Newer
Older
#pylint: disable=no-init,invalid-name
import time
import math
import os
from mantid.api import *
from mantid.simpleapi import *
from mantid.kernel import *
class LiquidsReflectometryReduction(PythonAlgorithm):
def category(self):
return "Reflectometry\\SNS"
def name(self):
return "LiquidsReflectometryReduction"
def version(self):
return 1
def summary(self):
return "Liquids Reflectometer (REFL) reduction"
def PyInit(self):
self.declareProperty(IntArrayProperty("RunNumbers"), "List of run numbers to process")
self.declareProperty("NormalizationRunNumber", 0, "Run number of the normalization run to use")
self.declareProperty(IntArrayProperty("SignalPeakPixelRange"), "Pixel range defining the data peak")
self.declareProperty("SubtractSignalBackground", True,
doc='If true, the background will be subtracted from the data peak')
self.declareProperty(IntArrayProperty("SignalBackgroundPixelRange", [123, 137],
IntArrayLengthValidator(2), direction=Direction.Input),
"Pixelrange defining the background. Default:(123,137)")
self.declareProperty("NormFlag", True, doc="If true, the data will be normalized")
self.declareProperty(IntArrayProperty("NormPeakPixelRange", [127, 133],
IntArrayLengthValidator(2), direction=Direction.Input),
"Pixel range defining the normalization peak")
self.declareProperty("SubtractNormBackground", True,
doc="If true, the background will be subtracted from the normalization peak")
self.declareProperty(IntArrayProperty("NormBackgroundPixelRange", [127, 137],
IntArrayLengthValidator(2), direction=Direction.Input),
"Pixel range defining the background for the normalization")
self.declareProperty("LowResDataAxisPixelRangeFlag", True,
doc="If true, the low resolution direction of the data will be cropped according to the lowResDataAxisPixelRange property")
self.declareProperty(IntArrayProperty("LowResDataAxisPixelRange", [115, 210],
IntArrayLengthValidator(2), direction=Direction.Input),
"Pixel range to use in the low resolution direction of the data")
self.declareProperty("LowResNormAxisPixelRangeFlag", True,
doc="If true, the low resolution direction of the normalization run will be cropped according to the LowResNormAxisPixelRange property")
self.declareProperty(IntArrayProperty("LowResNormAxisPixelRange", [115, 210],
IntArrayLengthValidator(2), direction=Direction.Input),
"Pixel range to use in the low resolution direction of the normalizaion run")
self.declareProperty(FloatArrayProperty("TOFRange", [9000., 23600.],
FloatArrayLengthValidator(2), direction=Direction.Input),
self.declareProperty("TofRangeFlag", True,
doc="If true, the TOF will be cropped according to the TOF range property")
self.declareProperty("QMin", 0.05, doc="Minimum Q-value")
self.declareProperty("QStep", 0.02, doc="Step size in Q. Enter a negative value to get a log scale")
self.declareProperty("AngleOffset", 0.0, doc="angle offset (degrees)")
self.declareProperty("AngleOffsetError", 0.0, doc="Angle offset error (degrees)")
self.declareProperty(MatrixWorkspaceProperty("OutputWorkspace", "", Direction.Output), "Output workspace")
self.declareProperty("ScalingFactorFile", "", doc="Scaling factor configuration file")
self.declareProperty("SlitsWidthFlag", True,
doc="Looking for perfect match of slits width when using Scaling Factor file")
self.declareProperty("IncidentMediumSelected", "", doc="Incident medium used for those runs")
self.declareProperty("GeometryCorrectionFlag", False, doc="Use or not the geometry correction")
self.declareProperty("FrontSlitName", "S1", doc="Name of the front slit")
self.declareProperty("BackSlitName", "Si", doc="Name of the back slit")
self.declareProperty("TOFSteps", 40.0, doc="TOF step size")
self.declareProperty("CropFirstAndLastPoints", True, doc="If true, we crop the first and last points")
