Newer
Older
#include "MantidGeometry/Crystal/UnitCell.h"
#include "MantidKernel/StringTokenizer.h"
#include "MantidKernel/System.h"
#include "MantidKernel/V3D.h"
#include <cfloat>
#include <iomanip>
#include <ios>
#include <boost/lexical_cast.hpp>
namespace Mantid {
namespace Geometry {
using Mantid::Kernel::DblMatrix;
/** Default constructor.
\f$ a = b = c = 1 \mbox{\AA, } \alpha = \beta = \gamma = 90^\circ \f$ */
UnitCell::UnitCell() : da(6), ra(6), errorda(6), G(3, 3), Gstar(3, 3), B(3, 3) {
da[0] = da[1] = da[2] = 1.;
da[3] = da[4] = da[5] = deg2rad * 90.0;
errorda[0] = errorda[1] = errorda[2] = errorda[3] = errorda[4] = errorda[5] =
recalculate();
}
/** Constructor
@param _a, _b, _c :: lattice parameters \f$ a, b, c \f$ \n
with \f$\alpha = \beta = \gamma = 90^\circ \f$*/
UnitCell::UnitCell(double _a, double _b, double _c)
: da(6), ra(6), errorda(6), G(3, 3), Gstar(3, 3), B(3, 3) {
da[0] = _a;
da[1] = _b;
da[2] = _c;
// Angles are 90 degrees in radians ->Pi/2
da[3] = da[4] = da[5] = 0.5 * M_PI;
errorda[0] = errorda[1] = errorda[2] = errorda[3] = errorda[4] = errorda[5] =
recalculate();
}
/** Constructor
@param _a, _b, _c, _alpha, _beta, _gamma :: lattice parameters\n
@param angleunit :: units for angle, of type #AngleUnits. Default is degrees.
*/
UnitCell::UnitCell(double _a, double _b, double _c, double _alpha, double _beta,
double _gamma, const int angleunit)
: da(6), ra(6), errorda(6), G(3, 3), Gstar(3, 3), B(3, 3) {
da[0] = _a;
da[1] = _b;
da[2] = _c;
// Angle transformed in radians
if (angleunit == angDegrees) {
da[3] = deg2rad * _alpha;
da[4] = deg2rad * _beta;
da[5] = deg2rad * _gamma;
} else {
da[3] = _alpha;
da[4] = _beta;
da[5] = _gamma;
}
errorda[0] = errorda[1] = errorda[2] = errorda[3] = errorda[4] = errorda[5] =
recalculate();
}
/** Get lattice parameter
@return a1 :: lattice parameter \f$ a \f$ (in \f$ \mbox{\AA} \f$ )
@see a()*/
double UnitCell::a1() const { return da[0]; }
/** Get lattice parameter
@return a2 :: lattice parameter \f$ b \f$ (in \f$ \mbox{\AA} \f$ )
@see b()*/
double UnitCell::a2() const { return da[1]; }
/** Get lattice parameter
@return a3 :: lattice parameter \f$ c \f$ (in \f$ \mbox{\AA} \f$ )
@see c()*/
double UnitCell::a3() const { return da[2]; }
/** Get lattice parameter a1-a3 as function of index (0-2)
@return a_n :: lattice parameter \f$ a,b or c \f$ (in \f$ \mbox{\AA} \f$ )
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
double UnitCell::a(int nd) const {
if (nd < 0 || nd > 2)
throw(std::invalid_argument(
"lattice parameter index can change from 0 to 2 "));
return da[nd];
}
/** Get lattice parameter
@return alpha1 :: lattice parameter \f$ \alpha \f$ (in radians)
@see alpha()*/
double UnitCell::alpha1() const { return da[3]; }
/** Get lattice parameter
@return alpha2 :: lattice parameter \f$ \beta \f$ (in radians)
@see beta()*/
double UnitCell::alpha2() const { return da[4]; }
/** Get lattice parameter
@return alpha3 :: lattice parameter \f$ \gamma \f$ (in radians)
@see gamma()*/
double UnitCell::alpha3() const { return da[5]; }
/** Get lattice parameter
@return a :: lattice parameter \f$ a \f$ (in \f$ \mbox{\AA} \f$ )
@see a1()*/
double UnitCell::a() const { return da[0]; }
/** Get lattice parameter
@return b :: lattice parameter \f$ b \f$ (in \f$ \mbox{\AA} \f$ )
@see a2()*/
double UnitCell::b() const { return da[1]; }
/** Get lattice parameter
