Newer
Older
#include "MantidAlgorithms/CalculatePolynomialBackground.h"
#include "MantidAPI/BasicJacobian.h"
#include "MantidAPI/FunctionFactory.h"
#include "MantidAPI/IFunction1D.h"
#include "MantidAPI/IncreasingAxisValidator.h"
#include "MantidAPI/ITableWorkspace.h"
#include "MantidDataObjects/Workspace2D.h"
#include "MantidDataObjects/WorkspaceCreation.h"
#include "MantidKernel/ArrayOrderedPairsValidator.h"
#include "MantidKernel/ArrayProperty.h"
#include "MantidKernel/BoundedValidator.h"
#include <utility>
namespace {
/// String constants for algorithm's properties.
namespace Prop {
constexpr char *INPUT_WS = "InputWorkspace";
constexpr char *OUTPUT_WS = "OutputWorkspace";
constexpr char *POLY_DEGREE = "Degree";
constexpr char *XRANGES = "XRanges";
}
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
/** Filters ranges completely outside the histogram X values.
* @param ranges a vector of start-end pairs to filter
* @param ws a workspace
* @param wsIndex a workspace index to specify a histogram in ws
* @return a ranges-like vector with filtered pairs removed
*/
std::vector<double> filterRangesOutsideX(const std::vector<double> &ranges, const Mantid::API::MatrixWorkspace &ws, const size_t wsIndex) {
const auto minX = ws.x(wsIndex).front();
const auto maxX = ws.x(wsIndex).back();
std::vector<double> filtered;
filtered.reserve(ranges.size());
for (size_t i = 0; i < ranges.size() / 2; ++i) {
const auto first = ranges[2 * i];
const auto second = ranges[2 * i + 1];
if (!(first > maxX || second < minX)) {
filtered.emplace_back(first);
filtered.emplace_back(second);
}
}
return filtered;
}
/** Merges, sorts and limits ranges within totalRange.
* @param ranges a vector of start-end pairs to process
* @param totalRange a pair of start-end values to limit the output ranges
* @return a ranges-like vector of processed ranges
*/
std::vector<double> includedRanges(const std::vector<double> &ranges, const std::pair<double, double> &totalRange) {
if (ranges.empty()) {
return {totalRange.first, totalRange.second};
}
// Sort the range edges keeping the information whether the edge
// 'starts' or 'ends' a range.
enum class Edge { start, end };
std::vector<std::pair<double, Edge>> edges(ranges.size());
for (size_t i = 0; i < ranges.size(); ++i) {
edges[i].first = ranges[i];
edges[i].second = i % 2 == 0 ? Edge::start : Edge::end;
}
std::sort(edges.begin(), edges.end(), [](const std::pair<double, Edge> &p1, const std::pair<double, Edge> &p2) {
if (p1.first == p2.first)
return p1.second == Edge::start;
return p1.first < p2.first;
});
// If an 'end' edge is followed by a 'start', we have a new range. Everything else
// can be merged.
std::vector<double> mergedRanges;
mergedRanges.reserve(ranges.size());
auto edgeIt = edges.begin();
mergedRanges.emplace_back(std::max(edges.front().first, totalRange.first));
while (edgeIt != edges.end()) {
auto endEdgeIt = edgeIt + 1;
while (endEdgeIt != edges.end()) {
const auto val = *endEdgeIt;
const auto prevVal = *(endEdgeIt - 1);
if (val.second == Edge::start && prevVal.second == Edge::end) {
mergedRanges.emplace_back(prevVal.first);
mergedRanges.emplace_back(val.first);
edgeIt = endEdgeIt;
break;
}
++endEdgeIt;
}
++edgeIt;
}
mergedRanges.emplace_back(std::min(edges.back().first, totalRange.second));
return mergedRanges;
}
/** Return the gaps between ranges, if any.
* @param ranges a vector of start-end pairs to invert
* @return a ranges-like vector of gaps between the given ranges.
*/
std::vector<double> invertRanges(const std::vector<double> &ranges) {
std::vector<double> inversion(ranges.size() - 2);
for (size_t i = 1; i < ranges.size() - 1; ++i) {
inversion[i - 1] = ranges[i];
}
return inversion;
}
/** Return a Fit algorithm compatible string representing a polynomial.
* @param parameters a vector containing the polynomial coefficients
* @return a function string
*/
std::string makeFunctionString(const std::vector<double> ¶meters) {
const auto degree = parameters.size() - 1;
std::ostringstream s;
switch (degree) {
case 0:
s << "name=FlatBackground";
break;
case 1:
s << "name=LinearBackground";
break;
case 2:
s << "name=Quadratic";
break;
default:
s << "name=Polynomial,n=" << degree;
for (size_t d = 0; d <= degree; ++d) {
s << ',' << 'A' << d << '=' << parameters[d];
}
return s.str();
}
/** Construct the largest range spanning histogram's X values and ranges.