# The old reflectivity reduction has an offset between the input
# pixel numbers and what it actually uses. Set the offset to zero
# to turn it off.
self.LEGACY_OFFSET = -1
# The old reduction code had a tolerance value for matching the
# slit parameters to get the scaling factors
self.TOLERANCE = 0.020
# DATA
dataRunNumbers = self.getProperty("RunNumbers").value
dataPeakRange = self.getProperty("SignalPeakPixelRange").value
dataBackRange = self.getProperty("SignalBackgroundPixelRange").value
# NORM
normalizationRunNumber = self.getProperty("NormalizationRunNumber").value
normBackRange = self.getProperty("NormBackgroundPixelRange").value
normPeakRange = self.getProperty("NormPeakPixelRange").value
qMin = self.getProperty("QMin").value
qStep = self.getProperty("QStep").value
if qStep > 0: #force logarithmic binning
qStep = -qStep
# If we have multiple files, add them
file_list = []
for item in dataRunNumbers:
data_file = FileFinder.findRuns("REF_L%d" % item)[0]
file_list.append(data_file)
runs = reduce((lambda x, y: '%s+%s' % (x, y)), file_list)
ws_event_data = Load(Filename=runs)
# Get the TOF range
TOFrangeFlag = self.getProperty("TofRangeFlag")
if TOFrangeFlag:
TOFrange = self.getProperty("TOFRange").value #microS
else:
tof_max = ws_event_data.getTofMax()
TOFrange = [0, tof_max]
# Number of pixels in each direction
#TODO: revisit this when we update the IDF
self.number_of_pixels_x = int(ws_event_data.getInstrument().getNumberParameter("number-of-x-pixels")[0])
self.number_of_pixels_y = int(ws_event_data.getInstrument().getNumberParameter("number-of-y-pixels")[0])
# Get scattering angle theta
theta = self.calculate_scattering_angle(ws_event_data)
# ----- Process Sample Data -------------------------------------------
crop_request = self.getProperty("LowResDataAxisPixelRangeFlag")
low_res_range = self.getProperty("LowResDataAxisPixelRange").value
bck_request = self.getProperty("SubtractSignalBackground").value
data_cropped = self.process_data(ws_event_data, TOFrange,
crop_request, low_res_range,
dataPeakRange, bck_request, dataBackRange)
# ----- Normalization -------------------------------------------------
# Load normalization
ws_event_norm = LoadEventNexus("REF_L_%s" % normalizationRunNumber,
OutputWorkspace="REF_L_%s" % normalizationRunNumber)
crop_request = self.getProperty("LowResNormAxisPixelRangeFlag")
low_res_range = self.getProperty("LowResNormAxisPixelRange").value
bck_request = self.getProperty("SubtractNormBackground").value
norm_cropped = self.process_data(ws_event_norm, TOFrange,
crop_request, low_res_range,
normPeakRange, bck_request, normBackRange)
# Avoid leaving trash behind
AnalysisDataService.remove(str(ws_event_norm))
# Sum up the normalization peak
norm_summed = SumSpectra(InputWorkspace = norm_cropped)
# Normalize the data
normalized_data = data_cropped / norm_summed
# Avoid leaving trash behind
AnalysisDataService.remove(str(data_cropped))
AnalysisDataService.remove(str(norm_cropped))
AnalysisDataService.remove(str(norm_summed))
normalized_data = ConvertToPointData(InputWorkspace=normalized_data,
OutputWorkspace=str(normalized_data))
normalized_data = self.apply_scaling_factor(normalized_data)
q_workspace = SumSpectra(InputWorkspace = normalized_data)
q_workspace.getAxis(0).setUnit("MomentumTransfer")
# Geometry correction to convert To Q with correction
geometryCorrectionFlag = self.getProperty("GeometryCorrectionFlag").value
if geometryCorrectionFlag:
logger.error("The geometry correction for the Q conversion has not been implemented.")
# Get the distance fromthe moderator to the detector
sample = ws_event_data.getInstrument().getSample()
source = ws_event_data.getInstrument().getSource()
source_sample_distance = sample.getDistance(source)
detector = ws_event_data.getDetector(0)
sample_detector_distance = detector.getPos().getZ()
