for the output if:
// (a) the output workspace hasn't been set to one of the input ones, or
// (b) it has been, but it's not the correct dimensions
if ( out_work == in_work1 )
{
if ( in_work2->size() > in_work1->size() ) out_work = createOutputWorkspace(in_work1,in_work2);
}
else if ( out_work == in_work2 )
{
if ( in_work1->size() > in_work2->size() ) out_work = createOutputWorkspace(in_work1,in_work2);
}
else
{
out_work = createOutputWorkspace(in_work1,in_work2);
}
Roman Tolchenov
committed
MatrixWorkspace::iterator ti_out(*out_work);
//perform the operation through an abstract call
performBinaryOperation(ti_in1,ti_in2,ti_out);
// Assign it to the output workspace property
setProperty("OutputWorkspace",out_work);
return;
}
Roman Tolchenov
committed
const bool BinaryOperation::checkCompatibility(const API::MatrixWorkspace_const_sptr lhs,const API::MatrixWorkspace_const_sptr rhs) const
Roman Tolchenov
committed
Unit_sptr lhs_unit = Unit_sptr();
Unit_sptr rhs_unit = Unit_sptr();
if ( lhs->axes() && rhs->axes() ) // If one of these is a WorkspaceSingleValue then we don't want to check units match
{
lhs_unit = lhs->getAxis(0)->unit();
rhs_unit = rhs->getAxis(0)->unit();
}
// Check the workspaces have the same units and distribution flag
Russell Taylor
committed
if ( lhs_unit != rhs_unit || lhs->YUnit() != rhs->YUnit() || lhs->isDistribution() != rhs->isDistribution() )
{
return false;
}
// Check the size compatibility
if (!checkSizeCompatibility(lhs,rhs))
{
Russell Taylor
committed
std::ostringstream ostr;
ostr<<"The sizes of the two workspaces are not compatible for algorithm "<<this->name();
g_log.error() << ostr << std::endl;
throw std::invalid_argument( ostr.str() );
}
return true;
}
Roman Tolchenov
committed
/** Performs a simple check to see if the sizes of two workspaces are compatible for a binary operation
* In order to be size compatible then the larger workspace
* must divide be the size of the smaller workspace leaving no remainder
* @param lhs the first workspace to compare
* @param rhs the second workspace to compare
* @retval true The two workspaces are size compatible
* @retval false The two workspaces are NOT size compatible
*/
const bool BinaryOperation::checkSizeCompatibility(const API::MatrixWorkspace_const_sptr lhs,const API::MatrixWorkspace_const_sptr rhs) const
{
//in order to be size compatible then the larger workspace
//must divide by the size of the smaller workspace leaving no remainder
if (rhs->size() ==0) return false;
return ((lhs->size() % rhs->size()) == 0);
}
/** Performs a simple check to see if the X arrays of two workspaces are compatible for a binary operation
* The X arrays of two workspaces must be identical to allow a binary operation to be performed
* @param lhs the first workspace to compare
* @param rhs the second workspace to compare
* @retval true The two workspaces are size compatible
* @retval false The two workspaces are NOT size compatible
*/
const bool BinaryOperation::checkXarrayCompatibility(const API::MatrixWorkspace_const_sptr lhs,const API::MatrixWorkspace_const_sptr rhs) const
{
// Not using the WorkspaceHelpers::matching bins method because that requires the workspaces to be
// the same size, which isn't a requirement of BinaryOperation
Roman Tolchenov
committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
// single values, or workspaces with just a single bin/value in each spectrum, are compatible with anything
if ((rhs->blocksize() ==1) || (lhs->blocksize() ==1)) return true;
const std::vector<double>& w1x = lhs->readX(0);
const std::vector<double>& w2x = rhs->readX(0);
double sum;
sum=0.0;
for (unsigned int i=0; i < w1x.size(); i++) sum += fabs(w1x[i]-w2x[i]);
if( sum < 0.0000001)
return true;
else
return false;
}
/** Gets the number of time an iterator over the first workspace would have to loop to perform a full iteration of the second workspace
* @param lhs the first workspace to compare
* @param rhs the second workspace to compare
* @returns Integer division of rhs.size()/lhs.size() with a minimum of 1
*/
const int BinaryOperation::getRelativeLoopCount(const API::MatrixWorkspace_const_sptr lhs, const API::MatrixWorkspace_const_sptr rhs) const
{
int lhsSize = lhs->size();
if (lhsSize == 0) return 1;
int retVal = rhs->size()/lhsSize;
return (retVal == 0)?1:retVal;
}
/** Creates a suitable output workspace for a binary operatiion based on the two input workspaces
* @param lhs the first workspace to compare
* @param rhs the second workspace to compare
* @returns a pointer to a new zero filled workspace the same type and size as the larger of the two input workspaces.