@return c :: lattice parameter \f$ c \f$ (in \f$ \mbox{\AA} \f$ )
@see a3()*/
double UnitCell::c() const { return da[2]; }
/** Get lattice parameter
@return alpha :: lattice parameter \f$ \alpha \f$ (in degrees)
@see alpha1()*/
double UnitCell::alpha() const { return da[3] * rad2deg; }
/** Get lattice parameter
@return beta :: lattice parameter \f$ \beta \f$ (in degrees)
@see alpha2()*/
double UnitCell::beta() const { return da[4] * rad2deg; }
/** Get lattice parameter
@return gamma :: lattice parameter \f$ \gamma \f$ (in degrees)
@see alpha3()*/
double UnitCell::gamma() const { return da[5] * rad2deg; }
/** Get reciprocal lattice parameter
@return b1 :: lattice parameter \f$ a^{*} \f$ (in \f$ \mbox{\AA}^{-1} \f$ )
@see astar()*/
double UnitCell::b1() const { return ra[0]; }
/** Get reciprocal lattice parameter
@return b2 :: lattice parameter \f$ b^{*} \f$ (in \f$ \mbox{\AA}^{-1} \f$ )
@see bstar()*/
double UnitCell::b2() const { return ra[1]; }
/** Get reciprocal lattice parameter
@return b3 :: lattice parameter \f$ c^{*} \f$ (in \f$ \mbox{\AA}^{-1} \f$ )
@see cstar()*/
double UnitCell::b3() const { return ra[2]; }
/** Get reciprocal lattice parameter
@return beta1 :: lattice parameter \f$ \alpha^{*} \f$ (in radians)
@see alphastar()*/
double UnitCell::beta1() const { return ra[3]; }
/** Get reciprocal lattice parameter
@return beta2 :: lattice parameter \f$ \beta^{*} \f$ (in radians)
@see betastar()*/
double UnitCell::beta2() const { return ra[4]; }
/** Get reciprocal lattice parameter
@return beta3 :: lattice parameter \f$ \gamma^{*} \f$ (in radians)
@see gammastar()*/
double UnitCell::beta3() const { return ra[5]; }
/** Get reciprocal lattice parameter
@return astar :: lattice parameter \f$ a^{*} \f$ (in \f$ \mbox{\AA}^{-1} \f$ )
@see b1()*/
double UnitCell::astar() const { return ra[0]; }
/** Get reciprocal lattice parameter
@return bstar :: lattice parameter \f$ b^{*} \f$ (in \f$ \mbox{\AA}^{-1} \f$ )
@see b2()*/
double UnitCell::bstar() const { return ra[1]; }
/** Get reciprocal lattice parameter
@return cstar :: lattice parameter \f$ c^{*} \f$ (in \f$ \mbox{\AA}^{-1} \f$ )
@see b3()*/
double UnitCell::cstar() const { return ra[2]; }
/** Get reciprocal lattice parameter
@return alphastar :: lattice parameter \f$ \alpha^{*} \f$ (in degrees)
@see beta1()*/
double UnitCell::alphastar() const { return ra[3] * rad2deg; }
/** Get reciprocal lattice parameter
@return betastar:: lattice parameter \f$ \beta^{*} \f$ (in degrees)
@see beta2()*/
double UnitCell::betastar() const { return ra[4] * rad2deg; }
/** Get reciprocal lattice parameter
@return gammastar:: lattice parameter \f$ \gamma^{*} \f$ (in degrees)
@see beta3()*/
double UnitCell::gammastar() const { return ra[5] * rad2deg; }
/** Get lattice parameter error
@return errora :: errorlattice parameter \f$ a \f$ (in \f$ \mbox{\AA} \f$ )
*/
double UnitCell::errora() const { return errorda[0]; }
/** Get lattice parameter error
@return errorb :: errorlattice parameter \f$ b \f$ (in \f$ \mbox{\AA} \f$ )
*/
double UnitCell::errorb() const { return errorda[1]; }
/** Get lattice parameter error
@return errorc :: errorlattice parameter \f$ c \f$ (in \f$ \mbox{\AA} \f$ )
*/
double UnitCell::errorc() const { return errorda[2]; }
/** Get lattice parameter error
@param angleunit :: units for angle, of type #AngleUnits . Default is degrees.