source_detector_distance = source_sample_distance + sample_detector_distance
# Convert to Q
# Use the TOF range to pick the maximum Q, and give it a little extra room.
h = 6.626e-34 # m^2 kg s^-1
m = 1.675e-27 # kg
constant = 4e-4 * math.pi * m * source_detector_distance / h * math.sin(theta)
q_range = [qMin, qStep, constant / TOFrange[0] * 1.2]
data_x = q_workspace.dataX(0)
for i in range(len(data_x)):
data_x[i] = constant / data_x[i]
q_workspace = SortXAxis(InputWorkspace=q_workspace, OutputWorkspace=str(q_workspace))
# Cook up a name compatible with the UI for backward compatibility
_time = int(time.time())
name_output_ws = self.getPropertyValue("OutputWorkspace")
name_output_ws = name_output_ws + '_#' + str(_time) + 'ts'
q_rebin = Rebin(InputWorkspace=q_workspace, Params=q_range,
OutputWorkspace=name_output_ws)
# Crop to non-zero values
data_y = q_rebin.readY(0)
low_q = None
high_q = None
for i in range(len(data_y)):
if low_q is None and abs(data_y[i])>0:
low_q = i
if high_q is None and abs(data_y[len(data_y)-1-i])>0:
high_q = len(data_y)-1-i
if low_q is not None and high_q is not None:
break
crop = self.getProperty("CropFirstAndLastPoints").value
if low_q is not None and high_q is not None:
# Get rid of first and last Q points to avoid edge effects
if crop:
low_q += 1
high_q -= 1
data_x = q_rebin.readX(0)
q_rebin = CropWorkspace(InputWorkspace=q_rebin,
OutputWorkspace=str(q_rebin),
XMin=data_x[low_q], XMax=data_x[high_q])
else:
logger.error("Data is all zeros. Check your TOF ranges.")
# Clean up the workspace for backward compatibility
data_y = q_rebin.dataY(0)
data_e = q_rebin.dataE(0)
# Again for backward compatibility, the first and last points of the
# raw output when not cropping was simply set to 0 += 1.
if crop is False:
data_y[0] = 0
data_e[0] = 1
data_y[len(data_y)-1] = 0
data_e[len(data_y)-1] = 1
# Values < 1e-12 and values where the error is greater than the value are replaced by 0+-1
for i in range(len(data_y)):
if data_y[i] < 1e-12 or data_e[i]>data_y[i]:
data_y[i]=0.0
data_e[i]=1.0
#TODO: remove this, which we use during development to make sure we don't leave trash
logger.information(str(AnalysisDataService.getObjectNames()))
# Avoid leaving trash behind
for ws in ['ws_event_data', 'normalized_data', 'q_workspace']:
if AnalysisDataService.doesExist(ws):
AnalysisDataService.remove(ws)
self.setProperty('OutputWorkspace', mtd[name_output_ws])
def calculate_scattering_angle(self, ws_event_data):
"""
Compute the scattering angle
@param ws_event_data: data workspace
"""
run_object = ws_event_data.getRun()
thi_value = run_object.getProperty('thi').value[0]
thi_units = run_object.getProperty('thi').units
tthd_value = run_object.getProperty('tthd').value[0]
tthd_units = run_object.getProperty('tthd').units
# Make sure we have radians
if thi_units == 'degree':
thi_value *= math.pi / 180.0
if tthd_units == 'degree':
tthd_value *= math.pi / 180.0
theta = math.fabs(tthd_value - thi_value) / 2.
# Add the offset
angle_offset_deg = self.getProperty("AngleOffset").value
return theta + angle_offset_deg * math.pi / 180.0
def clocking_correction(self, workspace, pixel_range, range_width=3):
"""
Applies the "clocking correction". The pixel range is
the range that contains the reflectivity data. Compute the
average noise per pixel over two small bands on each side.
The subtract that noise pixel-wise from the data
"""
pass
def subtract_background(self, workspace, peak_range, background_range,
low_res_range, sum_peak=False, offset=None):
"""
Subtract background in place
#TODO: RefRoi needs to do error weighting and deal with zeros
