Newer
Older
#include "MantidDataHandling/SetSample.h"
#include "MantidAPI/MatrixWorkspace.h"
#include "MantidGeometry/Instrument.h"
#include "MantidGeometry/Instrument/SampleEnvironmentFactory.h"
#include "MantidKernel/ConfigService.h"
#include "MantidKernel/FacilityInfo.h"
#include "MantidKernel/InstrumentInfo.h"
#include "MantidKernel/PropertyManagerProperty.h"
#include <boost/algorithm/string/case_conv.hpp>
#include <Poco/Path.h>
namespace Mantid {
namespace DataHandling {
namespace {
/**
* Retrieve "Axis" property value. The most commmon use case is calling
* this algorithm from Python where Axis is input as a C long. The
* definition of long varies across platforms and long v = args.getProperty()
* is currently unable to cope so we go via the long route to retrieve
* the value.
* @param args Dictionary-type containing the argument
*/
long getAxisIndex(const Kernel::PropertyManager &args) {
using Kernel::Property;
using Kernel::PropertyWithValue;
long axisIdx(1);
if (args.existsProperty("Axis")) {
Kernel::Property *axisProp = args.getProperty("Axis");
axisIdx = static_cast<PropertyWithValue<long> *>(axisProp)->operator()();
if (axisIdx < 0 || axisIdx > 2)
throw std::invalid_argument(
"Geometry.Axis value must be either 0,1,2 (X,Y,Z)");
}
return axisIdx;
}
}
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
using Geometry::SampleEnvironment;
// Register the algorithm into the AlgorithmFactory
DECLARE_ALGORITHM(SetSample)
/// Algorithms name for identification. @see Algorithm::name
const std::string SetSample::name() const { return "SetSample"; }
/// Algorithm's version for identification. @see Algorithm::version
int SetSample::version() const { return 1; }
/// Algorithm's category for identification. @see Algorithm::category
const std::string SetSample::category() const { return "Sample"; }
/// Algorithm's summary for use in the GUI and help. @see Algorithm::summary
const std::string SetSample::summary() const {
return "Set properties of the sample and its environment for a workspace";
}
/// Validate the inputs against each other @see Algorithm::validateInputs
std::map<std::string, std::string> SetSample::validateInputs() {
using Kernel::PropertyManager_sptr;
std::map<std::string, std::string> errors;
// Validate Environment
PropertyManager_sptr environArgs = getProperty("Environment");
if (environArgs) {
if (!environArgs->existsProperty("Name")) {
errors["Environment"] = "Environment flags must contain a 'Name' entry.";
} else {
std::string name = environArgs->getPropertyValue("Name");
if (name.empty()) {
errors["Environment"] = "Environment 'Name' flag is an empty string!";
}
}
if (!environArgs->existsProperty("Container")) {
errors["Environment"] =
"Environment flags must contain a 'Container' entry.";
std::string name = environArgs->getPropertyValue("Container");
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
if (name.empty()) {
errors["Environment"] = "Environment 'Can' flag is an empty string!";
}
}
}
return errors;
}
/**
* Initialize the algorithm's properties.
*/
void SetSample::init() {
using API::WorkspaceProperty;
using Kernel::Direction;
using Kernel::PropertyManagerProperty;
// Inputs
declareProperty(Kernel::make_unique<WorkspaceProperty<>>("InputWorkspace", "",
Direction::InOut),
"A workspace whose sample properties will be updated");
declareProperty(Kernel::make_unique<PropertyManagerProperty>(
"Geometry", Direction::Input),
"A dictionary of geometry parameters for the sample.");
declareProperty(Kernel::make_unique<PropertyManagerProperty>(
"Material", Direction::Input),
"A dictionary of material parameters for the sample. See "
"SetSampleMaterial for all accepted parameters");
declareProperty(
Kernel::make_unique<PropertyManagerProperty>("Environment",
Direction::Input),
"A dictionary of parameters to configure the sample environment");
}
/**
* Execute the algorithm.
