Newer
Older
#include "MantidGeometry/Quat.h"
#include "MantidGeometry/V3D.h"
Russell Taylor
committed
#include "MantidGeometry/Tolerance.h"
#include <cmath>
#include <stdexcept>
#include <cstdlib>
#include <float.h>
namespace Mantid
{
namespace Geometry
{
Janik Zikovsky
committed
/** Null Constructor
* Initialize the quaternion with the identity q=1.0+0i+0j+0k;
*/
Quat::Quat():w(1),a(0),b(0),c(0)
{
}
Janik Zikovsky
committed
Janik Zikovsky
committed
/**
* Construct a Quat between two vectors;
* The angle between them is defined differently from usual if vectors are not unit or the same length vectors, so quat would be not consistent
*
* v=(src+des)/�src+des�
* w=v.des
* (a,b,c)=(v x des)
Janik Zikovsky
committed
* @param src :: the source position
* @param des :: the destination position
*/
Quat::Quat(const V3D& src,const V3D& des)
{
Janik Zikovsky
committed
V3D v = (src+des);
v.normalize();
V3D cross =v.cross_prod(des);
Roman Tolchenov
committed
if (cross.nullVector())
{
w = 1.;
a = b = c = 0.;
}
else
{
w = v.scalar_prod(des);
Roman Tolchenov
committed
a = cross[0];
b = cross[1];
c = cross[2];
double norm = a*a+b*b+c*c+w*w;
Gigg, Martyn Anthony
committed
if(fabs(norm-1)>FLT_EPSILON){
norm = sqrt(norm);
w/=norm;
a/=norm;
b/=norm;
c/=norm;
}
Roman Tolchenov
committed
}
Quat::Quat(const Geometry::MantidMat &RotMat)
{
this->setQuat(RotMat);
}
//! Constructor with values
Quat::Quat(const double _w,const double _a, const double _b, const double _c):w(_w),a(_a),b(_b),c(_c)
{
}
//! Copy constructor
Quat::Quat(const Quat& _q)
{
w=_q.w;
a=_q.a;
b=_q.b;
c=_q.c;
}
Janik Zikovsky
committed
/** Constructor from an angle and axis.
* This construct a quaternion to represent a rotation
* of an angle _deg around the _axis. The _axis does not need to be a unit vector
*
Janik Zikovsky
committed
* @param _deg :: angle of rotation
* @param _axis :: axis to rotate about
* */
Quat::Quat(const double _deg,const V3D& _axis)
{
Janik Zikovsky
committed
/**
* Construct a Quaternion that performs a reference frame rotation.
* Specify the X,Y,Z vectors of the rotated reference frame, assuming that
* the initial X,Y,Z vectors are aligned as expected: X=(1,0,0), Y=(0,1,0), Z=(0,0,1).
* The resuting quaternion rotates XYZ axes onto the provided rX, rY, rZ.
*
Janik Zikovsky
committed
* @param rX :: rotated X reference axis; unit vector.
* @param rY :: rotated Y reference axis; unit vector.
* @param rZ :: rotated Z reference axis; unit vector.
*/
Quat::Quat(const V3D& rX, const V3D& rY, const V3D& rZ)
{
//Call the operator to do the setting
this->operator()(rX, rY, rZ);
Janik Zikovsky
committed
* @param q :: the Quat to copy
* @returns a pointer to this
*/
Quat& Quat::operator=(const Quat& q)
{
if (this!=&q)
{
w=q.w;
a=q.a;
b=q.b;
c=q.c;
}
return *this;
}
/** Sets the quat values from four doubles
Janik Zikovsky
committed
* @param ww :: the value for w
* @param aa :: the value for a
* @param bb :: the value for b
* @param cc :: the value for c
*/
void Quat::set(const double ww, const double aa, const double bb, const double cc)
{
w=ww;
a=aa;
b=bb;
c=cc;
return;
}
Janik Zikovsky
committed
/** Constructor from an angle and axis.