@param workspace: Mantid workspace
@param peak_range: range of pixels defining the peak [min, max]
@param background_range: range of pixels defining the background [min, max]
@param low_res_range: low resolution range to integrate over
@param sum_peak: if True, the resulting peak will be summed
if offset is None:
offset = self.LEGACY_OFFSET
peak_min = int(peak_range[0]) + offset
peak_max = int(peak_range[1]) + offset
bck_min = int(background_range[0]) + offset
bck_max = int(background_range[1]) + offset
# Get low-resolution range
x_min = int(low_res_range[0]) + offset
x_max = int(low_res_range[1]) + offset
left_bck = None
if peak_min > bck_min:
left_bck = RefRoi(InputWorkspace=workspace, IntegrateY=False,
NXPixel=self.number_of_pixels_x,
NYPixel=self.number_of_pixels_y,
XPixelMin=x_min,
XPixelMax=x_max,
YPixelMin=bck_min,
YPixelMax=peak_min - 1,
SumPixels=True, NormalizeSum=True)
right_bck = None
if peak_max < bck_max:
right_bck = RefRoi(InputWorkspace=workspace, IntegrateY=False,
NXPixel=self.number_of_pixels_x,
NYPixel=self.number_of_pixels_y,
XPixelMin=x_min,
XPixelMax=x_max,
YPixelMin=peak_max + 1,
YPixelMax=bck_max,
SumPixels=True, NormalizeSum=True)
if right_bck is not None and left_bck is not None:
average = (left_bck + right_bck) / 2.0
elif right_bck is not None:
average = right_bck
elif left_bck is not None:
average = left_bck
else:
average = RefRoi(InputWorkspace=workspace, IntegrateY=False,
NXPixel=self.number_of_pixels_x,
NYPixel=self.number_of_pixels_y,
XPixelMin=x_min,
XPixelMax=x_max,
YPixelMin=bck_min,
YPixelMax=bck_max,
SumPixels=True, NormalizeSum=True)
# Integrate over the low-res direction
workspace = RefRoi(InputWorkspace=workspace, IntegrateY=False,
NXPixel=self.number_of_pixels_x,
NYPixel=self.number_of_pixels_y,
XPixelMin=x_min,
XPixelMax=x_max,
ConvertToQ=False,
SumPixels=sum_peak,
OutputWorkspace=str(workspace))
#TODO Check whether we should multiply by the number of pixels
# in the low-res direction
workspace = Minus(LHSWorkspace=workspace, RHSWorkspace=average,
OutputWorkspace=str(workspace))
# Avoid leaving trash behind
average_name = str(average)
if AnalysisDataService.doesExist(str(left_bck)):
AnalysisDataService.remove(str(left_bck))
if AnalysisDataService.doesExist(str(right_bck)):
AnalysisDataService.remove(str(right_bck))
if AnalysisDataService.doesExist(average_name):
AnalysisDataService.remove(average_name)
def process_data(self, workspace, tof_range, crop_low_res, low_res_range,
peak_range, subtract_background, background_range):
"""
Common processing for both sample data and normalization.
"""
# Rebin TOF axis
tof_max = workspace.getTofMax()
tof_step = self.getProperty("TOFSteps").value
workspace = Rebin(InputWorkspace=workspace, Params=[0, tof_step, tof_max],
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
PreserveEvents=False, OutputWorkspace="%s_histo" % str(workspace))
# Crop TOF range
workspace = CropWorkspace(InputWorkspace=workspace,
XMin=tof_range[0], XMax=tof_range[1],
OutputWorkspace=str(workspace))
# Integrate over low resolution range
x_min = 0
x_max = self.number_of_pixels_x
if crop_low_res:
x_min = int(low_res_range[0])
x_max = int(low_res_range[1])
# Subtract background
if subtract_background:
workspace = self.subtract_background(workspace,
peak_range, background_range,
[x_min, x_max])
else:
# If we don't subtract the background, we still have to integrate
# over the low resolution axis
workspace = RefRoi(InputWorkspace=workspace, IntegrateY=False,
NXPixel=self.number_of_pixels_x,
NYPixel=self.number_of_pixels_y,
ConvertToQ=False, XPixelMin=x_min, XPixelMax=x_max,
OutputWorkspace=str(workspace))