@return erroralpha :: errorlattice parameter \f$ alpha \f$ (in degrees or
radians )
*/
double UnitCell::erroralpha(const int angleunit) const {
if (angleunit == angDegrees) {
return errorda[3] * rad2deg;
} else {
return errorda[3];
}
}
/** Get lattice parameter error
@param angleunit :: units for angle, of type #AngleUnits . Default is degrees.
@return erroralpha :: errorlattice parameter \f$ beta \f$ (in degrees or radians
)
*/
double UnitCell::errorbeta(const int angleunit) const {
if (angleunit == angDegrees) {
return errorda[4] * rad2deg;
} else {
return errorda[4];
}
}
/** Get lattice parameter error
@param angleunit :: units for angle, of type #AngleUnits . Default is degrees.
@return erroralpha :: errorlattice parameter \f$ gamma \f$ (in degrees or
radians )
*/
double UnitCell::errorgamma(const int angleunit) const {
if (angleunit == angDegrees) {
return errorda[5] * rad2deg;
} else {
return errorda[5];
}
}
/** Get lattice parameter error
@return errorc :: errorlattice parameter \f$ volume \f$ (in \f$ \mbox{\AA} \f$ )
*/
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
double UnitCell::errorvolume() const {
// From latcon.py by Art Schultz
double V = volume();
double delta_V_alphaV = 0.0;
if (erroralpha() > 0.0) {
double alpha1 = alpha() - 0.5 * erroralpha();
double Va1 = UnitCell(a(), b(), c(), alpha1, beta(), gamma()).volume();
double alpha2 = alpha() + 0.5 * erroralpha();
double Va2 = UnitCell(a(), b(), c(), alpha2, beta(), gamma()).volume();
delta_V_alphaV = (Va2 - Va1) / V;
}
double delta_V_betaV = 0.0;
if (errorbeta() > 0.0) {
double beta1 = beta() - 0.5 * errorbeta();
double Va1 = UnitCell(a(), b(), c(), alpha(), beta1, gamma()).volume();
double beta2 = beta() + 0.5 * errorbeta();
double Va2 = UnitCell(a(), b(), c(), alpha(), beta2, gamma()).volume();
delta_V_betaV = (Va2 - Va1) / V;
}
double delta_V_gammaV = 0.0;
if (errorgamma() > 0.0) {
double gamma1 = gamma() - 0.5 * errorgamma();
double Va1 = UnitCell(a(), b(), c(), alpha(), beta(), gamma1).volume();
double gamma2 = gamma() + 0.5 * errorgamma();
double Va2 = UnitCell(a(), b(), c(), alpha(), beta(), gamma2).volume();
delta_V_gammaV = (Va2 - Va1) / V;
}
return V * sqrt(std::pow(errora() / a(), 2) + std::pow(errorb() / b(), 2) +
std::pow(errorc() / c(), 2) + std::pow(delta_V_alphaV, 2) +
std::pow(delta_V_betaV, 2) + std::pow(delta_V_gammaV, 2));
}
/** Set lattice parameters
@param _a, _b, _c, _alpha, _beta, _gamma :: lattice parameters\n
@param angleunit :: units for angle, of type #AngleUnits . Default is degrees.
*/
void UnitCell::set(double _a, double _b, double _c, double _alpha, double _beta,
double _gamma, const int angleunit) {
da[0] = _a;
da[1] = _b;
da[2] = _c;
if (angleunit == angDegrees) {
da[3] = deg2rad * _alpha;
da[4] = deg2rad * _beta;
da[5] = deg2rad * _gamma;
} else {
da[3] = _alpha;
da[4] = _beta;
da[5] = _gamma;
}
recalculate();
}
/** Set lattice parameter errors
@param _aerr, _berr, _cerr, _alphaerr, _betaerr, _gammaerr :: lattice
parameter errors\n
@param angleunit :: units for angle, of type #AngleUnits . Default is degrees.