* @param _deg :: angle of rotation
* @param _axis :: axis to rotate about
*
* This construct a quaternion to represent a rotation
* of an angle _deg around the _axis. The _axis does not need to be a unit vector
* */
void Quat::setAngleAxis(const double _deg, const V3D& _axis)
{
double deg2rad=M_PI/180.0;
w=cos(0.5*_deg*deg2rad);
double s=sin(0.5*_deg*deg2rad);
V3D temp(_axis);
temp.normalize();
a=s*temp[0];
b=s*temp[1];
c=s*temp[2];
return;
}
bool Quat::isNull(const double tolerance) const
{
using namespace std;
double pw=fabs(w)-1;
return (fabs(pw)<tolerance);
Janik Zikovsky
committed
/// @param _deg :: the angle of rotation
/// @param _ax0 :: The first component of the axis
/// @param _ax1 :: The second component of the axis
/// @param _ax2 :: The third component of the axis
void Quat::getAngleAxis(double& _deg,double& _ax0, double& _ax1, double& _ax2) const
{
// If it represents a rotation of 0(2\pi), get an angle of 0 and axis (0,0,1)
if (isNull(1e-5))
{
_deg=0;
_ax0=0;
_ax1=0;
_ax2=1.0;
return;
}
// Semi-angle in radians
_deg=acos(w);
// Prefactor for the axis part
double s=sin(_deg);
// Angle in degrees
_deg*=360.0/M_PI;
_ax0=a/s;_ax1=b/s;_ax2=c/s;
return;
}
/** Set the rotation (both don't change rotation axis). This method has an error
Janik Zikovsky
committed
* @param deg :: angle of rotation
*/
void Quat::setRotation(const double deg)
{
double deg2rad = M_PI/180.0;
w = cos(0.5*deg*deg2rad);
}
/** Sets the quat values from four doubles
Janik Zikovsky
committed
* @param ww :: the value for w
* @param aa :: the value for a
* @param bb :: the value for b
* @param cc :: the value for c
*/
void Quat::operator()(const double ww, const double aa, const double bb, const double cc)
{
this->set(ww,aa,bb,cc);
}
/** Sets the quat values from an angle and a vector
Janik Zikovsky
committed
* @param angle :: the numbers of degrees
* @param axis :: the axis of rotation
*/
void Quat::operator()(const double angle, const V3D& axis)
{
this->setAngleAxis(angle,axis);
}
Janik Zikovsky
committed
* @param q :: the quat to copy
void Quat::operator()(const Quat& q)
{
w=q.w;
a=q.a;
b=q.b;
c=q.c;
return;
}
Janik Zikovsky
committed
/**
Janik Zikovsky
committed
* Set a Quaternion that performs a reference frame rotation.
* Specify the X,Y,Z vectors of the rotated reference frame, assuming that
* the initial X,Y,Z vectors are aligned as expected: X=(1,0,0), Y=(0,1,0), Z=(0,0,1).
* The resuting quaternion rotates XYZ axes onto the provided rX, rY, rZ.
*
Janik Zikovsky
committed
* @param rX :: rotated X reference axis; unit vector.
* @param rY :: rotated Y reference axis; unit vector.
* @param rZ :: rotated Z reference axis; unit vector.
Janik Zikovsky
committed
*/
void Quat::operator()(const V3D& rX, const V3D& rY, const V3D& rZ)
{
//The quaternion will combine two quaternions.
(void) rZ; //Avoid compiler warning
Janik Zikovsky
committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
//These are the original axes
V3D oX = V3D(1.,0.,0.);
V3D oY = V3D(0.,1.,0.);
V3D oZ = V3D(0.,0.,1.);
//Axis that rotates X
V3D ax1 = oX.cross_prod(rX);
//Rotation angle from oX to rX
double angle1 = oX.angle(rX);
//Create the first quaternion
Quat Q1(angle1 * 180.0/M_PI, ax1);
//Now we rotate the original Y using Q1
V3D roY = oY;
Q1.rotate(roY);
//Find the axis that rotates oYr onto rY
V3D ax2 = roY.cross_prod(rY);
double angle2 = roY.angle(rY);
double sign = 1.0;
if (ax2.scalar_prod(rX) < 0) { sign = -1.0; };
Quat Q2(angle2 * 180.0/M_PI, ax2);
//Final = those two rotations in succession; Q1 is done first.
Quat final = Q2 * Q1;
//Set it
this->operator()(final);
/*
std::cout << "Angle1 is: " << angle1 << "; axis " << ax1 << " ... ";
std::cout << "Q1 is: " << Q1 << "\n";
std::cout << "Angle2 is: " << angle2 << "; axis " << ax2 << " ... ";
std::cout << "Q2 is: " << Q2 << "\n";
std::cout << "Final is: " << final << "\n";
*/
}
//! Destructor
Quat::~Quat()
{}
Janik Zikovsky
committed
/** Re-initialise a quaternion to identity.