*/
void SetSample::exec() {
using API::MatrixWorkspace_sptr;
using Kernel::PropertyManager_sptr;
MatrixWorkspace_sptr workspace = getProperty("InputWorkspace");
PropertyManager_sptr environArgs = getProperty("Environment");
PropertyManager_sptr geometryArgs = getProperty("Geometry");
PropertyManager_sptr materialArgs = getProperty("Material");
// The order here is important. Se the environment first. If this
// defines a sample geometry then we can process the Geometry flags
// combined with this
const SampleEnvironment *sampleEnviron(nullptr);
if (environArgs) {
sampleEnviron = setSampleEnvironment(workspace, *environArgs);
}
if (geometryArgs || sampleEnviron) {
setSampleShape(workspace, geometryArgs, sampleEnviron);
}
// Finally the material arguments
if (materialArgs) {
runChildAlgorithm("SetSampleMaterial", workspace, *materialArgs);
}
}
/**
* Set the requested sample environment on the workspace
* @param workspace A pointer to the workspace to be affected
* @param args The dictionary of flags for the environment
* @return A pointer to the new sample environment
*/
const Geometry::SampleEnvironment *
SetSample::setSampleEnvironment(API::MatrixWorkspace_sptr &workspace,
const Kernel::PropertyManager &args) {
using Geometry::SampleEnvironmentSpecFileFinder;
using Geometry::SampleEnvironmentFactory;
using Kernel::ConfigService;
const std::string envName = args.getPropertyValue("Name");
const std::string canName = args.getPropertyValue("Container");
// The specifications need to be qualified by the facility and instrument.
// Check instrument for name and then lookup facility if facility
// is unknown then set to default facility & instrument.
const auto &instOnWS = instrument->getName();
std::string facilityName, instrumentName;
try {
const auto &instInfo = config.getInstrument(instOnWS);
instrumentName = instInfo.name();
facilityName = instInfo.facility().name();
} catch (std::runtime_error &) {
// use default facility/instrument
facilityName = config.getFacility().name();
instrumentName = config.getInstrument().name();
}
const auto &instDirs = config.getInstrumentDirectories();
std::vector<std::string> environDirs(instDirs);
for (auto &direc : environDirs) {
direc = Poco::Path(direc).append("sampleenvironments").toString();
}
auto finder =
Kernel::make_unique<SampleEnvironmentSpecFileFinder>(environDirs);
SampleEnvironmentFactory factory(std::move(finder));
auto sampleEnviron =
factory.create(facilityName, instrumentName, envName, canName);
workspace->mutableSample().setEnvironment(sampleEnviron.release());
return &(workspace->sample().getEnvironment());
}
/**
* @param workspace A pointer to the workspace to be affected
* @param args The user-supplied dictionary of flags
* @param sampleEnv A pointer to the sample environment if one exists, otherwise
* null
* @return A string containing the XML definition of the shape
*/
void SetSample::setSampleShape(API::MatrixWorkspace_sptr &workspace,
const Kernel::PropertyManager_sptr &args,
const Geometry::SampleEnvironment *sampleEnv) {
/* The sample geometry can be specified in two ways:
- a known set of primitive shapes with values or CSG string
- or a <samplegeometry> field sample environment can, with values possible
overridden by the Geometry flags
*/
// Try known shapes or CSG first if supplied
const auto xml = tryCreateXMLFromArgsOnly(args);
if (!xml.empty()) {
runSetSampleShape(workspace, xml);
return;
}
// Any arguments in the args dict are assumed to be values that should
// override the default set by the sampleEnv samplegeometry if it exists
if (sampleEnv) {
if (sampleEnv->container()->hasSampleShape()) {
const auto &can = sampleEnv->container();