*/
API::MatrixWorkspace_sptr BinaryOperation::createOutputWorkspace(const API::MatrixWorkspace_const_sptr lhs, const API::MatrixWorkspace_const_sptr rhs) const
{
//get the largest workspace
const API::MatrixWorkspace_const_sptr wsLarger = (lhs->size() > rhs->size()) ? lhs : rhs;
//create a new workspace
API::MatrixWorkspace_sptr retVal = API::WorkspaceFactory::Instance().create(wsLarger);
return retVal;
/** Creates a const iterator taking into account loop
* @param wsMain The workspace theat the iterator will be created for
* @param wsComparison The workspace to be used for axes comparisons
* @returns a const iterator to wsMain, with loop count and orientation set appropriately
*/
Roman Tolchenov
committed
MatrixWorkspace::const_iterator BinaryOperation::createConstIterator(const API::MatrixWorkspace_const_sptr wsMain, const API::MatrixWorkspace_const_sptr wsComparison) const
unsigned int loopDirection = LoopOrientation::Vertical;
int loopCount = getRelativeLoopCount(wsMain,wsComparison);
if (loopCount > 1)
{
loopDirection = getLoopDirection(wsMain,wsComparison);
}
else
{
if (!checkXarrayCompatibility(wsMain,wsComparison))
{
g_log.error("The x arrays of the workspaces are not identical");
throw std::invalid_argument("The x arrays of the workspaces are not identical");
}
}
Roman Tolchenov
committed
MatrixWorkspace::const_iterator it(*wsMain,loopCount,loopDirection);
/** Determines the required loop direction for a looping iterator
* @param wsMain The workspace theat the iterator will be created for
* @param wsComparison The workspace to be used for axes comparisons
* @returns An value describing the orientation of the 1D workspace to be looped
* @retval 0 Horizontal - The number and contents of the X axis bins match
* @retval 1 Vertical - The number of detector elements match
*/
Roman Tolchenov
committed
unsigned int BinaryOperation::getLoopDirection(const API::MatrixWorkspace_const_sptr wsMain, const API::MatrixWorkspace_const_sptr wsComparison) const
Roman Tolchenov
committed
unsigned int retVal = LoopOrientation::Horizontal;
//check if the vertical sizes match
int wsMainArraySize = wsMain->size(); //this must be a 1D array for this to work
int wsComparisonArraySize = wsComparison->size()/wsComparison->blocksize();
if (wsMainArraySize == wsComparisonArraySize)
{
retVal = LoopOrientation::Vertical;
}
//check if Horizontial looping matches in length
Roman Tolchenov
committed
if (wsMain->blocksize() == wsComparison->blocksize())
{
//it does, now check if the X arrays are compatible
if (!checkXarrayCompatibility(wsMain,wsComparison))
{
if(retVal == LoopOrientation::Horizontal)
{
//this is a problem, the lengths only match Horizontally but the data does not match
g_log.error("The x arrays of the workspaces are not identical");
throw std::invalid_argument("The x arrays of the workspaces are not identical");
}
Roman Tolchenov
committed
}
else
{
//all is good in the world
retVal = LoopOrientation::Horizontal;
}