*/
void Quat::init()
{
w=1.0;
a=b=c=0.0;
return;
}
Janik Zikovsky
committed
/** Quaternion addition operator
* @param _q :: the quaternion to add
* @return *this+_q
*/
Quat Quat::operator+(const Quat& _q) const
{
return Quat(w+_q.w,a+_q.a,b+_q.b,c+_q.c);
}
Janik Zikovsky
committed
/** Quaternion self-addition operator
* @param _q :: the quaternion to add
* @return *this+=_q
*/
Quat& Quat::operator+=(const Quat& _q)
{
w+=_q.w;a+=_q.a;b+=_q.b;c+=_q.c;
return *this;
}
Janik Zikovsky
committed
/** Quaternion subtraction operator
* @param _q :: the quaternion to add
* @return *this-_q
*/
Quat Quat::operator-(const Quat& _q) const
{
return Quat(w-_q.w,a-_q.a,b-_q.b,c-_q.c);
}
Janik Zikovsky
committed
/** Quaternion self-substraction operator
* @param _q :: the quaternion to add
* @return *this-=_q
*/
Quat& Quat::operator-=(const Quat& _q)
{
w-=_q.w;
a-=_q.a;
b-=_q.b;
c-=_q.c;
return *this;
}
Janik Zikovsky
committed
/** Quaternion multiplication operator
* @param _q :: the quaternion to multiply
* @return *this*_q
*
* Quaternion multiplication is non commutative
* in the same way multiplication of rotation matrices
* isn't.
*/
Quat Quat::operator*(const Quat& _q) const
{
double w1,a1,b1,c1;
w1=w*_q.w-a*_q.a-b*_q.b-c*_q.c;
a1=w*_q.a+_q.w*a+b*_q.c-_q.b*c;
b1=w*_q.b+_q.w*b-a*_q.c+c*_q.a;
c1=w*_q.c+_q.w*c+a*_q.b-_q.a*b;
return Quat(w1,a1,b1,c1);
}
Janik Zikovsky
committed
/** Quaternion self-multiplication operator
* @param _q :: the quaternion to multiply
* @return *this*=_q
*/
Quat& Quat::operator*=(const Quat& _q)
{
double w1,a1,b1,c1;
w1=w*_q.w-a*_q.a-b*_q.b-c*_q.c;
a1=w*_q.a+_q.w*a+b*_q.c-_q.b*c;
b1=w*_q.b+_q.w*b-a*_q.c+c*_q.a;
c1=w*_q.c+_q.w*c+a*_q.b-_q.a*b;
w=w1;a=a1;b=b1;c=c1;
return (*this);
}
Janik Zikovsky
committed
/** Quaternion equal operator
* @param q :: the quaternion to compare
*
* Compare two quaternions at 1e-6%tolerance.
* Use boost close_at_tolerance method
*/
bool Quat::operator==(const Quat& q) const
{
using namespace std;
return (fabs(w-q.w)>Tolerance ||
fabs(a-q.a)>Tolerance ||
fabs(b-q.b)>Tolerance ||
fabs(c-q.c)>Tolerance) ?
Russell Taylor
committed
false : true;
//return (quat_tol(w,q.w) && quat_tol(a,q.a) && quat_tol(b,q.b) && quat_tol(c,q.c));
Janik Zikovsky
committed
/** Quaternion non-equal operator
* @param _q :: the quaternion to compare
*
* Compare two quaternions at 1e-6%tolerance.
* Use boost close_at_tolerance method
Janik Zikovsky
committed
* @return true if not equal
*/
bool Quat::operator!=(const Quat& _q) const
{
return (!operator==(_q));
}
Janik Zikovsky
committed
/** Quaternion normalization
*
* Divide all elements by the quaternion norm
*/
void Quat::normalize()
{
double overnorm;
if(len2()==0)
overnorm=1.0;
else
Roman Tolchenov
committed
overnorm=1.0/len();
w*=overnorm;
a*=overnorm;
b*=overnorm;
c*=overnorm;
return;
}
Janik Zikovsky
committed
/** Quaternion complex conjugate
*
* Reverse the sign of the 3 imaginary components of the
* quaternion
*/
void Quat::conjugate()
{
a*=-1.0;
b*=-1.0;
c*=-1.0;
return;
}
Janik Zikovsky
committed
/** Quaternion length
* @return the length
*/
double Quat::len() const
{
return sqrt(len2());
}
Janik Zikovsky
committed
/** Quaternion norm (length squared)
* @return the length squared
*/
double Quat::len2() const
{
return (w*w+a*a+b*b+c*c);
}
Janik Zikovsky
committed
/** Inverse a quaternion
*
*/
void Quat::inverse()
{
conjugate();
Roman Tolchenov
committed
double overnorm = len2();
if(overnorm==0)
overnorm=1.0;
else
overnorm=1.0/overnorm;
w*=overnorm;
a*=overnorm;
b*=overnorm;
c*=overnorm;
Janik Zikovsky
committed
/** Rotate a vector.