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
void UnitCell::setError(double _aerr, double _berr, double _cerr,
double _alphaerr, double _betaerr, double _gammaerr,
const int angleunit) {
errorda[0] = _aerr;
errorda[1] = _berr;
errorda[2] = _cerr;
if (angleunit == angDegrees) {
errorda[3] = deg2rad * _alphaerr;
errorda[4] = deg2rad * _betaerr;
errorda[5] = deg2rad * _gammaerr;
} else {
errorda[3] = _alphaerr;
errorda[4] = _betaerr;
errorda[5] = _gammaerr;
}
}
/** Set lattice parameter
@param _a :: lattice parameter \f$ a \f$ (in \f$ \mbox{\AA} \f$ )*/
void UnitCell::seta(double _a) {
da[0] = _a;
recalculate();
}
/** Set lattice parameter error
@param _aerr :: lattice parameter \f$ a \f$ error (in \f$ \mbox{\AA} \f$ )*/
void UnitCell::setErrora(double _aerr) { errorda[0] = _aerr; }
/** Set lattice parameter
@param _b :: lattice parameter \f$ b \f$ (in \f$ \mbox{\AA} \f$ )*/
void UnitCell::setb(double _b) {
da[1] = _b;
recalculate();
}
/** Set lattice parameter error
@param _berr :: lattice parameter \f$ b \f$ error (in \f$ \mbox{\AA} \f$ )*/
void UnitCell::setErrorb(double _berr) { errorda[1] = _berr; }
/** Set lattice parameter
@param _c :: lattice parameter \f$ c \f$ (in \f$ \mbox{\AA} \f$ )*/
void UnitCell::setc(double _c) {
da[2] = _c;
recalculate();
}
/** Set lattice parameter error
@param _cerr :: lattice parameter \f$ c \f$ error (in \f$ \mbox{\AA} \f$ )*/
void UnitCell::setErrorc(double _cerr) { errorda[2] = _cerr; }
/** Set lattice parameter
@param _alpha :: lattice parameter \f$ \alpha \f$
@param angleunit :: units for angle, of type #AngleUnits. Default is degrees.
*/
void UnitCell::setalpha(double _alpha, const int angleunit) {
if (angleunit == angDegrees)
da[3] = deg2rad * _alpha;
else
da[3] = _alpha;
recalculate();
}
/** Set lattice parameter error
@param _alphaerr :: lattice parameter \f$ \alpha \f$ error
@param angleunit :: units for angle, of type #AngleUnits. Default is degrees.
*/
void UnitCell::setErroralpha(double _alphaerr, const int angleunit) {
if (angleunit == angDegrees)
errorda[3] = deg2rad * _alphaerr;
else
errorda[3] = _alphaerr;
}
/** Set lattice parameter
@param _beta :: lattice parameter \f$ \beta \f$
@param angleunit :: units for angle, of type #AngleUnits. Default is degrees.
*/
void UnitCell::setbeta(double _beta, const int angleunit) {
if (angleunit == angDegrees)
da[4] = deg2rad * _beta;
else
da[4] = _beta;
recalculate();
}
/** Set lattice parameter error
@param _betaerr :: lattice parameter \f$ \beta \f$ error
@param angleunit :: units for angle, of type #AngleUnits. Default is degrees.
*/
void UnitCell::setErrorbeta(double _betaerr, const int angleunit) {
if (angleunit == angDegrees)
errorda[4] = deg2rad * _betaerr;
else
errorda[4] = _betaerr;
}
/** Set lattice parameter
@param _gamma :: lattice parameter \f$ \gamma \f$
@param angleunit :: units for angle, of type #AngleUnits. Default is degrees.
*/
void UnitCell::setgamma(double _gamma, const int angleunit) {
if (angleunit == angDegrees)
da[5] = deg2rad * _gamma;
else
da[5] = _gamma;
recalculate();
}
/** Set lattice parameter error
@param _gammaerr :: lattice parameter \f$ \gamma \f$ error
@param angleunit :: units for angle, of type #AngleUnits. Default is degrees.