Container::ShapeArgs shapeArgs;
if (args) {
const auto &props = args->getProperties();
for (const auto &prop : props) {
const double val = args->getProperty(prop->name());
shapeArgs.emplace(boost::algorithm::to_lower_copy(prop->name()),
val * 0.01);
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
}
}
auto shapeObject = can->createSampleShape(shapeArgs);
// Set the object directly on the sample ensuring we preserve the
// material
const auto &mat = workspace->sample().getMaterial();
shapeObject->setMaterial(mat);
workspace->mutableSample().setShape(*shapeObject);
} else {
throw std::runtime_error("The can does not define the sample shape. "
"Please either provide a 'Shape' argument "
"or update the environment definition with "
"this information.");
}
} else {
throw std::runtime_error("No sample environment defined, please provide "
"a 'Shape' argument to define the sample "
"shape.");
}
}
/**
* Create the required XML for a given shape type plus its arguments
* @param args A dict of flags defining the shape
* @return A string containing the XML if possible or an empty string
*/
std::string
SetSample::tryCreateXMLFromArgsOnly(const Kernel::PropertyManager_sptr args) {
std::string result;
if (!args || !args->existsProperty("Shape")) {
return result;
}
const auto shape = args->getPropertyValue("Shape");
if (shape == "CSG") {
result = args->getPropertyValue("Value");
} else if (shape == "FlatPlate") {
result = createFlatPlateXML(*args);
} else if (shape == "Cylinder") {
result = createCylinderXML(*args);
} else if (shape == "HollowCylinder") {
result = createHollowCylinderXML(*args);
throw std::invalid_argument(
"Unknown 'Shape' argument provided in "
"'Geometry'. Allowed "
"values=FlatPlate,CSG,Cylinder,HollowCylinder.");
}
return result;
}
/**
* Create the XML required to define a flat plate from the given args
* @param args A user-supplied dict of args
* @return The XML definition string
*/
std::string
SetSample::createFlatPlateXML(const Kernel::PropertyManager &args) const {
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
// X
double widthInCM = args.getProperty("Width");
// Y
double heightInCM = args.getProperty("Height");
// Z
double thickInCM = args.getProperty("Thick");
std::vector<double> center = args.getProperty("Center");
// convert to metres
std::transform(center.begin(), center.end(), center.begin(),
[](double val) { return val *= 0.01; });
// Half lengths in metres (*0.01*0.5)
const double szX = (widthInCM * 5e-3);
const double szY = (heightInCM * 5e-3);
const double szZ = (thickInCM * 5e-3);
std::ostringstream xmlShapeStream;
xmlShapeStream << " <cuboid id=\"sample-shape\"> "
<< "<left-front-bottom-point x=\"" << szX + center[0]
<< "\" y=\"" << -szY + center[1] << "\" z=\""
<< -szZ + center[2] << "\" /> "
<< "<left-front-top-point x=\"" << szX + center[0]
<< "\" y=\"" << szY + center[1] << "\" z=\""
<< -szZ + center[2] << "\" /> "
<< "<left-back-bottom-point x=\"" << szX + center[0]
<< "\" y=\"" << -szY + center[1] << "\" z=\""
<< szZ + center[2] << "\" /> "
<< "<right-front-bottom-point x=\"" << -szX + center[0]
<< "\" y=\"" << -szY + center[1] << "\" z=\""
<< -szZ + center[2] << "\" /> "
<< "</cuboid>";
return xmlShapeStream.str();
}
/**
* Create the XML required to define a cylinder from the given args
* @param args A user-supplied dict of args
* @return The XML definition string
*/
std::string
SetSample::createCylinderXML(const Kernel::PropertyManager &args) const {
double height = args.getProperty("Height");
double radius = args.getProperty("Radius");
std::vector<double> center = args.getProperty("Center");
// Expected to be a long so that the mapping from Python is simple