* @param v :: the vector to be rotated
*
* The quaternion needs to be normalized beforehand to
* represent a rotation. If q is thequaternion, the rotation
* is represented by q.v.q-1 where q-1 is the inverse of
* v.
*/
void Quat::rotate(V3D& v) const
{
Quat qinvert(*this);
qinvert.inverse();
Quat pos(0.0,v[0],v[1],v[2]);
pos*=qinvert;
pos=(*this)*pos;
v[0]=pos[1];
v[1]=pos[2];
v[2]=pos[3];
}
Janik Zikovsky
committed
/** Convert quaternion rotation to an OpenGL matrix [4x4] matrix
* The function glRotated must be called
Janik Zikovsky
committed
* @param mat :: The output matrix
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
*/
void Quat::GLMatrix(double* mat) const
{
double aa = a * a;
double ab = a * b;
double ac = a * c;
double aw = a * w;
double bb = b * b;
double bc = b * c;
double bw = b * w;
double cc = c * c;
double cw = c * w;
*mat = 1.0 - 2.0 * ( bb + cc );++mat;
*mat = 2.0 * ( ab + cw );++mat;
*mat = 2.0 * ( ac - bw );++mat;
*mat =0;++mat;
*mat = 2.0 * ( ab - cw );++mat;
*mat = 1.0 - 2.0 * ( aa + cc );++mat;
*mat = 2.0 * ( bc + aw );++mat;
*mat = 0;++mat;
*mat = 2.0 * ( ac + bw );mat++;
*mat = 2.0 * ( bc - aw );mat++;
*mat = 1.0 - 2.0 * ( aa + bb );mat++;
for (int i=0;i<4;++i)
{
*mat=0;mat++;
}
*mat=1.0;
return;
}
//
std::vector<double>
Quat::getRotation(bool check_normalisation)const
{
double aa = a * a;
double ab = a * b;
double ac = a * c;
double aw = a * w;
double bb = b * b;
double bc = b * c;
double bw = b * w;
double cc = c * c;
double cw = c * w;
if(check_normalisation){
double normSq=aa+bb+cc+w*w;
Gigg, Martyn Anthony
committed
if(fabs(normSq-1)>FLT_EPSILON){
throw(std::invalid_argument("Attempt to use non-normalized quaternion to define rotation matrix; need to notmalize it first"));
}
}
std::vector<double> out(9);
out[0]= (1.0 - 2.0 * ( bb + cc ));
out[1]= 2.0 * ( ab + cw );
out[2]= 2.0 * ( ac - bw );
out[3]= 2.0 * ( ab - cw );
out[4]= (1.0 - 2.0 * ( aa + cc ));
out[5]= 2.0 * ( bc + aw );
out[6]=2.0 * ( ac + bw );
out[7]=2.0 * ( bc - aw );
out[8]=(1.0 - 2.0 * ( aa + bb ));
return out;
}
Janik Zikovsky
committed
/**
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
* Converts the GL Matrix into Quat
*/
void Quat::setQuat(double mat[16])
{
double tr,s,q[4];
int i,j,k;
int nxt[3]={1,2,0};
tr=mat[0]+mat[5]+mat[10];
if(tr>0.0)
{
s=sqrt(tr+1.0);
w=s/2.0;
s=0.5/s;
a=(mat[6]-mat[9])*s;
b=(mat[8]-mat[2])*s;
c=(mat[1]-mat[4])*s;
}else{
i=0;
if(mat[5]>mat[0])i=1;
if(mat[10]>mat[i*5])i=2;
j=nxt[i];
k=nxt[j];
s=sqrt(mat[i*5]-(mat[j*5]+mat[k*5])+1.0);
q[i]=s*0.5;
if(s!=0.0)s=0.5/s;
q[3]=(mat[j*4+k]-mat[k*4+j])*s;
q[j]=(mat[i*4+j]+mat[j*4+i])*s;
q[k]=(mat[i*4+k]+mat[k*4+i])*s;
a=q[0];
b=q[1];
c=q[2];
w=q[3];
}
Alex Buts
committed
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
}
//
void
Quat::setQuat(const Geometry::MantidMat &rMat)
{
double MAT[16];
for(int i=0;i<16;i++)MAT[i]=0;
MAT[0]= rMat[0][0];
MAT[1]= rMat[0][1];
MAT[2]= rMat[0][2];
MAT[4]= rMat[1][0];
MAT[5]= rMat[1][1];
MAT[6]= rMat[1][2];
MAT[8] = rMat[2][0];
MAT[9] = rMat[2][1];
MAT[10]= rMat[2][2];
MAT[15]= 1;
this->setQuat(MAT);
}
/** Bracket operator overload
* returns the internal representation values based on an index
Janik Zikovsky
committed
* @param Index :: the index of the value required 0=w, 1=a, 2=b, 3=c
* @returns a double of the value requested
*/
const double& Quat::operator[](const int Index) const
{
switch (Index)
{
case 0: return w;
case 1: return a;
case 2: return b;
case 3: return c;
default:
throw std::runtime_error("Quat::operator[] range error");
}
}
/** Bracket operator overload
* returns the internal representation values based on an index
Janik Zikovsky
committed
* @param Index :: the index of the value required 0=w, 1=a, 2=b, 3=c
* @returns a double of the value requested
*/
double& Quat::operator[](const int Index)
{
switch (Index)
{
case 0: return w;
case 1: return a;
case 2: return b;
case 3: return c;
default:
throw std::runtime_error("Quat::operator[] range error");
}
}
/** Prints a string representation of itself
Janik Zikovsky
committed
* @param os :: the stream to output to
*/
void Quat::printSelf(std::ostream& os) const
{
os << "[" << w << "," << a << "," << b << "," << c << "]";
return;
}
Roman Tolchenov
committed
/** Read data from a stream in the format returned by printSelf ("[w,a,b,c]").