* @param ranges a vector of start-end pairs
* @param ws a workspace
* @param wsIndex a workspace index identifying a histogram
* @return a pair of values spanning a range
*/
std::pair<double, double> totalRange(const std::vector<double> &ranges, const Mantid::API::MatrixWorkspace &ws, const size_t wsIndex) {
const auto minX = ws.x(wsIndex).front();
const auto maxX = ws.x(wsIndex).back();
if (ranges.empty()) {
return std::pair<double, double>(minX, maxX);
}
const auto minmaxIt = std::minmax_element(ranges.cbegin(), ranges.cend());
const auto minEdge = *minmaxIt.first;
const auto maxEdge = *minmaxIt.second;
return std::pair<double, double>(std::min(minEdge, minX), std::max(maxEdge, maxX));
}
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
}
namespace Mantid {
namespace Algorithms {
// Register the algorithm into the AlgorithmFactory
DECLARE_ALGORITHM(CalculatePolynomialBackground)
//----------------------------------------------------------------------------------------------
/// Algorithms name for identification. @see Algorithm::name
const std::string CalculatePolynomialBackground::name() const { return "CalculatePolynomialBackground"; }
/// Algorithm's version for identification. @see Algorithm::version
int CalculatePolynomialBackground::version() const { return 1; }
/// Algorithm's category for identification. @see Algorithm::category
const std::string CalculatePolynomialBackground::category() const {
return "CorrectionFunctions\\BackgroundCorrections";
}
/// Algorithm's summary for use in the GUI and help. @see Algorithm::summary
const std::string CalculatePolynomialBackground::summary() const {
return "Fits a polynomial background to a workspace.";
}
//----------------------------------------------------------------------------------------------
/** Initialize the algorithm's properties.
*/
void CalculatePolynomialBackground::init() {
auto increasingAxis = boost::make_shared<API::IncreasingAxisValidator>();
auto nonnegativeInt = boost::make_shared<Kernel::BoundedValidator<int>>();
nonnegativeInt->setLower(0);
auto orderedPairs = boost::make_shared<Kernel::ArrayOrderedPairsValidator<double>>();
declareProperty(
Kernel::make_unique<API::WorkspaceProperty<API::MatrixWorkspace>>(Prop::INPUT_WS, "",
Kernel::Direction::Input, increasingAxis),
"An input workspace.");
declareProperty(
Kernel::make_unique<API::WorkspaceProperty<API::MatrixWorkspace>>(Prop::OUTPUT_WS, "",
Kernel::Direction::Output),
"A workspace containing the fitted background.");
declareProperty(Prop::POLY_DEGREE, 0, nonnegativeInt, "Degree of the fitted polynomial.");
declareProperty(Kernel::make_unique<Kernel::ArrayProperty<double>>(Prop::XRANGES, std::vector<double>(), orderedPairs), "A list of fitting ranges given as pairs of X values.");
}
//----------------------------------------------------------------------------------------------
/** Execute the algorithm.
*/
void CalculatePolynomialBackground::exec() {
API::MatrixWorkspace_sptr inWS = getProperty(Prop::INPUT_WS);
API::MatrixWorkspace_sptr outWS{DataObjects::create<DataObjects::Workspace2D>(*inWS)};
const std::vector<double> ranges = getProperty(Prop::XRANGES);
const auto polyDegree = static_cast<size_t>(static_cast<int>(getProperty(Prop::POLY_DEGREE)));
const std::vector<double> initialParams(polyDegree + 1, 0.1);
const auto fitFunction = makeFunctionString(initialParams);
const auto nHistograms = static_cast<int64_t>(inWS->getNumberHistograms());
const auto nBins = inWS->blocksize();
API::Progress progress(this, 0, 1.0, nHistograms);
PARALLEL_FOR_IF(Kernel::threadSafe(*inWS, *outWS))
for (int64_t i = 0; i < nHistograms; ++i) {
PARALLEL_START_INTERUPT_REGION
const auto filteredRanges = filterRangesOutsideX(ranges, *inWS, i);
if (filteredRanges.empty()) {
throw std::runtime_error("The given XRanges mismatch with the histogram at workspace index " + std::to_string(i));
}
const auto fullRange = totalRange(filteredRanges, *inWS, i);
const auto includedR = includedRanges(filteredRanges, fullRange);
const bool logging{false};
auto fit = createChildAlgorithm("Fit", 0, 0, logging);
fit->setProperty("Function", fitFunction);
fit->setProperty("InputWorkspace", inWS);
fit->setProperty("WorkspaceIndex", static_cast<int>(i));
fit->setProperty("StartX", includedR.front());
fit->setProperty("EndX", includedR.back());
fit->setProperty("Exclude", invertRanges(includedR));
fit->setProperty("CreateOutput", true);
fit->executeAsChildAlg();
API::ITableWorkspace_sptr fitResult = fit->getProperty("OutputParameters");
std::vector<double> parameters(polyDegree + 1);
std::vector<double> paramErrors(polyDegree + 1);
for (size_t row = 0; row < parameters.size(); ++row) {
parameters[row] = fitResult->cell<double>(row, 1);
paramErrors[row] = fitResult->cell<double>(row, 2);
}
const auto bkgFunction = makeFunctionString(parameters);
auto bkg = boost::dynamic_pointer_cast<API::IFunction1D>(API::FunctionFactory::Instance().createInitialized(bkgFunction));
// We want bkg to directly write to the output workspace.
double *bkgY = const_cast<double *>(outWS->mutableY(i).rawData().data());
bkg->function1D(bkgY, outWS->points(i).rawData().data(), nBins);
// Calculate the errors using partial derivatives.
API::BasicJacobian jacobian{nBins, polyDegree + 1};
bkg->functionDeriv1D(&jacobian, outWS->points(i).rawData().data(), nBins);
for (size_t j = 0; j < nBins; ++j) {
double uncertainty{0.0};
for (size_t k = 0; k < paramErrors.size(); ++k) {
uncertainty += std::abs(jacobian.get(j, k)) * paramErrors[k];
}
outWS->mutableE(i)[j] = uncertainty;
}
progress.report();
PARALLEL_END_INTERUPT_REGION
PARALLEL_CHECK_INTERUPT_REGION
setProperty(Prop::OUTPUT_WS, outWS);
}
} // namespace Algorithms
} // namespace Mantid