*/
void UnitCell::setErrorgamma(double _gammaerr, const int angleunit) {
if (angleunit == angDegrees)
errorda[5] = deg2rad * _gammaerr;
else
errorda[5] = _gammaerr;
}
/// Return d-spacing (\f$ \mbox{ \AA } \f$) for a given h,k,l coordinate
double UnitCell::d(double h, double k, double l) const {
return 1.0 / dstar(V3D(h, k, l));
}
/// Return d-spacing (\f$ \mbox{ \AA } \f$) for a given h,k,l coordinate
double UnitCell::d(const V3D &hkl) const { return 1.0 / dstar(hkl); }
/// Return d*=1/d (\f$ \mbox{ \AA }^{-1} \f$) for a given h,k,l coordinate
double UnitCell::dstar(double h, double k, double l) const {
return dstar(V3D(h, k, l)); // create a V3D vector h,k,l
}
/// Return d*=1/d (\f$ \mbox{ \AA }^{-1} \f$) for a given h,k,l coordinate
double UnitCell::dstar(const V3D &hkl) const {
V3D Q = B * hkl; // transform into $AA^-1$
return Q.norm();
}
/// Calculate the angle in degrees or radians between two reciprocal vectors
/// (h1,k1,l1) and (h2,k2,l2)
double UnitCell::recAngle(double h1, double k1, double l1, double h2, double k2,
double l2, const int angleunit) const {
V3D Q1(h1, k1, l1), Q2(h2, k2, l2);
double E, ang;
Q1 = Gstar * Q1;
E = Q1.scalar_prod(Q2);
double temp = E / dstar(h1, k1, l1) / dstar(h2, k2, l2);
ang = M_PI;
else
ang = acos(temp);
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
if (angleunit == angDegrees)
return rad2deg * ang;
else
return ang;
}
/// Volume of the direct unit-cell
double UnitCell::volume() const {
double volume = G.determinant();
return sqrt(volume);
}
/// Volume of the reciprocal lattice
double UnitCell::recVolume() const {
double recvolume = Gstar.determinant();
return sqrt(recvolume);
}
/// Get the metric tensor
/// @return G :: metric tensor
const Kernel::DblMatrix &UnitCell::getG() const { return G; }
/// Get the reciprocal metric tensor
/// @return Gstar :: metric tensor of the reciprocal lattice
const Kernel::DblMatrix &UnitCell::getGstar() const { return Gstar; }
/// Get the B-matrix
/// @return B :: B matrix in Busing-Levy convention
const Kernel::DblMatrix &UnitCell::getB() const { return B; }
/// Get the inverse of the B-matrix
/// @return Binv :: inverse of the B matrix in Busing-Levy convention
const Kernel::DblMatrix &UnitCell::getBinv() const { return Binv; }
/// Private function, called at initialization or whenever lattice parameters
/// are changed
void UnitCell::recalculate() {
if ((da[3] > da[4] + da[5]) || (da[4] > da[3] + da[5]) ||
(da[5] > da[4] + da[3])) {
throw std::invalid_argument("Invalid angles");
}
calculateG();
calculateGstar();
calculateReciprocalLattice();
calculateB();
}
/// Private function to calculate #G matrix
void UnitCell::calculateG() {
G[0][0] = da[0] * da[0];
G[1][1] = da[1] * da[1];
G[2][2] = da[2] * da[2];
G[0][1] = da[0] * da[1] * cos(da[5]);
G[0][2] = da[0] * da[2] * cos(da[4]);
G[1][2] = da[1] * da[2] * cos(da[3]);
G[1][0] = G[0][1];
G[2][0] = G[0][2];
G[2][1] = G[1][2];
}
/// Private function to calculate #Gstar matrix
void UnitCell::calculateGstar() {
// Reciprocal metrix tensor is simply the inverse of the direct one
double det = G.determinant();
if (det == 0) {
throw std::range_error("UnitCell not properly initialized");
}
Gstar = G;
if (Gstar.Invert() == 0) {
throw std::range_error("UnitCell not properly initialized");
}
}
/// Private function to calculate reciprocal lattice parameters
void UnitCell::calculateReciprocalLattice() {
ra[0] = sqrt(Gstar[0][0]); // a*
ra[1] = sqrt(Gstar[1][1]); // b*
ra[2] = sqrt(Gstar[2][2]); // c*
ra[3] = acos(Gstar[1][2] / ra[1] / ra[2]); // alpha*
ra[4] = acos(Gstar[0][2] / ra[0] / ra[2]); // beta*
ra[5] = acos(Gstar[0][1] / ra[0] / ra[1]); // gamma*
}
/// Private function to calculate #B matrix
void UnitCell::calculateB() {
// B matrix using a right handed coordinate system with b1 along x and y in
// the (b1,b2) plane.
// This is the convention in Busing and Levy.