* @param IX :: Input Stream
* @throw std::runtime_error if the input is of wrong format
*/
void Quat::readPrinted(std::istream& IX)
{
std::string in;
std::getline(IX,in);
size_t i = in.find_first_of('[');
if (i == std::string::npos) throw std::runtime_error("Wrong format for Quat input: "+in);
size_t j = in.find_last_of(']');
if (j == std::string::npos || j < i + 8) throw std::runtime_error("Wrong format for Quat input: "+in);
size_t c1 = in.find_first_of(',');
size_t c2 = in.find_first_of(',',c1+1);
size_t c3 = in.find_first_of(',',c2+1);
if (c1 == std::string::npos || c2 == std::string::npos || c3 == std::string::npos)
Roman Tolchenov
committed
throw std::runtime_error("Wrong format for Quat input: ["+in+"]");
w = atof(in.substr(i+1,c1-i-1).c_str());
a = atof(in.substr(c1+1,c2-c1-1).c_str());
b = atof(in.substr(c2+1,c3-c2-1).c_str());
c = atof(in.substr(c3+1,j-c3-1).c_str());
return;
}
Janik Zikovsky
committed
* @param os :: the stream to output to
* @param q :: the quat to output
* @returns the stream
*/
std::ostream& operator<<(std::ostream& os,const Quat& q)
{
q.printSelf(os);
return os;
}
/** Reads in a quat from an input stream
Janik Zikovsky
committed
* @param ins :: The input stream
* @param q :: The quat
Roman Tolchenov
committed
std::istream& operator>>(std::istream& ins,Quat& q)
{
q.readPrinted(ins);
return ins;
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
}
void Quat::rotateBB(double& xmin, double& ymin, double& zmin, double& xmax, double& ymax, double& zmax) const
{
// Defensive
if (xmin>xmax) std::swap(xmin,xmax);
if (ymin>ymax) std::swap(ymin,ymax);
if (zmin>zmax) std::swap(zmin,zmax);
// Get the min and max of the cube, and remove centring offset
Mantid::Geometry::V3D minT(xmin,ymin,zmin), maxT(xmax,ymax,zmax);
// Get the rotation matrix
double rotMatr[16];
GLMatrix(&rotMatr[0]);
// Now calculate new min and max depending on the sign of matrix components
// Much faster than creating 8 points and rotate them. The new min (max)
// can only be obtained by summing the smallest (largest) components
//
Mantid::Geometry::V3D minV, maxV;
// Looping on rows of matrix
int index;
for (int i=0;i<3;i++)
{
for (int j=0;j<3;j++)
{
index=j+i*4; // The OpenGL matrix is linear and represent a 4x4 matrix but only the 3x3 upper-left inner part
// contains the rotation
minV[j]+=(rotMatr[index]>0)?rotMatr[index]*minT[i]:rotMatr[index]*maxT[i];
maxV[j]+=(rotMatr[index]>0)?rotMatr[index]*maxT[i]:rotMatr[index]*minT[i];
}
}
// Adjust value.
xmin=minV[0]; ymin=minV[1]; zmin=minV[2];
xmax=maxV[0]; ymax=maxV[1]; zmax=maxV[2];
return;
}
} // Namespace Geometry
} // Namespce Mantid