# Normalize by current proton charge
# Note that the background subtraction will use an error weighted mean
# and use 1 as the error on counts of zero. We normalize by the integrated
# current _after_ the background subtraction so that the 1 doesn't have
# to be changed to a 1/Charge.
workspace = NormaliseByCurrent(InputWorkspace=workspace, OutputWorkspace=str(workspace))
# Crop to only the selected peak region
cropped = CropWorkspace(InputWorkspace = workspace,
StartWorkspaceIndex=int(peak_range[0]) + self.LEGACY_OFFSET,
EndWorkspaceIndex=int(peak_range[1]) + self.LEGACY_OFFSET,
OutputWorkspace="%s_cropped" % str(workspace))
# Avoid leaving trash behind
AnalysisDataService.remove(str(workspace))
return cropped
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
def apply_scaling_factor(self, workspace):
"""
Apply scaling factor from reference scaling data
@param workspace: Mantid workspace
"""
scaling_factor_file = self.getProperty("ScalingFactorFile").value
if not os.path.isfile(scaling_factor_file):
scaling_factor_files = FileFinder.findRuns(scaling_factor_file)
if len(scaling_factor_files)>0:
scaling_factor_file = scaling_factor_files[0]
if not os.path.isfile(scaling_factor_file):
logger.error("Could not find scaling factor file %s" % scaling_factor_file)
return
else:
logger.error("Could not find scaling factor file %s" % scaling_factor_file)
return
# Get the incident medium
incident_medium = self.getProperty("IncidentMediumSelected").value
# Get the wavelength
lr = workspace.getRun().getProperty('LambdaRequest').value[0]
lr_value = float("{0:.2f}".format(lr))
# Get the slit information
front_slit = self.getProperty("FrontSlitName").value
back_slit = self.getProperty("BackSlitName").value
# Option to match slit widths or not
match_slit_width = self.getProperty("SlitsWidthFlag").value
s1h = abs(workspace.getRun().getProperty("%sVHeight" % front_slit).value[0])
s1w = abs(workspace.getRun().getProperty("%sHWidth" % front_slit).value[0])
try:
s2h = abs(workspace.getRun().getProperty("%sVHeight" % back_slit).value[0])
s2w = abs(workspace.getRun().getProperty("%sHWidth" % back_slit).value[0])
except:
# For backward compatibility with old code
logger.error("Specified slit could not be found: %s Trying S2" % back_slit)
s2h = abs(workspace.getRun().getProperty("S2VHeight").value[0])
s2w = abs(workspace.getRun().getProperty("S2HWidth").value[0])
scaling_info = "Scaling settings: %s wl=%s S1H=%s S2H=%s" % (incident_medium,
lr_value, s1h, s2h)
if match_slit_width:
scaling_info += " S1W=%s S2W=%s" % (s1w, s2w)
logger.information(scaling_info)
def _reduce(accumulation, item):
"""
Reduce function that accumulates values in a dictionary
"""
toks_item = item.split('=')
if len(toks_item)!=2:
return accumulation
if type(accumulation)==dict:
accumulation[toks_item[0].strip()] = toks_item[1].strip()
else:
toks_accum = accumulation.split('=')
accumulation = {toks_item[0].strip(): toks_item[1].strip(),
toks_accum[0].strip(): toks_accum[1].strip()}
return accumulation
def _value_check(key, data, reference):
"""
Check an entry against a reference value
"""
if key in data:
return abs(abs(float(data[key])) - abs(float(reference))) <= self.TOLERANCE
return False
scaling_data = open(scaling_factor_file, 'r')
file_content = scaling_data.read()
scaling_data.close()
data_found = None
for line in file_content.split('\n'):
if line.startswith('#'):
continue
# Parse the line of data and produce a dict
toks = line.split()
data_dict = reduce(_reduce, toks, {})
# Get ordered list of keys
keys = []
for token in toks:
key_value = token.split('=')
if len(key_value)==2:
keys.append(key_value[0].strip())
# Sanity check
if keys[0] != 'IncidentMedium' and keys[1] != 'LambdaRequested' \
and keys[2] != 'S1H':
logger.error("The scaling factor file isn't standard: bad keywords")
# The S2H key has been changing in the earlier version of REFL reduction.
# Get the key from the data to make sure we are backward compatible.
s2h_key = keys[3]
if 'IncidentMedium' in data_dict \
and data_dict['IncidentMedium'] == incident_medium.strip() \
and _value_check('LambdaRequested', data_dict, lr_value) \
and _value_check('S1H', data_dict, s1h) \
and _value_check(s2h_key, data_dict, s2h):
if not match_slit_width or (_value_check('S1W', data_dict, s1w) \
and _value_check('S2W', data_dict, s2w)):
data_found = data_dict
break
AddSampleLog(Workspace=workspace, LogName='isSFfound', LogText=str(data_found is not None))
if data_found is not None:
a = float(data_found['a'])
b = float(data_found['b'])
a_error = float(data_found['error_a'])
b_error = float(data_found['error_b'])
# Extract a single spectrum, just so we have the TOF axis
# to create a normalization workspace
normalization = ExtractSingleSpectrum(InputWorkspace=workspace,
OutputWorkspace="normalization",
WorkspaceIndex=0)
norm_tof = normalization.dataX(0)
norm_value = normalization.dataY(0)
norm_error = normalization.dataE(0)
#TODO: The following is done on the bin edges.
# Should it not be done for the center of the bin?
for i in range(len(norm_value)):
norm_value[i] = norm_tof[i] * b + a
norm_error[i] = math.sqrt(a_error*a_error + norm_tof[i] * norm_tof[i] * b_error * b_error)
workspace = Divide(LHSWorkspace=workspace,
RHSWorkspace=normalization,
OutputWorkspace=str(workspace))
# Avoid leaving trash behind
AnalysisDataService.remove(str(normalization))
else:
logger.error("Could not find scaling factor")
return workspace
AlgorithmFactory.subscribe(LiquidsReflectometryReduction)