// Expected to be a long so that the mapping from Python is simple
long axisIdx = getAxisIndex(args);
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
// convert to metres
height *= 0.01;
radius *= 0.01;
std::transform(center.begin(), center.end(), center.begin(),
[](double val) { return val *= 0.01; });
// Shift so that cylinder is centered at center position
const double cylinderBase = (-1e-03 * height) + center[axisIdx];
std::ostringstream xmlShapeStream;
xmlShapeStream << "<cylinder id=\"sample-shape\"> "
<< "<centre-of-bottom-base x=\"" << center[axisIdx]
<< "\" y=\"" << cylinderBase << "\" z=\"" << center[axisIdx]
<< "\" /> "
<< "<axis ";
if (axisIdx == 0)
xmlShapeStream << "x=\"1\" y=\"0\" z=\"0\" /> ";
else if (axisIdx == 1)
xmlShapeStream << "x=\"0\" y=\"1\" z=\"0\" /> ";
else
xmlShapeStream << "x=\"0\" y=\"0\" z=\"1\" /> ";
xmlShapeStream << "<radius val=\"" << radius << "\" /> "
<< "<height val=\"" << height << "\" /> "
<< "</cylinder>";
return xmlShapeStream.str();
}
/**
* Create the XML required to define an annulus from the given args
* @param args A user-supplied dict of args
* @return The XML definition string
*/
std::string
SetSample::createHollowCylinderXML(const Kernel::PropertyManager &args) const {
double height = args.getProperty("Height");
double innerRadius = args.getProperty("InnerRadius");
double outerRadius = args.getProperty("OuterRadius");
std::vector<double> center = args.getProperty("Center");
// Expected to be a long so that the mapping from Python is simple
long axisIdx = getAxisIndex(args);
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
// convert to metres
height *= 0.01;
innerRadius *= 0.01;
outerRadius *= 0.01;
std::transform(center.begin(), center.end(), center.begin(),
[](double val) { return val *= 0.01; });
// Shift so that cylinder is centered at center position
const double cylinderBase = (-1e-03 * height) + center[axisIdx];
std::ostringstream xmlShapeStream;
xmlShapeStream << "<hollow-cylinder id=\"sample-shape\"> "
<< "<centre-of-bottom-base x=\"" << center[axisIdx]
<< "\" y=\"" << cylinderBase << "\" z=\"" << center[axisIdx]
<< "\" /> "
<< "<axis ";
if (axisIdx == 0)
xmlShapeStream << "x=\"1\" y=\"0\" z=\"0\" /> ";
else if (axisIdx == 1)
xmlShapeStream << "x=\"0\" y=\"1\" z=\"0\" /> ";
else
xmlShapeStream << "x=\"0\" y=\"0\" z=\"1\" /> ";
xmlShapeStream << "<inner-radius val=\"" << innerRadius << "\" /> "
<< "<outer-radius val=\"" << outerRadius << "\" /> "
<< "<height val=\"" << height << "\" /> "
<< "</hollow-cylinder>";
return xmlShapeStream.str();
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
}
/**
* Run SetSampleShape as an algorithm to set the shape of the sample
* @param workspace A reference to the workspace
* @param xml A string containing the XML definition
*/
void SetSample::runSetSampleShape(API::MatrixWorkspace_sptr &workspace,
const std::string &xml) {
auto alg = createChildAlgorithm("CreateSampleShape");
alg->setProperty("InputWorkspace", workspace);
alg->setProperty("ShapeXML", xml);
alg->executeAsChildAlg();
}
/**
* Run the named child algorithm on the given workspace. It assumes an in/out
* workspace property called InputWorkspace
* @param name The name of the algorithm to run
* @param workspace A reference to the workspace
* @param args A PropertyManager specifying the required arguments
*/
void SetSample::runChildAlgorithm(const std::string &name,
API::MatrixWorkspace_sptr &workspace,
const Kernel::PropertyManager &args) {
auto alg = createChildAlgorithm(name);
alg->setProperty("InputWorkspace", workspace);
alg->updatePropertyValues(args);
alg->executeAsChildAlg();
}
} // namespace DataHandling
} // namespace Mantid