// | b1 b2cos(beta3) b3cos(beta2) |
// | 0 b2sin(beta3) -b3sin(beta2)cos(alpha1) |
// | 0 0 1/a3 |
B[0][0] = ra[0];
B[0][1] = ra[1] * cos(ra[5]);
B[0][2] = ra[2] * cos(ra[4]);
B[1][0] = 0.;
B[1][1] = ra[1] * sin(ra[5]);
B[1][2] = -ra[2] * sin(ra[4]) * cos(da[3]);
B[2][0] = 0.;
B[2][1] = 0.;
B[2][2] = 1. / da[2];
/// Now let's cache the inverse B
Binv = B;
Binv.Invert();
}
/// Recalculate lattice from reciprocal metric tensor (Gstar=transpose(UB)*UB)
void UnitCell::recalculateFromGstar(const DblMatrix &NewGstar) {
if (NewGstar.numRows() != 3 || NewGstar.numCols() != 3) {
std::ostringstream msg;
msg << "UnitCell::recalculateFromGstar - Expected a 3x3 matrix but was "
"given a "
<< NewGstar.numRows() << "x" << NewGstar.numCols();
throw std::invalid_argument(msg.str());
}
if (NewGstar[0][0] * NewGstar[1][1] * NewGstar[2][2] <= 0.)
throw std::invalid_argument("NewGstar");
Gstar = NewGstar;
calculateReciprocalLattice();
G = Gstar;
G.Invert();
da[0] = sqrt(G[0][0]); // a
da[1] = sqrt(G[1][1]); // b
da[2] = sqrt(G[2][2]); // c
da[3] = acos(G[1][2] / da[1] / da[2]); // alpha
da[4] = acos(G[0][2] / da[0] / da[2]); // beta
da[5] = acos(G[0][1] / da[0] / da[1]); // gamma
calculateB();
}
std::ostream &operator<<(std::ostream &out, const UnitCell &unitCell) {
// always show the lattice constants
out << "Lattice Parameters:" << std::fixed << std::setprecision(6)
<< std::setw(12) << unitCell.a() << std::fixed << std::setprecision(6)
<< std::setw(12) << unitCell.b() << std::fixed << std::setprecision(6)
<< std::setw(12) << unitCell.c() << std::fixed << std::setprecision(6)
<< std::setw(12) << unitCell.alpha() << std::fixed << std::setprecision(6)
<< std::setw(12) << unitCell.beta() << std::fixed << std::setprecision(6)
<< std::setw(12) << unitCell.gamma() << std::fixed << std::setprecision(6)
<< " " << std::setw(12) << unitCell.volume();
// write out the uncertainty if there is a positive one somewhere
if ((unitCell.errora() > 0) || (unitCell.errorb() > 0) ||
(unitCell.errorc() > 0) || (unitCell.erroralpha() > 0) ||
(unitCell.errorbeta() > 0) || (unitCell.errorgamma() > 0))
out << "\nParameter Errors :" << std::fixed << std::setprecision(6)
<< std::setw(12) << unitCell.errora() << std::fixed
<< std::setprecision(6) << std::setw(12) << unitCell.errorb()
<< std::fixed << std::setprecision(6) << std::setw(12)
<< unitCell.errorc() << std::fixed << std::setprecision(6)
<< std::setw(12) << unitCell.erroralpha() << std::fixed
<< std::setprecision(6) << std::setw(12) << unitCell.errorbeta()
<< std::fixed << std::setprecision(6) << std::setw(12)
<< unitCell.errorgamma() << std::fixed << std::setprecision(6)
<< std::setw(12) << unitCell.errorvolume();
return out;
}
std::string unitCellToStr(const UnitCell &unitCell) {
std::ostringstream stream;
stream << std::setprecision(9);
stream << unitCell.a() << " " << unitCell.b() << " " << unitCell.c() << " "
<< unitCell.alpha() << " " << unitCell.beta() << " "
<< unitCell.gamma();
return stream.str();
}
UnitCell strToUnitCell(const std::string &unitCellString) {
Mantid::Kernel::StringTokenizer cellTokens(
unitCellString, " ", Mantid::Kernel::StringTokenizer::TOK_IGNORE_EMPTY);
std::vector<double> components;
for (const auto &token : cellTokens) {
components.push_back(boost::lexical_cast<double>(token));
}
switch (components.size()) {
case 3:
return UnitCell(components[0], components[1], components[2]);
case 6:
return UnitCell(components[0], components[1], components[2], components[3],
components[4], components[5]);
default:
throw std::runtime_error("Failed to parse unit cell input string: " +
unitCellString);
}
}
} // namespace Geometry